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Abstract Diffuse large B cell lymphoma (DLBCL) com-
prises specific subtypes, disease entities, and other not other-
wise specified (NOS) lymphomas. This review will focus on
DLBCL NOS because of their prevalence and their heteroge-
neity with respect to morphology, clinical presentation, biol-
ogy, and response to treatment. Gene expression profiling of
DLBCL NOS has identified molecular subgroups that corre-
late with prognosis and may have relevance for treatment
based on signaling pathways. New technologies have revealed
that the “activated B cell” subgroup is linked to activation of
the nuclear factor kB (NF-kB) pathway, with mutations found
in CD79A/B, CARD11, and MYD88, and loss of function
mutations in TNFAIP3. The “germinal center B cell-like”

subgroup is linked to mutational changes in EZH2 and
CREBBP. Biomarkers that are related to pathways promoting
tumor cell growth and survival in DLBCL have been recog-
nized, although their predictive role requires clinical valida-
tion. Immunohistochemistry for detecting the expression of
these biomarkers is a practical technique that could provide a
rational for clinical trial design.
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Introduction

The application of advanced immunologic, biochemical, and
genetic techniques in the classification of tumors of hemato-
poietic and lymphoid tissues has led to the identification of
many distinct disease entities as proposed by theWorld Health
Organization (WHO) working group [1]. Among tumors of
lymphoid tissues, diffuse large B cell lymphoma (DLBCL) is
the most common lymphoma, accounting for about 30 % of
the cases, and comprises specific subtypes or disease entities.
However, most cases are still classified as DLBCL, not oth-
erwise specified (NOS) [2]. DLBCL NOS is a heterogeneous
category with respect to morphology, clinical presentation,
biology, and response to treatment. DLBCL can be
subclassified based on cytologic appearance (e.g.,
centroblastic or immunoblastic morphology) and the site of
primary involvement (nodal or extranodal) and according to
the clinical background from which they arise (e.g., normal or
compromised immunity) [3]. Importantly, these disparate fea-
tures are reflected by the wide spectrum of clinical outcomes
and treatment response, so that the development of new ther-
apeutic strategies is urgently needed to address this heteroge-
neity in DLBCL [4, 5].
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In recent years, gene expression profiling (GEP) studies
identified gene expression signatures that can define the “cell
of origin” of DLBCL cases. Subsequently, immunohisto-
chemical signatures were developed to capture the distinction
between the germinal center (GC) B-like DLBCL (GCB
DLBCL) subgroup and the activated B-like DLBCL (ABC
DLBCL) subgroup. Among the many advantages, GEP pro-
vides new information about the underlying molecular mech-
anisms of DLBCL and enables the grouping of more homo-
geneous subsets of patients with poorer prognosis who may
benefit from improved treatments [6]. GEP also helps to select
tumors for which next generation sequencing (NGS) technol-
ogy may recognize specific oncogenic pathways, thus
selecting patients who may benefit from identifiable therapeu-
tic agents [6–9] (Fig. 1). However, an effective use of this
information still requires reliable tests and treatment strategies
that exploit these data.

This paper will focus on DLBCL, NOS, because of their
prevalence and their heterogeneity. This is a synthetic review
of the different biological abnormalities found in DLBCL,
NOS, that reveal diagnostic or prognostic biomarkers. This
review also describes discoveries that help to identify DLBCL

subgroups and to recognize related oncogenic pathways,
thereby providing a rationale for a more individualized ap-
proach in the treatment of this group of neoplasms.

DLBCL classification

In 1994 the International Lymphoma study group [10] unified
within a single “diffuse large B cell lymphoma” category, three
high-grade lymphomas originally defined as “histiocytic” [11]
and then, with updated terminology, named centroblastic lym-
phoma and its variants [12], immunoblastic B cell lymphoma
[12, 13], and large B cell anaplastic Ki1+ lymphoma [14].
Notably, the DLBCL category included lymphoma subtypes
that in a previous international classification (working formu-
lation for clinical usage) [15], were split into two different
prognostic groups (intermediate and high grade) [16]. There-
fore, it was not surprising that important clinical studies
showed that DLBCL NOS was heterogeneous with respect to
clinical outcome [4]. Interestingly, the recent WHO classifica-
tion proposal, in addition to specific DLBCL subtypes and
disease entities, formally acknowledges the remaining DLBCL

Fig. 1 Evolution in the study of
diffuse large B cell lymphoma
focusing on prognosis and
biomarkers detection
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as DLBCL NOS. This category includes lymphomas with
centroblastic, immunoblastic, and anaplastic morphology as
common morphological variants [1]. The clinical relevance
of these DLBCL variants remain debatable, although tumors
composed predominantly of centroblasts have a better progno-
sis than those composed of immunoblasts [17]. Coherently,
other studies have shown that immunoblastic morphology is
highly significant in predicting an adverse outcome [18]. How-
ever, conclusions about the prognostic significance of these
morphologic variants are hampered by poor reproducibility
and a lack of consensus among pathologists [1–3].

DLBCL subgrouping by cell of origin

GEP of DLBCLs has identified molecular subgroups, which
correlate with prognosis, and may have relevance for treat-
ment based on signaling pathways (see below) [6–9, 19]. The
original GEP studies have shown that at least two major
subgroups of DLBCL could be identified. They resemble
either germinal center B cells (GCBs) or activated B cells
(ABCs), establishing a putative cell of origin [19]. GEP stud-
ies have demonstrated a significantly worse prognosis for the
ABC subtype. The prognostic value of GEP has been inde-
pendently validated by examining other selected gene sets [20,
21]. A six-gene model (favorable LMO2, BCL6, FN1; unfa-
vorable CCND2, SCYA3, BCL2) was reported to identify
approximately one third of DLBCL patients whose 5-year
survivals were less than 27 % [21]. Furthermore, expressions
of LMO2 and TNFRSF9 have been used to develop a two-
gene signature based on tumor and microenvironment [22]
(Fig. 2). In a large series of DLBCL patients, this simple
model added prognostic value to the clinical International
Prognostic Index (IPI) [22]. Very recently, a 20-gene gene

expression assay in formalin fixed paraffin-embedded tissues
has been proposed for the determination of cell of origin
subgroups of DLBCL [23]. By this, assay identification of
ABC versus GCB subgroups from paraffin-embedded tissue
is now possible. In the validation cohort, these assays proved
to be accurate and robust with a rapid turnaround time (Fig. 1).

Regarding the correlation between the morphologic vari-
ants of DLBCL NOS and GEP, a single study demonstrated
that the immunoblastic subtype was enriched for cases with an
ABC profile, whereas purely centroblastic neoplasms were
more often GCB [24]. Consistently, an immunohistochemical
study, performed in HIV-associated lymphomas, showed that
the expression of BCL6 (a GC marker) and MUM1 (a post-
GC marker) were mutually exclusive. BCL6 was generally
restricted to the centroblastic and MUM1 to the
immunoblastic variants of DLBCL [25]. However, cases co-
expressing BCL6 and MUM1 were observed. They were
considered as non-GC-related lymphomas (reviewed in [26]).

Because it is impractical to perform GEP involving mRNA
expression in every case, various immunohistochemical pro-
files have been tested as surrogates [9, 27–31]. Although the
correspondence was not exact, prognostic correlations were
drawn with immunohistochemically defined groups. The first
algorithm using CD10, MUM1, and BCL6 [27] did not appear
to distinguish groups of significantly differing prognosis in
almost all the series examined, when patients were treated with
rituximab-containing regimens. Refinements of the approach
have led to the incorporation of further markers including
stromal response markers and microvessel density [32]. How-
ever, the concordance rate between the immunohistochemically
defined and GEP-defined subgroups has been a variable [29,
30, 33, 34]. These observations raise the question whether the
core of the original GEP and immunohistochemical algorithms
still needs to be maintained. The question is still open, but it

Fig. 2 Diffuse large B cell lymphoma not otherwise specified. Subgroups with prognostic significance.DLBCL diffuse large B cell lymphoma,NOS not
otherwise specified, GC B-like germinal center B cell like, Non GCB-like germinal center B cell like, ABC activated B cell
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remains that MUM1 should be retained within the immunohis-
tochemical profile together with BCL6, since it is a marker of
transition from BCL6 positivity (GC B cells) to CD138 expres-
sion (immunoblasts and plasma cells) [35].

Conflicting results have been found in HIV-associated
DLBCL [36, 37]. In particular, the role of molecular sub-
groups in predicting outcome in HIV-associated DLBCL is
still unclear. A recent study aiming at understanding the role
of oncogenic pathway-related biomarkers has shown that the
molecular pathogenesis of immunodeficiency-associated lym-
phomas differs from that of lymphomas of the immunocom-
petent host with similar histology [38]. Immune deregulation,
viral infections, and chronic antigenic stimulation may pro-
vide alternative survival signals that render neoplastic B cells
less dependent on genetic lesions otherwise important for
lymphomagenesis in immunocompetent host [39].

In conclusion, regarding DLBCL subgrouping by cell of
origin, the concordance between GEP and immunohistochem-
istry data has been poor [29], and the reproducibility of the
classification in ABC and GCB subtypes using different immu-
nohistochemical algorithms was also very poor [40, 41]. There-
fore, it is important to stress that immunohistochemistry cannot
yet be used as a reliable technique for DLBCL classification.
Technical standardization on immunohistochemical markers for
formalin fixed paraffin-embedded tissue is advisable.

Genetic landscape of DLBCL NOS

Owing to the application of new technologies (Fig. 2), the ABC
and GCB DLBCL subgroups, originally formulated on a cell-
of-origin model, have more recently been shown to harbor
different pathways of cellular transformation and oncogenesis
[42, 43]. In the first study [44] that examinedDBLCLwithNGS
technology, using a combination of whole genome sequencing
(WGS), exome sequencing, and RNA sequencing, a recurrent
and much targeted somatic mutation affecting the polycomb
repressor-2 complex gene EZH2 was identified. EZH2 gene
mutation was found in 22% of DLBCLNOS, all of which were
confined to the GCB subgroup. Regarding the ABC subgroup,
the major signaling alteration appeared to be the constitutive
activation of the nuclear factor kB (NF-kB) pathway through
chronic stimulation of the B cell receptor (BCR) pathway [44].

Table 1 summarizes the major discoveries in the genetic
landscape of DLBCL NOS using NGS technology [24, 42,
44–60] (reviewed in [7–9, 61–63]). A role for the CBM
complex, CARD11, BCL10, and MAL1, downstream of
BCR in NF-kB activation, has been demonstrated. Mutations
in CARD11 are observed in approximately 10 % of ABC
DLBCLs [42]. A majority of other ABC DLBCLs has been
shown to have chronic activation of the BCR pathway through
various mechanisms including activating mutations ofCD79A
and CD79B and recruitment of Bruton’s tyrosine kinase,

which is required for CARD11 signaling [60]. CREBBP mu-
tations are observed in 22 % of all DLBCL, with enrichment
in the GCB subtype, whereas E300mutations are observed in
10 % of all DLBCL [47]. These mutations might be function-
ally significant in that tumor cells harboring mutant genes
could be deficient in acetylating BCL6 and p53, leading to
constitutive activation of the BLC6 oncoprotein and to de-
creased p53 tumor suppressor activity [47]. Importantly, re-
current mutations in several genes affecting histone modifica-
tion have been identified [48]. A recent study [45] confirmed
the above-reported findings [44, 46, 47] identifying EZH2,
MYD88, CREBBP, MLL2, MEF2B, and CD58, in addition to
several other genes, as targets of recurrent mutation in
DLBCL [45]. In summary, the ABC subgroup is particularly
linked to activation of the NF-kB pathway. The GCB sub-
group of DLBCL is less clearly dependent upon deregulation
of a particular pathway.

The identification and functional characterization of the
molecular bases of deregulated signaling in DLBCL NOS
subgroups is providing the preclinical rationale for therapeutic
inhibition of the involved pathways [6, 64, 65]. In the light of
these discoveries, the next steps should include the recogni-
tion of biomarkers related to oncogenic pathways that are
deregulated by these gene mutations and the validation of
their immunohistochemical detection [66] (Fig. 3 and Table 2).
At present, the expression of these biomarkers can be detected
by immunohistochemistry, but its performance must increase
in some of the protein targets for which antibodies are not
ideal yet [67].

Prognostic markers in DLBCL

p53 expression, MYC deregulation, BCL2 rearrangement,
and protein expression in DLBCL (Table 3)

TP53 The TP53 (tumor protein 53) gene encodes the tumor
suppressor p53 protein, which plays a crucial part in main-
taining genomic stability. p53 exerts transcriptional control on
multiple genes involved in cell cycle regulation, DNA repair,
and gene transcription [58]. It also interacts with numerous
cytosolic proteins associated with the intrinsic mitochondrial
apoptosis pathway and autophagy [58]. In p53-deficient mice,
malignant lymphoma is the predominant malignancy, occur-
ring in about two thirds of animals [68]. TP53 dysfunction
occurs mostly commonly via mutation in the coding sequence,
but aberrations at the gene promoter and gene polymorphisms
may also contribute [69]. TP53mutation occurs in about 20%
of DLBCL. However, disruption of p53-dependent apoptosis
appears to be essential in lymphomagenesis, acting through
overexpression of anti-apoptotic proteins including BCL2 and
BCL-XL and surviving [58]. Recent data also indicate that a
subset of DLBCL harbors a complementary set of alterations
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of p53 and its downstream cell cycle proteins, collaborating to
perturb p53 function leading to lymphomagenesis [70].

In general, TP53 aberrations in DLBCL are associated with
poor outcomes, although the exact impact varies somewhat in
different studies, owing probably to the adoption of different
detection methods, which include immunohistochemical
staining for p53, fluorescence in situ hybridization (FISH)
for 17p13.1 (which contains TP53) deletion, and direct gene

mutation analysis. Of these methods, mutational analysis
gives the most consistent results. FISH analysis showing
loss of heterozygosity (LOH) is less predictive, as LOH
needs to collaborate with TP53 mutation in order to
abrogate p53 function. Immunohistochemical analysis is
observer dependent, and a pattern of p53+p21− has been
proposed to be more closely associated with TP53 gene
mutation [71].

Table 1 Genetic alterations and
deregulated signaling pathways in
diffuse large B cell lymphoma,
not otherwise specified

GCB germinal center B cells,
ABC activated B cell

Cell of origin Genetic alteration References Pathway

GCB like BCL2 translocation Rosenwald et al. [24] Apoptotic signaling

BCL2 mutation Lohr et al. [45] Apoptotic signaling

EZH2 mutation Morin et al. [44, 45] Chromatin remodeling
Lohr et al. [43]

CREBBP mutation Pasqualucci et al.[47] Chromatin remodeling

Lohr et al. [45]

TNFRSF14 mutation Lohr et al. [45] BCR

GNA13 mutation Morin et al. [48]

Lohr et al. [45]

SGK1 mutation Morin et al. [48]

C-REL amplification Rosenwald et al. [24] NFKB

ABC Not assigned BCL6 translocation Iqbal et al. [49]

INK4/Arf deletion Lenz et al. [50]

PRDM1 deletion/mutation Pasqualucci et al. [51]

Pasqualucci et al. [53]

Morin et al. [48]

TNFAIP3 deletion/mutation Compagno et al. [52] NFKB

Pasqualucci et al. [53]

SPIB gain or amplification Lenz et al. [50]

CARD11 mutation Lenz et al. [42] BCR

MYD88 mutation Ngo et al. [46] BCR

Lohr et al. [45]

MYC/BCL2 coexpression Johnson et al. [54] Apoptotic signaling

Savage et al. [55]

NFKB costitutive activity Davis et al. [59] NFKB

CD79A mutation Davis et al. [60] BCR

CD79B mutation Davis et al. [60] BCR

CREBBP mutation Pasqualucci et al.[47] Chromatin remodeling

Lohr et al. [45]

E300 mutation Pasqualucci et al. [47]

MLL2 mutation Morin et al.[48]

Pasqualucci et al. [53]

Lohr et al. [45]

MEF2B mutation Morin et al. [48]

Lohr et al. [45]

TBL1XR1/TP63 fusion Scott et al. [56]

NOTCH1 mutation Lohr et al. [45] NOTCH

NOTCH2 mutation Lee et al. [57] NOTCH

BRAF mutation Lohr et al. [45] MAPK

TP53 Xu-Monette ZY [58] Cell cycle regulation
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In the pre-rituximab era, TP53 mutation had been shown to
be a poor prognostic indicator in CHOP-treated cases [72]. The
poor prognostic impact still remained in patients treated with
ritixumab-CHOP, both for the GCB and ABC subtypes [73]. In

addition to prognostic significance, TP53 perturbations may be
a potential molecular marker of DLBCL that are amenable to
targeted treatment, particularly with CDK inhibitors [70].

MYC MYC was originally identified as a putative oncogene
involved in the t(8;14)(q24;q32) translocation in Burkitt lym-
phoma (BL) [74].MYC rearrangements have subsequently been
found in other subtypes of aggressive lymphomas [75]. It is a
transcription factor with diverse biologic functions. In oncogen-
esis, MYC regulates numerous genes involved in cellular pro-
liferation, growth, and DNA replication. By activating CCND2
and other CDKs and suppressing cell cycle inhibitors, MYC
promotes transition into S phase. It also regulates many micro-
RNAs with oncogenic or tumor suppressor function [74, 75].

MYC rearrangements occur in 9–14 % of DLBCL [55, 76].
In contrast to BL, MYC rearrangement in DLBCL is often
associated with multiple karyotyic aberrations and other genetic
lesions [75]. Clinically, patients with MYC-rearranged DLBCL
were usually >60 years old, presenting with higher IPI scores
and more advanced-stage disease, often with extranodal in-
volvement [55, 76]. Accordingly,MYC rearrangements portend
a poor prognosis in DLBCL treated with standard rituximab-

Fig. 3 This composite figure
shows some examples of
immunohistochemical detection
of prognostic/potentially
predictive biomarker expression
in diffuse large B cell lymphoma
not otherwise specified (DLBCL
NOS). Most tumor cells are
immunostained for the various
biomarkers tested.
Immunostaining for pAKT and
pERK1/2 is nuclear and
cytoplasmic; similar
immunostaining is also observed
in breast cancer tumor cells
(positive controls, inset).
Immunostaining for pSYK, p53,
and MYC is nuclear, whereas
immunostaining for BCL2 is
cytoplasmic. Type of specimen:
lymph nodes involved by
DLBCL NOS. Type of
stabilization of specimen:
formalin-fixed paraffin-
embedded samples. Antibodies:
suitable for paraffin-embedded
tissues. Images acquired with the
Olympus Dot.Slide Virtual
microscopy system using an
Olympus BX51 microscopy
equipped with PLAN APO ×
2/0.08 and UPLAN SApo ×
40/0.95 objectives

Table 2 Candidate biomarkers for clinical trials (references [65] and
[113] review clinical trials driven by the listed biomarkers) in diffuse
large B cell lymphoma, not otherwise specified

Candidate biomarkera Related oncogenic
pathwayb

pSyk, BTK BCR signaling pathway

pAKT, pan pAKT, pGSK3b,
p70S6K, pPRAS40

PI3K pathway

pSTAT3, pSTAT5 JAK/STAT pathway

MDM2, p53 P53 pathway

p65 NFkB pathway

pERK 1/2 MAP kinase pathway

cMYC and BCL2 Apoptotic signaling

a Biomarkers for which commercially antibodies are available
b Oncogenic pathways in which the listed candidate biomarkers are
mainly involved
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CHOP. In one study, the 5-year overall survival of patients with
MYC rearrangement was significantly inferior at 33 %, as com-
pared with 72% in patients withoutMYC rearrangement [55]. In
another study, the survival at 2 years of MYC-rearranged cases
was 35%, as compared with 61% in non-rearranged cases [76].

Determination of MYC rearrangement with FISH is costly,
time-consuming, and not routinely available. Moreover, MYC
overexpressionmay also be due toMYC amplification and other
cellular mechanisms. The advent of a sensitive and specific
monoclonal anti-MYC antibody recognizing the N-terminus
of MYC has allowed immunohistochemical detection of nucle-
ar MYC with high accuracies in paraffin-embedded sections
[77]. Cases with MYC rearrangement show strong nuclear
MYC staining (>70 % of cells) [77]. However, MYC overex-
pressing cases may not always harbor MYC rearrangement,
suggesting alternative mechanisms of upregulation of MYC.

BCL2 BCL2 is an oncogene originally identified from the
t(14;18)(q32;q21) translocation found in follicular lymphoma
[78]. Overexpression of BCL2 leads to extended B cell sur-
vival and follicular lymphoproliferation in transgenic mice,
recapitulating the human disease [78]. It is an anti-apoptosis
protein important in normal B cell development and differen-
tiation. BCL2 overexpression provides a survival advantage to
neoplastic B cells and may play a part in resistance to chemo-
therapy [79].

BCL2 overexpression can be related to BCL2 rearrange-
ment or other cellular mechanisms. Early immunohistochem-
ical studies coupled with FISH analysis had shown BCL2
overexpression in about 24–55 % of cases of DLBCL
[80–82]. BCL2 overexpression tended to be associated with
advanced stage and inferior survivals. However, the results
were not always consistent. These conflicting findings were
partly resolved, when later studies showed that the prognostic
significance of BCL2 might vary depending on the cellular

context. With immunohistochemical analysis, it was observed
that BCL2 expression in GCB DLBCL was associated with
t(14;18) and did not correlate with prognosis. However, BCL2
expression in ABC DLBCL was not associated with t(14;18),
but often with BCL2 gene amplification and activation of the
NFKB pathway, and portended inferior survivals [83]. These
findings were also confirmed by FISH analysis of BCL2 rear-
rangement, which was found to correlate strongly with GCB
phenotype, but did not significantly impact on survivals [84].

Complex genetic alterations involving MYC, BCL2, and
BCL6 The prognostic impact of MYC and BCL2 rearrange-
ment and overexpression taken individually appears signifi-
cant in DLBCL, but is not always unequivocal. Emerging data
indicate that rearrangement and overexpression of MYC and
BCL2 may collaborate to negative-effect survivals.

In earlier studies, where FISH was used to analyze MYC
and BCL2 rearrangements, DLBCL with concomitant MYC/
BCL2 rearrangements had dismal survivals, with about 60 %
of patients dying within 6months, and a 5-year survival of less
than 10 % [54]. Notably, about two thirds of these “double-
hit” lymphomas were classified as B cell lymphoma unclas-
sifiable, with features intermediate between DLBCL and BL.
These observations were further extended with routine immu-
nohistochemical analysis of MYC and BCL2 overexpression.
In one study, MYC+/BCL2+ cases were found to constitute
21 % of 167 cases of DLBCL [85]. MYC protein overexpres-
sion (in >40 % of neoplastic cells) predicted inferior survivals
with rituximab-CHOP only when BCL2 protein was concom-
itantly overexpressed (>50 % of neoplastic cells). Although
MYC protein overexpression correlated strongly with MYC
rearrangement, actual concomitantMYC/BCL2 rearrangement
occurred in 5 % of cases, which was associated also with a
dismal prognosis. In another study, 29 % of 193 cases of
DLBCL were MYC+/BCL2+ on immunohistochemical

Table 3 Prognostic markers detectable by routine diagnostic technologies in DLBCL, NOS

Gene/protein Aberrations Frequency (%) Detection Associated features Prognosis

TP53 [58, 73] Mutations, deletion 20 FISH, sequencing, IHC Large tumor (>7.5–10 cm) Poor

MYC [55, 76] Rearrangement, amplification 9–14 (FISH);
30 (IHC)

FISH, IHC Elderly (>60 years old), high international
prognostic index score, advanced stage,
extranodal involvement, multiple
karyotypic aberrations

Poor

BCL2 [81–83] Rearrangement, amplification 24–55 FISH, IHC Advanced stages Poor
Marrow involvement

BCL6 [49, 87] Rearrangement, hypermutation 55–71 Sequencing, IHC GCB phenotype Good

MYC, BCL2 [85] Rearrangement, amplification 21–29 FISH, IHC Intermediate between DLBCL and BL
double-hit lymphoma

Poor

Advanced stage

High international prognostic index score

BL Burkitt lymphoma, DLBCL diffuse large B cell lymphoma, FISH fluorescence in situ hybridization, IHC immunohistochemistry, GCB germinal
center B cell, NPS not otherwise specified
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evaluation. These patients had inferior response rates, overall
survival, and disease-free survivals, which were independent
of IPI scores and GBC/ABC origins. Consistently, on FISH
analysis, the negative prognostic impact of MYC rearrange-
ment was only evident when BCL2 was also rearranged [86].
Recent data on a large cohort of DLBCL treated uniformly
with rituximab-CHOP also confirmed the negative prognostic
relevance of the MYC+/BCL2+ phenotype, with concomitant
TP53 mutation conferring an even worse prognosis in such
cases [63]. These studies have shown some salient features.
The poor outcome of MYC + DLBCL is largely the result of
concurrent BCL2 overexpression, and it is the concomitant
MYC+/BCL2+ phenotype that predicts outcome. Immunohis-
tochemistry is significantly more sensitive than FISH in de-
fining MYC and BCL2 overexpression. The MYC+/BCL2+
phenotype occurs both in GCB and ABC DLBCL, suggesting
that molecular pathways accounting for MYC and BCL2
overexpression might be heterogeneous. Although some of
the cases are morphologically B cell lymphoma with features
intermediate between DLBCL and BL, histopathologic eval-
uation is inadequate in predicting the MYC+/BCL2+ pheno-
type. Finally, patients have a high median age of nearly
70 years, suggesting that MYC+/BCL2+ cases may be a
disease predominantly of the elderly population.

Recent data have indicated a possible third player BCL6 in
impacting on prognosis in DLBCL. BCL6 was originally
identified from chromosomal breakpoints at 3q27 [87].
BCL6 is expressed predominantly in GCB cells and is essen-
tial for GC formation. In DLBCL, BCL6 is deregulated by
gene translocation or somatic hypermutation. Early studies
had shown that high BCL6 gene expression was associated
with a better outcome [88]. BCL6 expression occurred pre-
dominantly in GCB DLBCL [49], which might explain the
more favorable outcome. In a recent study of elderly patients
treated with rituximab-CHOP, low BCL6 expression (<25 %
of neoplastic cells) as defined by immunohistochemistry was
shown in concert with high BCL2 expression to impart an
unfavorable outcome to cases with MYC rearrangement or
overexpression, independent of the IPI scores [89]. Hence, a
“triple-hit” phenotype of MYChigh, BCL2high, and
BCL6low has been proposed to confer an even worse prog-
nosis in DLBCL than MYC+/BCL2+ cases.

While these results have shown that immunohistochemical
staining forMYC,BCL2, andBCL6 is robust, can be performed
routinely, and preferred over FISH analysis, the reproducibility
of the defined cutoff has to be defined. However, the double-hit
or triple-hit status of DLBCL obviously has to be determined in
future trials of DLBCL, particularly when novel agents are
tested. Outside clinical trials, it is still unclear how information
on MYC, BCL2, and BCL6 may be used in the treatment of
individual patients in order to improve outcome. Rituximab-
CHOP does not appear to be satisfactory treatment for these
cases. As many of these patients are elderly, aggressive

chemotherapy or hematopoietic stem cell transplantation may
not be feasible. It remains to be defined if therapy targeted
against MYC or BCL2 may be valid therapeutic options.

Microenvironmental, viral, and host’s factors
influencing DLBCL prognosis

Retrospective studies have confirmed the worse prognosis for
patients with DLBCL ABC subgroup. However, when multi-
variate analyses are used, it is clear that some of the differ-
ences may well be related to older age at diagnosis and other
adverse presentation features [34]. In fact, in addition to
cytomorphology, immunophenotype, and molecular charac-
teristics derived from newer tools, DLBCL prognosis may be
influenced by diverse factors such as the “stromal signature”
of the background, viral infections, and host’s factors (age and
site) (reviewed in [26]). Moreover, CD5-positive DLBCL has
been suggested in some studies, mainly from Japan, to have
distinct clinical features [90]. These patients are often older and
present with bulky retroperitoneal disease. These cases arise de
novo and have no relation to other lymphomas which express
CD5, i.e., chronic lymphocytic leukemia or mantle cell lym-
phoma. Ki-67 index has been reported to be a prognostic
marker [91]. A high proliferation rate, as assessed by immuno-
histochemistry with anti-Ki67 antibody, has been associated
with adverse outcome [2]. Coherently, the proliferation signa-
ture by one gene expression proved to be a strong predictor of
poor survival [24]. In the pre-rituximab era, the IPI, which is
based on clinical parameters, such as age, stage, serum lactate
deydrogenases level, and performance status, an extent of
extranodal involvement proved to be highly valuable for the
prediction of prognosis in patients with DLBCL [92]. However,
the IPI seems to have lost some of its high predictive value in
the rituximab era [93]. Very recently, the so-called enhanced
IPI, an updated version of the IPI for patients with DLBCL
treated in the rituximab era, has been proposed [94]. Table 4
highlights highly aggressive DLBCL subgrouped according to
adverse prognostic factors: lack of CD20 expression, special
phenotypes linked to cell of origin and CD5 expression, EBV
infection, and complex karyotypes [95, 96].

The microenvironment in DLBCL The microenvironment and
the inflammatory response may provide clues to the behavior
of DLBCL according to two patterns of stromal signature
predictive of good survival, “stromal 1” (including genes
encoding for extracellular matrix proteins), and poor outcome,
“stromal 2” (including angiogenetic switch-related genes)
[97]. A recent study on the tumor microenvironment and viral
components has shown that DLBCL occurring in HIV-
infected patients is highly angiogenic with markedly higher
blood-vessel density than sporadic DLBCL cases. Important-
ly, the investigation has also highlighted the role of Epstein
Barr virus (EBV) in angiogenesis [98].

1270 Ann Hematol (2014) 93:1263–1277



DLBCL associated with immune dysfunction and infectious
agents DLBCL associated with infectious agents include the
spectrum of HIV- and gamma herpesviruses-associated lym-
phomas and are highly aggressive tumors (Table 5) [39, 99,
100]. EBV-associated lymphomas that are related to chronic
inflammation or senescence of the immune system represent
distinct disease entities occurring in non AIDS-related
settings.

DLBCL associated with chronic inflammation DLBCL asso-
ciated with chronic inflammation most commonly involves
body cavities. The prototype for this category is pyothorax-
associated lymphoma (PAL)[101, 102]. Other cases of
DLBCL occurring in the setting of chronic inflammation
(such as chronic skin ulcers or osteomyelitis) are also fre-
quently positive for EBV (reviewed in [26]).

EBV-positive DLBCL of the elderly EBV-positive DLBCL of
the elderly, also known as age-related or senile EBV-
associated lymphoproliferative disorders [103], is diagnosed
in patients older than 50 years with no known cause of
immunodeficiency or prior lymphoma [103]. Seventy percent
of these patients present with extranodal involvement and
>50 % have advanced disease with poor prognosis and a short
survival rate.

DLBCL based on an anatomic site Some peculiar DLBCL
subtypes are specifically related to their sites of presentation.
Examples include primary cutaneous DLBCL, “leg type”
[104], primary mediastinal (thymic) large B cell lymphoma
[105–107], DLBCL of the central nervous system [108, 109],
and primary large B cell lymphomas of bones [110, 111].
These DLBCL subtypes express BCL2 and MUM1/IRF4
but not CD10, are frequently related to an ABC phenotype,
and are distinct entities with an aggressive behavior [112].

Biomarkers enrichment strategies to guide therapy

At the molecular level, DLBCL is a heterogeneous disease.
Both GEP studies and DNA sequencing studies have

Table 4 Special phenotipes (CD20−, CD5+), complex genotypes, and
EBV infection are adverse factors in DLBCL, NOS, and in specific
DLBCL subtypes

CD20 negative DLBCL

Plasmablastic lymphoma

Primary effusion lymphoma

ALK-positive large B cell lymphoma

Molecular and immunohistochemical subgroups

Activated B cell like (non-GCB)

CD5+ DLBCL

EBV-related DLBCL

EBV+, DLBCL of the elderly

DLBCL associated with chronic inflammation

Lymphomatoid granulomatosis

Plasmablastic lymphoma

HHV8-/KSHV-positive lymphomas

Unclassifiable/intermediate with genetic/caryotypic complexity

B cell lymphoma, unclassifiable with features intermediate between
DLBCL and Burkitt lymphoma

B cell lymphoma, unclassifiable with features intermediate between
DLBCL and Hodgkin lymphoma

DLBCL diffuse large B cell lymphoma,GCB germinal center B cell, EBV
Epstein Barr virus, HHV8/KSHV human herpesvirus 8/Kaposi sarcoma-
associated herpesvirus, NOS not otherwise modified

Table 5 Virus-associated lymphomas assessed by the IARC Monographs Working Group [39]. The table highlights DLBCL, NOS

Group 1 agent Lymphomas on which sufficient evidence in humans
is based

Other lymphomas with
limited evidence in humans

Established mechanistic events

Epstein–Barr virus (EBV) Burkitt lymphoma; immune-suppression-related
non-Hodgkin lymphoma, including DLBCL,
NOS, and plasmablastic lymphomas; extranodal
NK/T-cell lymphoma (nasal type), Hodgkin
lymphoma

– Cell proliferation, inhibition of
apoptosis, genomic instability,
cell migration

Hepatitis B virus (HBV) – Non-Hodgkin lymphoma,a

including DLBC, NOS
Inflammation, liver cirrhosis, chronic
hepatitis

Hepatitis C virus (HCV) Non-Hodgkin lymphoma,a including
DLBCL, NOS

– Inflammation, liver cirrhosis,
liver fibrosis

Kaposi sarcoma herpes
virus (KSHV)

Primary effusion lymphomaa – Cell proliferation, inhibition of
apoptosis, genomic instability, cell
migration

Human immunodeficiency
virus, type 1 (HIV-1)

Non-Hodgkin’s lymphoma, including
DLBCL, NOS; Hodgkin lymphomaa

– Immunosuppression (indirect action)

DLBCL, diffuse large B cell lymphoma; NOS, not otherwise specified
a Newly identified link between virus and cancer. Modified and adapted from ref. [99]
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demonstrated that DLBCL can be further subdivided into
smaller, more homogeneous groups [6–9]. These findings
not only explain why patients respond differently to a specific
therapy but also provide an opportunity for designing tailored
treatments based on tumor characteristics. Such characteristic
biomarkers will need to be reproducible across different lab-
oratories, and preferentially, should guide therapeutic options.

In recent years, GEP methods were used to stratify patients
based on the cell of origin, into GCB or ABC DLBCL. While
this approach helped advancing the field and patient selection
for clinical trials, it continues to lack mechanistic precision.
Both genetic and protein biomarkers can be used to more
precisely stratify patients for evaluating novel treatment regi-
mens based on molecular mechanisms that support tumor
growth and survival. However, at the present time, the ideal
biomarker or biomarker set remains elusive. For this reason, it
is advised to include several biomarkers as part of correlative
discovery biomarker analysis. As shown in Fig. 4, a biopsy
can be analyzed for a set of biomarkers: genetic mutations, cell
surface proteins, and intracellular proteins. Other biomarkers
can also be included, such as gene expression status. Regard-
less, it would be more efficient to screen patient tumors for
several biomarkers at the same time using an umbrella proto-
col. For example, a lymphoma specimen can be examined for
the presence of genetic alterations using targeted sequencing
strategies. At the same time, the biopsy can be examined for
several immunohistochemistry-based biomarkers, such as the
cell of origin, MYC and BCL2 expression, and the expression
of phosphoproteins that are associated with activated onco-
genic signaling pathways, such as pSTAT3, pERK, and
pAKT. Based on this analysis, patients can be offered targeted
agents that match and are more suitable for their tumors. Thus,
in an “umbrella” clinical trial, several targeted agents can be
simultaneously tested in biomarker-defined populations.
However, when a tumor expresses several biomarkers at the
same time, a prioritization algorithm should be implemented.

For example, if a lymphoma specimen is shown to have EZH2
mutation and pSTAT3 expression, experimental treatment
with an EZH2 inhibitor or a JAK2 inhibitor can be offered,
but which treatment should be considered first? Eventually,
the coexpression of more than one targeted biomarker may
offer an opportunity to guide new treatment strategies [64,
113]. For example, a lymphoma specimen that coexpresses
high levels of MYC and BCL2 proteins may respond
better to a combination regimen that targets both pro-
teins. The selection of such combination regimens should be
based on synergistic effects in preclinical studies and should
first be evaluated in phase 1 trials to establish its safety in the
clinical setting.

Because many genetic mutations in DLBCL occur at a very
low frequency, it would be more efficient to group several
mutations into one mechanistic category, such as activation of
well-defined oncogenic signaling pathways [65]. Such a strat-
egy will require linking signaling pathways with a unifying set
of biomarkers that can be detected by immunohistochemistry.
For example, mutations in PI3K, AKT, TSC, mTOR, deletion
of PTEN, and phosphorylate PRAS40 protein may be grouped
into one bucket of “activated PI3K pathway.” Mechanism-
based treatment strategies can then be evaluated to inhibit
different components in this pathway, rather than targeting
each genetic mutation separately. This strategy can be more
efficient for enriching patients for specific trials.

Concluding remarks

The era of treating all patients with DLBCL with the same
regimen is fading away. New strategies of “divide and concur”
are gaining momentum as it divided patients into several
groups based on their tumor characteristics. Identifying these
patients through clinical biomarkers is now feasible and may
allow in the future the administration of more precise therapy
for different patients. These strategies are currently being
evaluated in clinical trials. For example, bortezomib and
ibrutinib are in trials for patients affected by ABC DLBCL,
while EZH2 and BCL6 inhibitors may be used for other
patients affected for GCB DLBCL. Patient participation in
these clinical trials is critical for expediting our progress in
improving the cure rate of patients with DLBCL.

Review criteria PubMed and MEDLINE were used for database
searches to identify articles published from 1989 to July 2013. Only
articles or abstracts in English were considered for this review. Search
terms included the following: “DLBCL,” “Biomarker*,” “Prognosis,”
“Diagnosis,” and “Treatment.” The authors used their own judgment
about which papers to include from the literature search based on the
relevance of the article to the clinical scenario. This review also includes a
summary of the authors’ work and knowledge based on reading the
oncology literature. This review is not a systematic review; it includes a
selection of references.

Fig. 4 Genetic and protein biomarkers can be used to stratify patients for
new treatment strategies. The figure lists a set of biomarkers including
genetic mutations, cell surface proteins, and intracellular proteins.
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