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Abstract
Composition of the gut microbiota seems to influence early complications of allogeneic hematopoietic cell transplantation (HCT)
such as bacterial infections and acute graft-versus-host disease (GVHD). In this study, we assessed the impact of colonization
with multidrug-resistant bacteria (MDRB) prior to HCT and the use of antibiotics against anaerobic bacteria on the outcomes of
HCT. We retrospectively analyzed the data of 120 patients who underwent HCT for hematologic disorders between 2012 and
2014. Fifty-one (42.5%) patients were colonized with MDRB and 39 (32.5%) had infections caused by MDRB. Prior coloni-
zation was significantly correlated with MDRB infections (P < 0.001), especially bacteremia (P = 0.038). A higher incidence of
MDRB infections was observed in patients with acute (P = 0.014) or chronic (P = 0.002) GVHD and in patients aged > 40 years
(P = 0.002). Colonization had a negative impact on overall survival (OS) after HCT (64 vs. 47% at 24 months; P = 0.034) and
infection-associated mortality (P < 0.001). Use of metronidazole was correlated with an increased incidence of acute GVHD
(P < 0.001) and lower OS (P = 0.002). Patients colonized with MDRB are more susceptible to life-threatening infections.
Colonization with virulent flora is the most probable source of neutropenic infection; therefore, information about prior positive
colonization should be crucial for the selection of empiric antibiotic therapy. The use of metronidazole, affecting the biodiversity
of the intestinal microbiome, seems to have a significant impact on OS and acute GVHD.
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Introduction

Allogeneic hematopoietic cell transplantation (HCT) is the
curative option for various hematologic disorders. Despite
progress in diagnostic and transplant-related procedures,
HCT carries a risk of fatal complications related to graft-
versus-host disease (GVHD) and infections [1]. As a result
of prolonged neutropenia and disruption of anatomic barriers
as well as cellular and humoral immunodeficiency, bacterial
infections are common in the early phase after HCT [2].

Mucosal toxicity caused by the conditioning regimens, lead-
ing to increased permeability of the gastrointestinal (GI) tract,
enables colonizing bacteria to translocate to the circulation
and cause bloodstream infections. Moreover, increased expo-
sure of donor-derived lymphocytes to recipient antigens can
stimulate the immune system and contribute to the develop-
ment of alloreactivity [3].

The intestinal microbiome influences the maturation of the
immune system and immune-mediated responses. The loss of
gut microbiome diversity and generation of multidrug-
resistant bacteria (MDRB) are direct consequences of in-
creased consumption of broad-spectrum antibiotics [4–6].
Treatment with antibiotics against anaerobic bacteria, such
as metronidazole, can promote proinflammatory responses
through the unselective destruction of gut Clostridiales. An
imbalance in gut microbiome composition with dominance
of MDRB may have an impact on GVHD development and
lead to infectious complications. Therefore, we performed a
retrospective analysis of the 120 patients to assess the
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influence of colonization with alert pathogens prior to the
transplant procedure and the use of antibiotics against anaer-
obic bacteria on the outcomes of HCT.

Patients and methods

This study included all patients who underwent allogeneic
HCT at the Department of Hematology and Transplantology,
Medical University of Gdansk, Gdansk, Poland, between
January 2012 and December 2014. Local Human Research
Ethics Committee approved publication of the retrospective
analysis since patient-identifying data were omitted to protect
anonymity and the microbiological samples were collected as
routine tests with prior informed consents of the patients,
available in the patients’ medical records.

Patient characteristics

The study included 120 patients (70 male and 50 fe-
male), with a median age of 41 years (range 19–
67 years), diagnosed with acute myeloid leukemia or
myelodysplastic syndrome (n = 65), acute lymphoblastic
leukemia (n = 25), chronic myeloproliferative neoplasms
(n = 14), lymphomas or chronic lymphoproliferative neo-
plasms (n = 10), severe aplastic anemia, and/or paroxys-
mal nocturnal hemoglobinuria (n = 6).

Fifty-two patients received hematopoietic cells from
matched unrelated donors (MUDs) or mismatched unrelated
donors (MMUDs), and 68 received transplants from matched
sibling donors. The source of stem cells was peripheral blood
was in 111 patients (92.5%) and bone marrow in nine patients
(7.5%). Reduced intensity/toxicity conditioning was applied
in 24 patients, myeloablative conditioning was used in 92
patients and four patients received immunoablation. In all pa-
tients, cyclosporine A and short-term methotrexate were ad-
ministered as GVHD prophylaxis. The patients who received
allotransplants from MUDs/MMUDs additionally received
rabbit anti-thymocyte globulin. The characteristics of the
study group are presented in Table 1.

Anti-infectious prophylaxis

Transplantation-related procedures were performed according
to institutional protocols. All patients were placed in single
rooms with increased sanitary requirements (contact isolation,
high-efficiency particulate air [HEPA] filters) and fed a neu-
tropenic diet. Every patient received ciprofloxacin, acyclovir,
and an anti-fungal agent as standard anti-infective
prophylaxis.

Colonization

Rectal and nasal swabs and stool specimens were collected
upon admission to the hospital and routinely repeated on a
weekly basis during hospitalization. Colonization was defined
as positive in the case of culture growth from at least one swab
or a stool probe. The alert pathogens included: vancomycin-
resistant Enterococcus (VRE), extended-spectrum beta-
lactamase (ESBL)-producing pathogens, and carbapenem-
resistant Pseudomonas aeruginosa (CRPA). Carbapenem-
resistant Acinetobacter baumannii and methicillin-resistant
Staphylococcus aureus were not detected in the study group.

Statistical analysis

Categoric variables were expressed as absolute numbers and
respective percentages, and the differences between groups
were compared using Pearson’s χ2 test. Continuous variables
were expressed as median values with ranges. The relation-
ship between continuous and categoric variables was analyzed
using a nonparametric Mann–Whitney U test. Survival anal-
ysis was performed according to the Kaplan–Meier method.
Overall survival (OS) was calculated from the date of trans-
plantation until death from any cause. The study population
was stratified according to principal clinical and demographic
characteristics, and the mean values of the groups were com-
pared using the log-rank test. Multivariate Cox regression
analysis was applied to identify independent predictive fac-
tors. A P value of < 0.05 was considered statistically signifi-
cant. All analyses were performed using STATISTICAversion
12 (StatSoft, Inc., Tulsa, OK, USA).

Results

Colonization and infections

Colonization with MDRB was detected in 42.5% of the pa-
tients. The most common colonizing MDRB were the follow-
ing: VRE (39%), ESBL-producing Escherichia coli (27%),
ESBL-producing Klebsiella pneumoniae (20%), and CRPA
(5%). Multiple colonizing alert pathogens were cultured from
14% of the patients.

Despite antimicrobial prophylaxis, microbiologically doc-
umented bacterial infections occurred in 91% and fever of
unknown origin was observed in 72.5% of the patients.
MDRB infections were diagnosed in 32.5% of the entire study
group (39 patients). Among the patients who developed
MDRB infections, 50% occurred to be colonized upon admis-
sion to the transplant unit and the rest of them acquired the
positive colonization status during the hospitalization. There
was a significantly higher incidence of MDRB infections
among the group previously colonized (P < 0.001), and the
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pathogen most commonly detected was ESBL-producing
K. pneumoniae (31%).

GI infections were diagnosed on the basis of symptomatic
enterocolitis and the isolation of any bacteria potentially path-
ogenic to the intestines (VRE and Klebsiella isolates were
excluded). There were 16 (41%) urinary tract infections, 13
(33.8%) bloodstream infections, 6 (15.4%) GI infections, and
4 (10.3%) respiratory tract infections. The distribution of the
etiologic factors and types of infection are presented in Fig. 1.
Clostridium difficile enterocolitis was added to the graphic
presentation as a direct consequence of antibiotic therapy.

There was a significantly higher incidence of MDRB
bacteremia in the colonized group than in the
noncolonized group (16 vs. 6%; P = 0.038), and ESBL-
producing K. pneumoniae was the most common cause
of bloodstream infections (69%). There was a significant
correlation between pre-colonization with ESBL-producing
K. pneumoniae (P < 0.001), ESBL-producing E. coli (P =
0.01), and CRPA (P = 0.003) and subsequent bacteremia
caused by one of these pathogens. However, we did not

observe a significant correlation in the case of colonization
with VRE (P = 0.08).

Engraftment, graft-versus-host disease,
and infections

The median time between the detected positive MDRB colo-
nization and infection occurrencewas 16 days (mean 26 days).
Most infections developed during agranulocytosis but there
was the second peak in patients treated due to GVHD. The
median time to engraftment was 23 days after HCT. Early
regeneration of hematopoiesis, defined as an absolute neutro-
phil count ≥ 500/mm3 before day 20 after HCT, was observed
in 36 patients. Ten patients did not achieve engraftment. There
was no significant correlation between the day of engraftment
and the incidence of infections with alert pathogens (P =
0.25). MDRB infections were more common in patients with
active acute (P = 0.014) or chronic GVHD (P = 0.002), as well
as in patients age > 40 years (P = 0.002).

Table 1 Patient characteristics
and colonization status All patients Noncolonized Colonized

Basic demographic characteristics

Group size, no. (%) 120 (100) 69 (57.5) 51 (42.5)

Sex distribution: female/male, no.
(%)

50 (42)/70 (58) 29 (42)/40 (58) 21(41)/30 (59)

Age at HCT, median (range),
years

41 (19–67) 38 (19–67) 44 (21–66)

Age > 40 years, no. (%) 59 (49) 39 (56.5) 20 (39)

Diagnosis

AML/MDS, no. (%) 65 (54) 39 (57) 26 (51)

ALL, no. (%) 25 (21) 13 (19) 12 (23)

CML/MF/CMML, no. (%) 14 (11.5) 9 (13) 5 (10)

NHL/HL/CLL/MM, no. (%) 10 (8.5) 6 (9) 4 (8)

sAA/PNH, no. (%) 6 (5) 2 (3) 4 (8)

Transplant characteristics

Donor type: MUD or
MMUD/MSD, no. (%)

68 (57)/52(43) 40 (58)/29 (42) 28 (55)/23 (45)

Graft source: PB/BM, no. (%) 111 (92.5)/9 (7.5) 64 (93)/5 (7) 47 (92)/4 (8)

Conditioning regimen:
MAC/RTC or RIC, no. (%)

92 (77)/24 (20) 55 (80)/12 (17) 37 (72.5)/12 (23.5)

Conditioning regimen:
immunoablation, no. (%)

4 (3) 2 (3) 2 (4)

Day of neutrophil engraftment,
median (range)

23 (14-not achieved) 23 (14-not achieved) 23 (14-not achieved)

ANC > 500/mm3 before day 20,
no. (%)

36 (30) 24 (35) 12 (24)

HCT hematopoietic cell transplantation, AML/MDS acute myeloid leukemia/myelodysplastic syndrome, ALL
acute lymphoblastic leukemia, CML chronic myeloid leukemia, MF myelofibrosis, CMML chronic
myelomonocytic leukemia, NHL non-Hodgkin lymphoma, HL Hodgkin lymphoma, CLL chronic lymphocytic
leukemia,MMmultiple myeloma, sAA severe aplastic anemia,PNH paroxysmal nocturnal hemoglobinuria,MUD
matched unrelated donor,MMUDmismatched unrelated donor,MSDmatched sibling donor,MACmyeloablative
conditioning, RTC reduced toxicity conditioning, RIC reduced intensity conditioning, ANC absolute neutrophil
count
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Colonization and graft-versus-host disease

Acute GVHD was diagnosed in 22% of the patients (grade
I/II, 9%; grade III/IV, 13%), with subsequent chronic GVHD
development in 14% of the patients. The incidence of acute
GVHD showed a tendency to be higher in the colonized group
than in the noncolonized group (27 vs. 18%); however, the
difference was not significant (P = 0.26). We observed a
higher incidence of acute GVHD among patients colonized
with more than one species of MDRB (P = 0.046).

Metronidazole and acute graft-versus-host disease

Of the study group, 17 patients (14%) receivedmetronidazole,
as treatment for C. difficile enterocolitis in ten patients and for
other indications (cholecystitis, Helicobacter pylori eradica-
tion, typhlitis) in seven patients. C. difficile was the cause of
infections in 13 HCT recipients (Fig. 1). Metronidazole was
the first therapeutic choice in 10 patients (77%); however,
only three patients responded, and the remaining seven pa-
tients required vancomycin for persistent infection. Three of
the 13 patients received vancomycin as the first-line treatment
and experienced complete resolution of the symptoms.

A sub-analysis of the proportion of our study group treated
with broad-spectrum antibiotics against anaerobic bacteria re-
vealed a temporal relationship between the introduction of
metronidazole for C. difficile infection and the development
or aggravation of acute GVHD (P < 0.001). A similar corre-
lation was noted in the patient population treated with metro-
nidazole for reasons other thanC. difficile infection (P < 0.05).

Mortality

The median follow-up time was 17 months (range 0.4–
47 months). The estimated OS rates for the entire study group
were 73, 65, and 59% after 6, 12, and 24 months post-HCT,

respectively (Fig. 2a). Forty-nine patients (41%) died during
follow-up from the following: relapse (13%), infections
(10%), GVHD-related complications (14%), or both GVHD
and infections (3%).

Analysis of the MDRB-colonized group showed a signifi-
cantly higher mortality rate (P = 0.034) and infection-
associated mortality rate (P < 0.001) compared with the
noncolonized group. The OS rates at 24 months after HCT
were 47 and 64% in the colonized and noncolonized groups,
respectively (P < 0.05; Fig. 2b). Multivariate analysis identi-
fied HCT from MUDs (hazard ratio [HR], 2.2; 95% confi-
dence interval [CI], 1.2–4; P = 0.01) and metronidazole use
(HR, 3; 95% CI, 1.6–5.9; P = 0.001) as factors associated with
reduced OS (Fig. 2c). Age < 40 years at transplantation was
associated with a better OS (HR, 0.3; 95% CI, 0.2–0.6; P =
0.0002; Fig. 2d).

Discussion

Despite progress in diagnosis and therapy, infections and
GVHD-related complications remain the most common
causes of transplant-related mortality (TRM) post-HCT [1].
Eradication of the gut microbiome has been a subject of inter-
est since the early 1970s; at the time, a germ-free environment
was believed to limit infection rates and GVHD development
[7, 8]. Later, isolation procedures, HEPA filters, a neutropenic
diet, and gut decontamination using antibiotics were intro-
duced to reduce TRM [9–12]. Now, taking into account the
immunoregulatory role of the healthy microbiome, the routine
administration of prophylactic antibiotics in hemato-
oncological patients and after HCT should be reconsidered
[13–16].

The burden of colonizing bacterial flora was recently esti-
mated to be about 0.2 kg, and the number of bacterial cells in
the human body was determined to be comparable to that of

Fig. 1 Distribution of etiological
factors and types of infection.
Vancomycin-resistant
Enterococcus (VRE), extended-
spectrum beta-lactamase (ESBL)-
producing Klebsiella pneumoniae
(K. pneumoniae ESBL), ESBL-
producing Escherichia coli
(E.coli ESBL), carbapenem-
resistant Pseudomonas
aeruginosa (CRPA)
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host cells [17]. The composition of the gut microbiome can be
precisely assessed, and > 1000 species have already been
identified by 16 ribosomal RNA gene sequencing [18].
Besides the degradation of digestion products and production
of vitamins, the intestinal microbiome plays a pivotal role in
immune system regulation. It maintains the balance between
the pro- and anti-inflammatory effectors, including
immunotolerant regulatory T lymphocytes (Tregs) and proin-
flammatory Th17 lymphocytes [19–26]. Th17 lymphocytes
protect the intestinal mucous membrane from pathogens but,
in certain circumstances, can catalyze an inflammatory pro-
cess that leads to GVHD development [27]. In the presence of
short-chain fatty acids produced byClostridiales, naïve T lym-
phocytes are induced for the generation of extrathymic Tregs
[24, 28, 29], whereas proinflammatory cytokines or segment-
ed filamentous bacteria direct them to generate Th17 cells
[30]. Intestinal epithelial cells (IECs) create a physiologic
and biochemical barrier between the commensal

microorganisms of the gut and host tissues [21]. High-dose
chemo- and radiotherapy prior to HCT impairs GI epithelial
integrity, which may aid the translocation of colonizing bac-
teria into the circulation, resulting in severe infectious compli-
cations. Additionally, increased exposure to antigens of the
host histocompatibility complex related to IECs damage pro-
motes acute GVHD development [3, 31].

In the study group, 42.5% of the patients were colonized
with MDRB and 14% were carriers of more than one alert
pathogen. The high percentage of colonized patients is unsur-
prising: many of the patients requiring HCT had a history of
aggressive treatment of the underlying disease, requiring
prolonged hospitalization and administration of broad-
spectrum antibiotics for life-threatening infections.
Colonization with MDRB had a significant impact on non-
relapse mortality, leading to a lower OS 2 years after HCTand
higher mortality due to infections than those of noncolonized
patients. The higher mortality rate in the colonized group may

Fig. 2 Factors influencing overall survival after hematopoietic cell
transplantation. a Overall survival (OS) in the entire study group; b
effect of colonization with multidrug-resistant bacteria (solid line)
versus no prior colonization (dashed line); c OS after metronidazole use

for Clostridium difficile infection (dashed line) and other indications
(dotted line) versus OS in patients unexposed to metronidazole (solid
line); d OS stratified by age < 40 (solid line) versus > 40 (dashed line)
years. Overall survival (OS), hematopoietic cell transplantation (HCT)
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have been caused by the loss of microbiome diversity and con-
sequent expansion of pathogenic bacteria within the niches of
gut bacteria [32–34]. Bloodstream infections withMDRBwere
more common in patients colonized with ESBL-producing
K. pneumoniae, ESBL-producing E. coli, and CRPA. There
was no significant correlation between colonization with VRE
and bacteremia caused by this pathogen. Similar results have
been presented by other authors [35, 36]. During episodes of
neutropenic fever, the etiological factor is not always identified.
Because the colonizing virulent flora is the most probable
source of a neutropenic infection, information about prior pos-
itive colonization is important for the selection of empiric anti-
biotic therapy to reduce the risk of a fatal outcome.

As mentioned earlier, the fragile balance between pro- and
anti-inflammatory mechanisms can be disrupted by changes
in microbiome composition, resulting from conditioning che-
motherapy and the use of antibiotics. In murine models, dis-
turbances in the commensal gut flora, with domination of
Enterobacteriales (E. coli, Klebsiella, and Enterobacter),
Lactobacillales (Lactobacillus , Enterococcus , and
Streptococcus), and a reduction in Firmicutes species (includ-
ing Clostridiales), were correlated with acute GVHD develop-
ment [37]. A similar shift towards enterococci, particularly
observed after antibiotic prophylaxis and confirmed by the
metagenomic analysis of the stool microbiome, preceded the
intestinal manifestation of acute GVHD in a human popula-
tion [38]. This phenomenon can be explained by the ability of
enterococci to create a biofilm and produce epitheliolysins and
other toxins that disrupt the integrity of the epithelial barrier,
intensifying inflammatory and immune responses and leading
to increased production of proinflammatory substances, such
as tumor necrosis factor [39, 40]. Although we did not find a
significant correlation between colonization with VRE and the
occurrence of acute GVHD or VRE bacteremia, acute GVHD
was more common in the group colonized with multiple alert
pathogens, including VRE.

Enterococci have the ability to grow excessively in favor-
able conditions, pushing the commensal flora out of their
niches. Although prophylactic use of ciprofloxacin lowers
the rate of Gram-negative bacteremia, it does not prevent
streptococcal or enterococcal septic episodes and, by causing
an imbalance in anaerobic commensals, may increase the risk
of colonization with MDRB, such as VRE [41]. This obser-
vation is confirmed by the profile of colonizing bacteria in the
proportion of our study group receiving ciprofloxacin prophy-
laxis; despite prophylaxis, > 90% of the patients developed
infectious complications during the neutropenic period after
HCT. In contrast to fluoroquinolones, rifaximin represents a
perfect prophylactic agent that provides protection against
bacteremia and preserves the physiologic balance of the gut
microbiome [42, 43].

Of the intestinal microbiota, 90% consists of anaerobic
bacteria [44]. Administration of broad-spectrum agents

selectively targeting anaerobic bacterial flora may lead to ex-
cessive proliferation of aerobic and relatively anaerobic path-
ogens. Among the HCT recipients examined, patients treated
with metronidazole exhibited a significantly lower OS.
Moreover, the incidence of acute GVHD with more severe
mani fes ta t ion (grade II I / IV) was h igher in the
metronidazole-treated group. This observation may be partial-
ly related to the unselective depletion of all Clostridiales,
alongside the desired elimination of C. difficile. Therapy with
metronidazole failed in most patients with C. difficile infec-
tions. Based on our data and the guidelines of the European
Society of Clinical Microbiology and Infectious Diseases, pa-
tients with C. difficile infections after HCT should be treated
as a high-risk group for severe complications. Therefore, more
potent oral vancomycin or novel therapies (e.g., fidaxomicin)
should be administered instead of metronidazole as the first-
line therapy [45]. The impact of the microbiome on many
conditions, including autoimmune disorders [19, 20, 46, 47],
cancer [48], and chemo-resistance [49], indicate the necessity
of new strategies that maintain the physiologic composition of
the gut microbiota. Fecal microbiome transplantation (FMT)
has been investigated as a method to restore the composition
of the gut microflora, and may eradicate MDRB before HCT,
leading to reduction in acute GVHD and TRM. The first data
concerning the successful use of FMT for steroid-resistant gut
acute GVHD, C. difficile infection, or decolonization of resis-
tant pathogens have been already published [50, 51].

Homeostasis of the human microbiome is important and
requires further investigation. The data already available, con-
firmed by the findings of our study, have practical implica-
tions for the selection of prophylactic and infection-driven
antibiotic strategies that may improve the outcomes of immu-
nocompromised patients after HCT.
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