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Abstract The interactions of chronic lymphocytic leukemia
cells with the microenvironment in secondary lymphoid tis-
sues and the bone marrow are known to promote CLL cell
survival and proliferation. CD38 and CD49d are both inde-
pendent prognostic risk parameters in CLL with important
roles in shaping these interactions. Both are reported to influ-
ence CLL cell trafficking between blood and lymphoid organs
as well as their survival and proliferation within the lymphoid
organs, thereby impacting the pathophysiology of the disease.
The expression of CD38 and CD49d is associated in the
majority of cases, and they exist as part of macromolecular
complexes. Here, we review the current evidence for the
individual and associated contributions of these molecules to
CLL pathophysiology.
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The heterogeneity of CLL in regard to the tumor
microenvironment

Chronic lymphocytic leukemia (CLL), a B cell non-
Hodgkin’s lymphoma with a leukemic appearance, is a re-
markably heterogeneous disease that can follow a wide variety
of courses. Patients with an indolent course survive for many
years. Others, however, show a rapidly fatal disease despite
aggressive therapy and die within 2–3 years of diagnosis
(reviewed in [1]). Mere staging by Rai [2] or Binet [3] is not
sufficient to predict at an early stage of the disease which

clinical course a patient will experience. Several more recently
suggested prognostic markers, apparently involved in the
cellular processes underlying CLL pathogenesis, may aid to
classify patients according to clinical risk. These markers
include chromosomal aberrations such as deletion of 17p13,
11q22-23, or 13q1, and trisomy 12 [4] that directly influence
cell fate or transformation, as well as molecular markers for
CLL cell interactions with the tumor microenvironment [5].
Among the molecular prognostic factors, the mutational status
of immunoglobulin variable region (IGHV) genes [6, 7], the
expression of CD38 on the surface of CLL cells [6], and the
intracellular expression of zeta-associated protein 70 [8, 9] are
the best-established ones. A more recently discovered marker
is CD49d, the alpha4 subunit of the VLA-4 integrin
(alpha4beta1). High CD49d expression predicts reduced over-
all survival and time to first treatment in CLL patients [10, 11].

The pathogenic significance of CLL cell interactions with
the lymphoid microenvironment has become increasingly ac-
knowledged in recent years. CLL cell proliferation is sup-
posed to take place in lymph nodes and, to a lesser extent in
bone marrow, with up to 2 % of the entire clone being newly
generated per day [12], and is most likely supported by
activated T lymphocytes that express CD40 ligand [13–15].
Signals from T lymphocytes and from other accessory cells in
this environment, such as stromal or nurse-like cells, also
provide pro-survival support to the malignant cells [16–19].
Not only does the microenvironment influence CLL cells, but
CLL cells alter their microenvironment to their advantage by
priming T cells towards an immune suppressive phenotype
[20] or inducing stromal cells to provide pro-survival signals
[21–24], which contributes to chemoresistance and treatment
failure. Minimal residual disease after therapy is attributed to
supportive microenvironmental signals and prognostically as-
sociated with shortened progression-free and overall survival
rates of CLL patients [25–27]. Eradicating residual CLL cells
within their protective niches in secondary lymphoid tissues
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and bone marrow is thus considered a major therapeutic goal
for achieving permanent remission.

As dissected in the following chapters, the prognostic
markers CD49d and CD38 have been reported to be involved
in various cellular functions relevant to CLL pathogenesis:
CLL cell homing to lymphoid organs, survival, and prolifer-
ation. However, CD49d and CD38 expression is associated in
about 80 % of CLL patients, and these molecules are reported
to physically interact within multi-protein complexes. Be-
cause of this, it is difficult to gauge the individual contribution
of each molecule to key pathogenic functions in CLL. In light
of the high heterogeneity of reports dealing with either mole-
cule and the fact that CD49d is still a newcomer among the
prognostic factors, we review the current evidence for the
individual and associated contributions of these molecules to
CLL pathophysiology.

CD38 and VLA-4 in general

CD38

CD38 is a highly conserved 45 kDa transmembrane type II
glycoprotein with a short cytoplasmatic tail, a single-spanning
transmembrane domain, and a large extracellular domain (257
aa) [28, 29]. CD38 can be localized on the plasma membrane,
in the cytoplasm, and in the inner nuclear membrane of cells
[30, 31]. It is expressed in numerous cells types of the hema-
topoietic system, such as lymphocytes, myeloid cells, natural
killer (NK) cells, platelets, and erythrocytes, as well as in solid
tissues, including various cell types of the brain, the eye, in
pancreatic islet cells, smooth muscle cells, and osteoclasts and
osteoblasts [31]. CD38 is an important enzyme for the regu-
lation of calcium signaling and the cell’s energy transfer
homeostasis [29]. The products of the enzymatic reactions
catalyzed by CD38 are all involved in the release of different
intracellular calcium stores, mostly independent of the tradi-
tional inositol triphosphate (IP3) pathway [32–37]. As such,
CD38 has been shown to play a critical role in diverse immune
functions: in T cell activation [34], neutrophil chemotaxis
[38], dendritic cell migration [39], and monocyte chemokine
production [40]. Furthermore, CD38-mediated calcium con-
trol has also been implicated in various other functions of
different cell types: in the insulin secretion of pancreatic beta
cells [41, 42], in the oxytocin production of neurons [43–45],
in bone resorption of osteoclasts [46], as well as the respon-
siveness of airway smooth muscle cells [47].

In addition to these enzymatic functions, CD38 is a well-
known lymphocyte differentiation antigen with proposed re-
ceptor and adhesion molecule functions. This versatility of
CD38 and its characteristic to function as dimers, multimers,
or as part of multi-protein complexes makes it difficult to fully
comprehend its biology. The proposed functions of CD38 as a

receptor vary greatly and depend on its association with other
surface molecules. CD38 is laterally associated with the main
signaling complexes of lymphocytes that are organized in
lipid rafts. In T cells, CD38 is capable of interacting with the
Tcell receptor (TCR)/CD3 complex; in B cells, with the BCR/
CD19 complex; and in NK cells, with the CD16/CD81 com-
plex [31]. CD31 (PECAM-1), expressed by, e.g., endothelial
cells has been described as a CD38 ligand [48]. CD38+
lymphocytes show a weak, selectin-like adhesion to endothe-
lial cells [49], which appears to be mediated by CD38–CD31
interactions [48].

In B cells, ligation of CD38 by agonistic antibodies triggers
different in vitro responses depending on the differentiation
stage of the cells. In immature B cell precursors, CD38 liga-
tion inhibited DNA synthesis and induced apoptosis, thereby
blocking B cell hematopoiesis [50]. In tonsillar germinal
center B cells, CD38 mediated pro-survival signaling [51].
In mature circulating B cells, CD38 ligation induced prolifer-
ation by promoting the expression of CD25, MHC-II, and
certain cytokines [31, 52].

In summary, CD38 is a widely expressed enzyme and
receptor, involved in various cellular functions, making it
difficult to pinpoint one particular function that would most
critically impact CLL pathobiology.

CD49d

CD49d belongs to the family of integrin alpha subunits.
Integrins are heterodimers of non-covalently linked alpha
and beta subunits. The human CD49d (alpha4 integrin) sub-
unit can associate with either CD29 (beta1 integrin) or with
beta7 integrin [53, 54]. The combination of CD49d with beta7
mediates lymphocyte binding to mucosal addressin cell adhe-
sion molecule-1, and its expression defines lymphocytes ca-
pable of trafficking through the intestines and the intestinal
lymphoid tissues [55, 56]. In contrast, very late antigen-4
(VLA-4) is formed by the combination CD49d/CD29 [53]
and is expressed on leukocytes, including B and T cells, and
on CD34+ hematopoietic stem/progenitor cells (HSPCs).
VLA-4 is the major CD49d-containing combination found
in resting CLL cells [57]. VLA-4 has two major ligands:
VCAM-1 [58], expressed on endothelial cells and bone mar-
row stromal cells [59], and the extracellular matrix molecule
fibronectin [60].

The use of mouse models has proved fundamental in
revealing the essential role of VLA-4 in fetal and adult hema-
topoiesis (reviewed in [56, 61]). Germline deletion of either
VLA-4 subunit, CD49d or CD29, resulted in embryonic le-
thality in mice. Chimeric mouse models generated with
CD29 integrin-expressing or CD29 integrin-deficient embry-
onic stem (ES) cells indicated that loss of CD29 does not
impact haematopoietic stem cell formation or their differenti-
ation into different lineages but severely compromises their
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ability to colonize the fetal liver [62, 63]. Adult murine hema-
topoiesis, however, did not seem to rely on CD29 [64]. Similar
chimeric models generated with CD49d-positive or CD49d-
negative ES cells demonstrated that this integrin subunit is
critical for proper lineage differentiation and maturation of the
hematopoietic system [65, 66]. Later, more refined inducible
knockout models revealed that CD49d is essential for bone
marrow homing and retention of progenitor cells [67, 68].
Moreover, absence of CD49d in HSPCs hindered both their
self-renewal capacity and their ability to reconstitute hemato-
poiesis [69].

Homing is a rapid process that describes the active migra-
tion of cells from the blood, through the vascular endothelium,
into lymphoid organs. It differs from engraftment, for which
cell proliferation within the lymphoid tissue environment is
essential [70]. Using adoptive transfers of human cells into
immune-deficient mice, VLA-4 was identified as a key mol-
ecule for both the bone marrow homing and the engraftment
of normal and leukemic human HSPCs [71, 72]. VLA-4 exists
in multiple conformational states, including high-affinity-
activated but also low-affinity-extended states [73]. These
specific conformations allow VLA-4, in contrast to other
integrins, to support not only firm adhesion but also rolling
of lymphocytes on VCAM-1 displaying endothelial cells.
Chemokine-induced inside-out activation of VLA-4, e.g., by
the bone marrow chemokine CXCL12, induces an upregula-
tion of its adhesive properties to VCAM-1. This mediates the
arrest of HSPCs on the BM vessels, which is a prerequisite for
their BM homing [72]. Functional VLA-4 expression is also
indispensable for retention of normal HSPCs as well as leu-
kemic blasts in bone marrow [74, 75]. Consequently, targeted
disruption of VLA-4 function by anti-CD49d antibodies or
small-molecular-weight VLA-4 antagonists is known to result
in rapid release of HSPCs into the peripheral circulation and to
act synergistically or additive with conventional mobilization
regimes (for review, see [61]).

Thus, in contrast to CD38, the biological functions of
CD49d and the CD49d/CD29 integrin combination VLA-4
are well defined, with a principal involvement in bonemarrow
homing and retention of hematopoietic cells, processes impor-
tant to CLL pathophysiology.

CD38 and CD49d as prognostic markers in CLL

The prognostic role of CD38 in CLL was first proposed on the
basis of an immunophenotypic study of CLL cases with
known IGHV sequences [6]. CD38 predicted shorter overall
survival rates when expressed on 30 % or more CLL cells [6].
Since this first report in 1999, CD38 expression has been well
established as an independent prognostic factor in CLL by
numerous reports, however, with various cut-off levels. While
Hamblin et al. [76] and Del Poeta et al. [77] concur with 30 %

as the best cut-off, others proposed 20 % [78, 79] or even 7 %
[80, 81]. Further studies are still necessary to define a common
cut-off level (reviewed in [82, 83]).

In 2008, two studies concluded that high expression of
CD49d is a robust adverse prognostic marker in CLL [10,
11]. When analyzed retrospectively, CLL patients with ≥30 %
CD49d-positive tumor cells revealed significantly shorter
treatment-free and overall survival than patients with <30 %
CD49d positivity [10]. A prospective analysis indicated that
an alternative cut-off level of 45 % CD49d expression might
be superior to the 30 % level [11]. Following these first
reports, the prognostic relevance of increased CD49d expres-
sion was rapidly and unequivocally confirmed by several
groups, using the 30 % cut-off level [84–88] (Table 1). Com-
parative analyses of CD49d mRNA and protein levels dem-
onstrated its transcriptional–translational consistency [57, 84]
which allows its determination by flow cytometry as well as
PCR-based assays for risk categorization. As with CD38, high
CD49d expression acts as an independent prognostic marker
but is highly associated with other risk parameters such as
IGHV, ZAP70, CD38, and the presence of chromosomal
aberrations [10, 11].

Remarkably, the finding of differential CD49d expression
in CLL is an older discovery than anticipated. In 1996, it had
already been demonstrated that CD49d expression in CLL is
variable, with higher expression of CLL samples of advanced
(Rai III, IV) than early stages [89]. Zucchetto and colleagues
were the first in 2006 that reported the strong association of
CD38 and CD49d expression on CLL cells using both param-
eters as categorical variables [90]. Comparing overall survival
rates, a combined CD38 low/CD49d low phenotype was
attributed to the best prognosis. Out of the 115 investigated
samples, 27 cases (23 %), however, displayed a discordant
CD38 low/CD49d high or CD38 high/CD49d low phenotype.
Patients with this discordant phenotype showed better overall
survival rates compared with the combined CD38 high/
CD49d high phenotype. Recently, we found a comparable
21.5 % rate of discordant cases when analyzing 144 samples
[86]. In our analysis, both a CD38 high or CD49d high
phenotype were sufficient to predict shortened time to first
treatment, even when the presence of the second marker was
low. This implies that a relevant proportion of our patients
would be misclassified with regards to risk if we were to base
our stratification solely on CD38 expression. Our data thus
support the previous suggestion of a scoring system based on
several antigens, including CD38 and CD49d, as an additional
tool for accurate risk categorization in CLL [91].

CD38 and CD49d in CLL cell migration and homing

In light of the current evidence that suggests that CLL local-
ization within supportive lymphoid niches is critical to disease
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progression, it seems logical that at least a part of the periph-
eral blood CLL pool constantly recirculates into bone marrow
and secondary lymphoid organs (Scheme 1). Nevertheless,
compared with healthy B lymphocytes, CLL cells dis-
play an impaired in vitro transendothelial migratory
(TEM) capacity over human umbilical vein endothelial
cells [92], a widely accepted endothelial model. These
data are in line with the early in vivo observation that 51Cr-
labeled CLL cells of a CLL patient left the circulation at a
dramatically diminished degree compared with healthy lym-
phocytes [93].

This transmigratory defect was firstly attributed to low L-
selection expression [94], which is a major mediator of lym-
phocyte tethering on endothelial cells. Subsequently, it be-
came clear that the transmigratory capacity of CLL cells
varied between patients, with CLL cells from patients with
advanced disease and bearing lymph node enlargement
displaying increased TEM rates [95]. CCR7 and VLA-4 were
identified as key factors in this process and a correlation

between high CD49d expression and lymphadenopathy was
demonstrated [95]. In these patients, high CD49d levels ap-
pear to overcome some of the migratory defects of the CLL
cells [96]. While entry of normal B lymphocytes into lymph
nodes is dependent on LFA-1, CLL cells with reduced LFA-1
levels (compared with normal B lymphocytes) were able to
cross human umbilical vein endothelial cells in vitro by a
mechanism that required an interplay between VLA-4 and
LFA-1 [57, 96]. CD49d expression was decisive for in vivo
homing of human CLL cells into the bonemarrow of immune-
deficient mice [57, 86]. Moreover, analyzing human bone
marrow CLL specimens, we also observed an association of
CD49d expression and high leukemic BM infiltration [86].
The association of CD49d and MMP9 (see in more detail in
chapters below) may further contribute to invasiveness of
CLL cells in the dense BM environment.

CD38 expression was also described to define CLL cells
with an increased migratory potential as tested by transwell
chemotaxis assays [97]. In addition, lentiviral transfection of

Table 1 High CD49d expression in CLL predicting shortened treatment free survival and overall survival

Authors Single-/multi-
center study

Number of
patients

Cut-off p value TFS/median TFS p value OS/median OS Notes

Majid et al. 2011 [84] Multi 652 30 % <0.0001 <0.0001

CD49d ≥30 %, 3.8 years CD49d ≥30 %, 9.7 years

CD49d <30 %, 15.3 years CD49d <30 %, not
reached

Rossi et al. 2010 [86] Single 128 30 % 0.002 – Work in correlation with
telomere length

CD49d ≥30 %, 2.6 years

CD49d <30 %, 9.2 years

Nuckel et al. 2009 [83] Single 101 45 % 0.015 0.018

CD49d ≥45 %, 3.6 years Not reached

CD49d <45 %, 9.7 years

Rossi et al. 2008 [87] Single 140 30 % 8.3×10−5 – In early stage CLL

CD49d ≥30 %, 4.2 years

CD49d <30 %, not reached

(5-year TFS, 38.5 % vs
79.0 %, p=8.3×10−5)

Gattei et al. 2008 [9] Single 232 (TFS) 30 % <0.001 <0.001

303 (OS)

CD49d ≥30 %, 4.2 years n.a.

CD49d <30 %, 9.0 years

Shanafelt et al. 2008 [10] Single 158 45 % <0.0001 <0.0001

CD49d ≥45 %, 4.0 years CD49d ≥45 %,
20.0 years

CD49d <45 %, 18.0 years CD49d <45 %, not
reached

Zucchetto et al. 2006 [90] – 122 30 % – 1.66×10−5 Proposed scoring system
of 6 surface antigens

Zucchetto et al. 2006 [89] – 115 30 % – 7.1×10−6 Work in correlation with
CD38

TFS treatment-free survival, OS overall survival, n.a. not available
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CLL cells with CD38 resulted in their enhanced motility to
CXCL12 [98]. By using an inhibitory anti-CD38 antibody
(clone: SUN-4B7), the authors uncovered a CD38 contribu-
tion to BM homing of CLL cells. In light of the expression of
CD31, reported to be a ligand of CD38, in the endothelium, a
role of CD38 in CLL cell extravasation appears logical. How-
ever, when comparing the integrin expression on CD38 high
or low CLL cells, increased VLA-4 (CD49d subunit) and
LFA-1 (CD18 subunit) expression was found in the CD38
high subtype [99], making it difficult to ascribe enhanced
migration functions solely to CD38. In short-term homing
assays wherein CLL cells from discordant CD38+/VLA-4−
and CD38-/VLA-4+ cases were transplanted into NOD/SCID
mice, only cells expressing VLA-4 were capable of entering
the BM [86]. Importantly, the enhanced engraftment of CD38
positive samples in NOD/SCID mice and the higher prolifer-
ation rates in the spleens of these xenogeneic animals have
been attributed to CD38-dependent proliferation rather than
homing of the CLL cells [100].

Thus, the evidence indisputably demonstrates that CLL
cells require a functional VLA-4 to enter the bone marrow.
Additionally, VLA-4 potentially compensates for CLL-
associated LFA-1 defects during lymph node entry. While
the role for CD38 in homing is still ambiguous, CD38-
associated proliferation (discussed in more detail below)
may play a role in the successful engraftment of the tumor
cells within these lymphoid tissues.

CD38 and CD49d in CLL cell survival

Both, CD38 and CD49d have been described to contribute to
CLL survival, in a direct or indirect manner. A direct contri-
bution would involve the induction of anti-apoptotic signaling
cascades upon ligand binding, whereas an indirect contribu-
tion would be to ensure that the tumor cells are in the right
place at the right time in order to avail of the favorable signals
emanating from the microenvironment.

Scheme 1 Hypothetical model of CD49d (VLA-4) and CD38 implica-
tions in the distinct steps of the CLL life cycle. CD49d is a key molecule
for homing of CLL cells with a major mechanistical role in (1) rolling and
(2) arrest of CLL cells on the bone marrow and lymph node endothelia.
CD38 may contribute to rolling of lymphocytes on the endothelium cells
and to (3) transendothelial migration. A macromolecular complex
(MMC), involving both CD38 and CD49d, is relevant for (4) invasion
within the lymphoid tissue and (5) survival of CLL cells, with additional

individual anti-apoptotic contributions of the molecules. (6) CLL prolif-
eration is strongly associated with CD38 expression, with a presumable
but yet-to-be-described role of CD49d. Mobilization of CLL cells from
the lymphoid organs likely requires downregulation of CD49d expression
or function. CD49d stands for the functional CD49d/CD29 (VLA-4).
MMC : macromolecular complex including CD49d/CD29/CD38/MMP9/
CD44v
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Ligation of CD38 in IL-2-treated CLL cells led to an
increase in long-term survival [101]. Whether engagement
of CD38 by its supposed ligand CD31 induces direct pro-
survival signals in CLL is still controversially discussed.
Co-culture of CD38 expressing CLL cells with CD31-
transfected murine cell lines or CD31+ nurse like cells en-
hanced survival of CLL cells and induced their proliferation
[102, 103]. The CD31-specificity of these results could be
demonstrated by addition of an antagonistic anti-CD31 mAb
that abrogated the effects [102]. Other authors, however, have
reported that they found no increase in cell survival or prolif-
eration of either CD38 high or low expressing CLL cells co-
cultured with endothelial cells or CD31-transfected fibroblasts
in the presence or absence of either anti-CD31 or anti-CD38
blocking mAbs [104]. Discordant results were also obtained
when studying the modulation of apoptosis regulators upon
incubation of CLL cells from CD38 high-risk patients with
CD31-transfected fibroblasts [104, 105]. Whether these find-
ings reflect the in vivo situation remains to be confirmed.

Similarly, a direct ligand-triggered survival function of
VLA-4 was suggested in CLL, as tumor cells could be rescued
from spontaneous or drug-induced in vitro apoptosis by direct
cell–cell contact with stromal cells [19, 106]. These studies
suggested that beta1 integrins contribute to this protective
adhesion [106]. Furthermore, another series of studies reported
that culturing CLL cells on fibronectin- or VCAM-1-coated
plates increased their in vitro viability and chemoresistance,
which was accompanied by an increased Bcl-2/Bax ratio and
elevated Bcl-xL levels [107, 108]. The authors also suggested
that a general chemoresistant phenotype is related to high
VLA-4 expression of CLL cells. However, Majid and col-
leagues [85] did not find a correlation between CD49d expres-
sion and in vitro resistance to fludarabine in liquid cultures
albeit they still observed a protective adhesion of CD49d high
cells to fibronectin-coated plates. Similarly, we confirmed
higher adhesion rates of VLA-4+ CLL cells to protective
stromal cells than of VLA-4− CLL cells [86]. Nevertheless,
VLA-4 low CLL cells were still protected from spontaneous
apoptosis to a similar extent by the presence of stroma, sug-
gesting that this CLL subgroup uses alternative viability sig-
nals. In line with these observations, cell adhesion-mediated
drug resistance, induced by culturing CLL cells on a follicular
dendritic cell line, was shown to be independent of VCAM-1
[109] but dependent on other signals, e.g., CD44. One possible
explanation for these divergent findings is that different groups
investigated the protective effects of VLA-4-mediated cell
adhesion over different lengths of time. Of note, Zucchetto
et al. [110] found that protective VLA-4/VCAM-1 interactions
between CLL cells and VCAM-1-transfected fibroblasts first
become apparent after 7 days of co-culture and continuously
increased with the most dramatic effects being observed after
21 days, a much longer time period than studied in most
previous reports.

As we found VLA-4/CD38 low-risk samples to be less
sensitive towards spontaneous apoptosis ex vivo [86], they
appear less dependent on continuous external stimulation.
Hypothetically, they are in a more quiescent mitotic state,
based on their lower basal Ki-67 expression. Our data are
consistent with the report by Coscia and colleagues [111]
who observed that high-risk CLL cells with unmutated IGHV
genes were extremely vulnerable when removed from the
microenvironmental signals that induce supportive NF–kB
signaling in these cells. Furthermore, NF–kB signaling via
its transcriptional target TAp63 has been shown to result in
increased VLA-4 expression on high-risk samples [112], thus
potentially creating a positive feedback loop leading to the
accumulation of survival signals in the tumor cells. Of note,
other intercellular interactions leading to the activation of CLL
cells, such as their interaction with vascular endothelium or
CD40L-transfected fibroblasts, also result in the upregulation
of VLA-4 expression on the tumor cells [103, 113]. Whether
these interactions result in the concomitant increase of the
ligands VCAM-1 and fibronectin has not been investigated
yet. However, the implication of these findings is that VLA-4-
mediated adhesion may help to strengthen the intercellular
contacts, thereby allowing stable and long-term bi-directional
signaling between the tumor cells and the microenvironment.
VLA-4 may also support survival of CLL cells as part of a
larger protein complex including MMP9 and CD44v [114,
115]. In this setting, VLA-4 supports the adhesion of CLL
cells to proMMP9, which results in pro-survival signals to-
wards the CLL cells via the hemopexin domain of MMP9
[115]. Intriguingly, proMMP9 hereby acts as a non-canonical
ligand for VLA-4 inducing a Lyn-Stat3-Mcl-1 pro-survival
signaling cascade distinct from VCAM-1 induced survival
signals.

CD38 and CD49d in CLL cell proliferation

An enormous amount of effort has been put into defining the
link between CD38 and CLL cell proliferation and determin-
ing whether CD38 plays an active or passive role in this
process. The most recent findings suggest that CD38 expres-
sion marks an activated and recently born CLL cell subset
[116–118]. The proliferation marker Ki-67 that characterizes
cell cycle entry and the mitosis regulating anaphase-
promoting complex/cyclosome (APC/C) are significantly in-
creased in CLL cells of CD38 high-risk patients compared
with low-risk samples [86, 118] [99]. Moreover, CD38+ CLL
subclones within individual patient samples express increased
expression of the early activation marker CD69, the B cell
activation marker CD27, and of Ki-67 [118–120]. Elegant
in vivo labeling studies verified that the CD38+ peripheral
blood CLL cell pool comprises more newly proliferated CLL
cells than the CD38- pool [116]. Consistently, Ki-67 positive
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cells were frequently positive for CD38 in CLL proliferation
centers in lymph nodes [15]. In vitro, CLL cell proliferation
can be induced by activation of T lymphocytes or CD40
ligand stimulation, and this is accompanied by an increase in
CD38 expression on the CLL cell [15, 121]. These observa-
tions, however, are correlative rather than proof of a direct
functional role for CD38 in this cellular function. A single
study implicated an active role for CD38 in CLL proliferation:
CD38 ligation on CLL cells by an agonistic antibody in the
presence of IL-2 provoked intracellular calcium signals and
proliferation of the tumor cells [101]. What is clear, however,
is that CD38 expression can be regulated by the microenvi-
ronment and can serve as a marker for an activated or recently
activated CLL phenotype [15, 99, 101, 122]. It is likely that
CD38 expression within the CLL clone is transient and CD38-
positive tumor cells eventually become CD38-negative, as
proposed by Calissano et al. [116]. This is supported by the
fact that CD38+ and CD38− subclones do not show any
difference in telomere length [118, 119] and that there is no
clonal evolution of the CD38+ subclone [119]. This would
also imply that a CD38− subclone could become CD38+
given the proper stimuli. Whether the upregulation of CD38
is a prerequisite to proliferation remains to be determined and
is hindered by the lack of small molecule specific inhibitors of
CD38, as well as difficulties in achieving stable and long-term
knockdowns in CLL cells.

In contrast to CD38, there is much less data linking VLA-4
to CLL proliferation.We recently demonstrated that, similar to
CD38, VLA-4 expression of bone marrow-derived CLL cells
is higher than that of peripheral blood CLL cells and that the
proliferating CLL cell fraction was enriched in the VLA-4+
subclone [86]. Notably, VLA-4 high-risk CLL cells also
displayed increased in vitro proliferation rates upon co-
culture with CD40L-transfected fibroblasts [121]. How
VLA-4 impacts CLL cell proliferation remains to be
elucidated.

Challenges in separating individual and shared
contributions of VLA-4 and CD38 in CLL
pathophysiology

A possible molecular basis for the high correlation of CD49d
and CD38 expression in CLL could be their physical associ-
ation in multi-protein-complexes. Recent reports suggest a
variety of possible protein combinations [98, 110, 114, 115,
123, 124]. Two recent reports demonstrate a colocalization
and physical association of CD38 and CD49d/CD29 by a
combination of immunofluorescence and immunoprecipita-
tion approaches [110, 123]. Whether this interaction occurs
via the CD49d or the CD29d subunit of the VLA-4 integrin
could not unequivocally be clarified [110, 123]. Interpatient
variability, which is usually high in CLL, adds further

complexity: Buggins et al. reported [123] a multimer-
complex involving CD38, CD49d, MMP9, and CD44 and
observed a co-immunoprecipitation of CD38 with CD49d in
the majority, but of CD38 with MMP9 in only about half of
the investigated samples. Redondo-Munoz et al. reported
the association of CD49d and MMP9 particularly with
CD44 variant forms instead of pan CD44 [124]. All the
reported complex structures may represent novel CLL
high-risk-specific therapeutic targets as they do not ap-
pear to form in normal B cells or in low-risk cases. Notably,
besides direct interactions, CD38 and CD49d may also indi-
rectly influence each other as parts of a consecutive chain of
events [125].

Given this complexity, it is difficult to separate association-
intrinsic from molecule-specific functions, particularly when
interpreting correlative analyses. In addition, the use of
blocking antibodies in functional studies bears the risk of co-
capping, crosslinking, or steric hindrance of the partner mol-
ecule, which could be overcome by the use of small molecule
inhibitors, which are increasingly being developed. Further-
more, a genetic modulation of CD38 and VLA-4 expression
could help to correctly define their individual contributions.
The successful lentiviral introduction of CD38 in CD38-
negative CLL cells has only recently been achieved [126]
and contributes to a better understanding of the molecule.
Furthermore, introduction of CD38 into cells of the CLL-
derived prolymphocytic leukemia cell line MEC1 increased
their adhesion to VLA-4 ligands, indicating functional CD38-
VLA-4 interaction [110]. Conversely, lentiviral transfer of
short hairpin RNA (shRNA) could be used for stable and
specific reduction of CD38 expression in high-risk CLL.
However, genetic manipulations of the cell cycle-arrested
primary peripheral blood CLL cells are still a challenge.
To achieve an efficient knockdown, it would likely be
necessary to combine shRNA approaches with long-term
culture and cell cycle induction of CLL cells. To this end,
co-culture techniques that mimic the proliferative and sup-
portive microenvironment in CLL are continuously being
improved [121].

An alternative approach to separate the functions of CD38
and VLA-4, feasible in the absence of efficient knockdown
techniques, is the analysis of discordant cases. Notably, the
correlation of risk factors in CLL samples is not absolute with
a considerable rate of discordancy. Functional analyses using
these discordant samples are useful to define the dispensabil-
ity or compensation of a specific molecule in a cellular func-
tion. Taking this road, we have been able to demonstrate that
CD38 is not required for BM homing of CLL cells while
VLA-4 is indispensable. However, in light of the potential
enzymatic function of CD38, it is still conceivable that in
CD38/VLA-4 double-positive cases CD38 can exert a sup-
portive function in energy-dependent VLA-4 activation. The
basis of this crosstalk remains to be elucidated.
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Therapeutic implications

Collectively, the data demonstrate that CLL cells with high-
risk features are in fact those that are most exquisitely depen-
dent on microenvironmental stimuli for their survival and
proliferation. Notably, the pathophysiological and prognostic
importance of this crosstalk bears therapeutical consequences.
Finding a therapeutic means of interfering with the bi-
directional communication between CLL cells and the sup-
portive microenvironment would go a long way to finding a
definite cure for this disease. Besides single targeting of CD38
or VLA-4, disrupting the macromolecular complexes housing
these proteins, or inhibiting downstream signaling, are all
conceivable strategies. Additionally, immunomodulatory
drugs such as lenalidomide, whose molecular mechanism of
action is still unclear, may indirectly impact CD38 and VLA-4
expression and function, and this should be further
investigated.

The ubiquitous expression of CD38 in many different cell
types and tissues obviously raises concerns regarding the safe-
ty of widespread inhibition of CD38 function. Currently, there
are three different anti-CD38 antibodies under evaluation for
safety in clinical trials (Table 2). Two monoclonal antibodies
are being tested in multiple myeloma (daratumumab, identifi-
er: NCT00574288 andMOR03087, identifier: NCT01421186;
http://clinicaltrials.gov) and a third in selected CD38+
hematological malignancies including CLL (SAR650984,
identifier: NCT01084252; http://clinicaltrials.gov). These
antibodies are supposed to bind to CD38+ tumor cells and
trigger antibody-dependent cellular cytotoxicity rather than
inhibit the biological CD38 functions.

Treatment strategies using VLA-4 inhibitors supposedly
interfere with the recirculation of CLL cells into bone marrow

and lymph nodes. Recently, the recombinant anti-VLA-4 an-
tibody natalizumab demonstrated the potential to overcome
stromal cell-induced resistance of B cell lymphoma cells
against cytotoxic drugs and rituximab in vitro [127].
Natalizumab is already approved as an anti-inflammatory
drug, and a number of small molecule inhibitors for VLA-4
have been developed [61], primarily for use in multiple scle-
rosis or asthma. However, most of the clinical trials using
these small-molecular-weight antagonists for VLA-4 have
been terminated due to low efficacy or side effects of the
substances. A new generation of currently developed VLA-4
inhibitors might overcome the previous problems and widen
the therapeutic spectrum of VLA-4 antagonism towards tumor
therapy. In fact, VLA-4 antagonizing nanoparticles recently
demonstrated adhesion-inhibitory and cytotoxic effects that
resulted in reduced tumor growth in a multiple myeloma
mouse model [128].

Moreover, targeting of VLA-4 downstream signals might
provide an alternative approach. VLA-4 antagonism is known
to mobilize stem and progenitor cells from bone marrow [61],
and its ligand VCAM-1 is highly expressed in both CLL BM
and lymph nodes (unpublished observation). It is therefore
expected that VLA-4 targeting will not only impede CLL cell
recirculation to these lymphoid niches, but additionally mobi-
lize tumor cells from lymphoid organs, similar to the effects
seen with novel small molecule inhibitors. Notably, ibrutinib,
the clinically active BTK inhibitor PCI-32765, was recently
shown to impair VLA-4-mediated adhesion of CLL cells
[129]. This is consistent with the clinical observation of a
transient lymphocytosis of ibrutinib-treated patients due to
mobilization of CLL cells from lymphoid organs into the
peripheral blood [130]. Other small molecule antagonists used
in clinical trials for treatment of CLL, e.g., the phos-

Table 2 Anti-CD38 strategies currently investigated in clinical trials for treatment of haematologic malignancies

Substance Single/combination Study phase Company Disease entitiesa Identifier Status

Daratumumab Human anti-CD38
(HuMax®-
CD38)

Single I/II Genmab MM NCT00574288 Recruiting

Daratumumab Human anti-CD38 Lenalidomide+
dexamethasone

I/II Genmab MM NCT01615029 Recruiting

MOR03087 Human anti-CD38 Single I/II MorphoSys
AG

MM NCT01421186 Recruiting

Lenalidomid/dexamethasone

Bortezomib/dexamethasone

SAR650984 Humanized IgG1
anti-CD38

Single I Sanofi B-NHL, AML,
B-ALL, CLL;
MM

NCT01084252 Recruiting

SAR650984 Humanized IgG1
anti-CD38

Lenalidomide+
dexamethasone

I Sanofi MM NCT01749969 Recruiting

MM multiple myeloma, AML acute myeloid leukemia, ALL acute lymphoblastic leukemia
a All trials: refractory/relapsed patients
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phatidylinositol 3-kinase inhibitor CAL-101 [131], might also
affect VLA-4-mediated cellular functions in CLL.

Conclusively, it is evident that CD38 and VLA-4 are more
than just markers of an aggressive CLL cell type and that they
play functional roles in the pathobiology of the disease. As
such, they represent therapeutic targets that may be exploited
in addition to, or in combination with, the currently developed
novel approaches of interfering with CLL cell–tumor host
interactions. Targeting these molecules should also be tested
for its potential in avoiding the frequent relapses and devel-
opment of chemoresistance in CLL.
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