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Abstract
Purpose  This study aimed to detect the idyllic locations for botulinum neurotoxin injection by analyzing the intramuscular 
neural distributions of the sartorius muscles.
Methods  An altered Sihler’s staining was conducted on sartorius muscles (15 specimens). The nerve entry points and 
intramuscular arborization areas were measured as a percentage of the total distance from the most prominent point of the 
anterior superior iliac spine (0%) to the medial femoral epicondyle (100%).
Results  Intramuscular neural distribution were densely detected at 20–40% and 60–80% for the sartorius muscles. The result 
suggests that the treatment of sartorius muscle spasticity requires botulinum neurotoxin injections in particular locations.
Conclusions  These locations, corresponding to the locations of maximum arborization, are suggested as the most suggestive 
points for botulinum neurotoxin injection.
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Introduction

The sartorius muscle is the lengthiest muscle in the human 
anatomy, running over both hip and knee joints. It is a super-
ficially and anteriorly located muscle of the thigh and diago-
nally runs from the anterior superior iliac spine to the medial 
side of the proximal tibia at the pes anserinus. The insertion 
of the sartorius muscle is the superior medial part of the 

tibial bone, close to the medial tibial tubercle. The conjoined 
tendon of gracilis, semitendinosus, and sartorius muscles is 
known as the pes anserinus [4].

Spasticity is a main contributor to functional loss in 
patients with impaired central nervous system, such as in 
stroke, cerebral palsy, multiple sclerosis, traumatic brain 
injury, spinal cord injury, and others [2]. Sartorius muscle, 
as a hip and knee flexor, is one of the commonly involved 
muscles, and long-lasting spasticity of the muscle results in 
abnormalities secondary to muscle hyperactivity, affecting 
lower levels of functions, such as impairment of gait. For 
ambulatory patients, hip and knee flexor spasticity results in 
crouched gait, which needs much more strength than in peo-
ple with normal hip and knee extension. Since hip and knee 
flexor spasticity occurs in conjunction, surgical and medical 
treatments are required in sartorius muscle to improve the 
posture.

Presently, botulinum neurotoxin (BoNT) injection is 
among the most secure and effective approaches for relieving 
spasticity [7, 16, 24, 27, 30]. Since its consequences depend 
on the amount, the recommended BoNT levels should be 
sufficient in sartorius muscle at the area of neuromuscular 
junctions [37]. However, BoNT overdose may cause the neu-
rotoxin to spread to adjacent muscles and cause undesirable 
paralysis [11, 15, 18]. Thus, to lessen the adverse effects and 
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to maximize its clinical efficacy, BoNT must be injected near 
the neural arborized areas. Numerous studies have revealed 
the anatomical location of neuromuscular junctional areas of 
many different muscles [6, 12, 18, 26, 29]. The consequence 
of neural arborized area-targeted injection, in which most 
neuromuscular junctions are located, has been established 
in clinical studies on biceps brachii and psoas major muscles 
[5, 8]. Intramuscular injection in neural arborized areas of 
biceps brachii and psoas major resulted in a much higher 
volume reduction than the control [5, 8].

Studies that explain BoNT injection locations by navigat-
ing intramuscular neural distribution with naked eye dissec-
tion have limits, such as perceiving minuscule nerves and the 
likelihood of neural damage [17, 21, 25, 41–49].

Moreover, earlier studies have pronounced trouble in pre-
cisely detecting the tiny nerves [29, 34, 40]. These restric-
tions can be disregarded when proceeding with Sihler’s 
staining, which is a whole-mount nerve staining that changes 
the muscle translucent while stained nerves.

Sihler’s staining is an efficient method to precisely dem-
onstrate the intramuscular nerve distribution without damag-
ing the nerve itself, and offers a discrete and comprehensive 
outline of the nerve distribution.

The objective of this study was to determine the intramus-
cular nerve distribution of sartorius muscle using Sihler’s 
staining and to suggest BoNT injection points for treating 
hip and knee flexor spasticity.

Methods and materials

Subjects

Informed consent and approval were obtained from the fami-
lies of the cadavers before the dissections were performed. 
All cadavers used in this study were legally donated and 
approved from ethics committee of the Surgical Anatomy 
Education Center, Yonsei University College of Medicine 
(approval code 20–009; approval date: May 5th, 2020). Fif-
teen sartorius muscles (eight right sides and seven left sides; 
eight male and seven female specimens) from 10 cadavers 
(five women and five men with a mean age of 74.2 years; 
range, 63–84 years) were dissected to explore nerve entry 
points, and Sihler’s staining was performed to detect intra-
muscular neural distribution. The sartorius muscles were 
clean with no clues of an operation history or diseases.

The Sihler’s staining procedure requires multiple stages 
to acquire the image of the intramuscular neural distribu-
tion [20, 33, 35–39]. After the staining procedures, the sarto-
rius muscles were equally divided into 10, each represented 
division of 10%, respectively to the total length. The origin 
of the sartorius muscles, nerve entry points, and intramuscu-
lar neural arborized locations were measured as percentages 

from the anterior superior iliac spine (0%) to the medial 
femoral epicondyle (100%) (Fig. 1).

The stages of the Sihler’s staining of the sartorius muscle 
are described in Fig. 2.

Modified Sihler’s staining

Fixation stage: The extracted sartorius muscles under-
went fixation for 30 days in a container filled with 10% 

Fig. 1   Sartorius muscles were harvested from the anterior superior 
iliac spine (ASIS) (0%) to the medial femoral epicondyle (MFE) 
(100%)
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unneutralized formalin. The formalin solution was replaced 
each time it turned hazy.

Maceration and depigmentation stages: Once fixation 
was completed, the sartorius muscles were placed in flowing 
water for 1 h. Next, the sartorius muscles were positioned in 
a 3% aqueous potassium hydroxide solution with hydrogen 
peroxide for 2 weeks.

Decalcification stage: The macerated sartorius muscle 
was immersed in a container filled with Sihler’s solution I, 
which is composed of glycerin, aqueous chloral hydrate, and 
glacial acetic acid, for 3 days.

Staining stage: Sufficiently decalcified sartorius mus-
cles were later stained by placing them for a day in Sihler’s 
solution II, composed of glycerin, acetic acid, and aqueous 
chloral hydrate.

Destaining stage: Stained sartorius muscles were 
immersed for 3–5 h in Sihler’s solution I once again for 
sartorius muscle tissue destaining. The immersion was ter-
minated before the nerves were destained.

Neutralization stage: Destained sartorius muscle was 
prepared in flowing water for 30 min. Afterwards the mus-
cles were immersed in 0.05% lithium carbonate solution for 
30 min.

Clearing stage: Neutralized sartorius muscles were placed 
in containers with increasing level of glycerin concentration 
within 5 days. Throughout this procedure, the concentra-
tion level was progressively increased in 20% increments 
to 40–100%.

Results

Location of nerve entry points

In all cases, the sartorius muscle was innervated by the 
femoral nerve. The numbers of the nerves penetrating the 
muscle was 1–3, with no significant differences between the 
gender and sides. Four cases had three nerve entry points, 
nine cases had two nerve entry points, and two cases had one 
nerve entry point. The distance of all nerve entry points was 
located at 10–30% from the anterior superior iliac spine (0%) 
to the medial femoral epicondyle (100%).

Intramuscular arborization patterns

Eleven out of 15 sartorius muscles had the most nerve arbo-
rizations appear at 2 regions, located at proximal 20–40% 
and distal 60–80%. Three had most nerve arborization at 
proximal 30–40% and distal 60–80%, and one had it at 
proximal 30–40% and distal 60–70%. All specimens had the 
most distally located intramuscular nerve ending at around 
80–90% of each muscle (Fig. 3). The intramuscular arbori-
zation patterns had no significant differences between the 
gender and sides.

Discussion

The sartorius muscle is innervated by the femoral nerve, 
provided by the nerve roots L2–L4 [4]. The nerve entry 
point, where the nerve pierces the muscle, was at its 
proximal end. The most prevalent spasticity patterns 
in the lower extremities are hip flexion and adduction, 
knee flexion, equinovarus foot, and big toe hyperexten-
sion that impedes the gait of affected patients [14]. Since 
the sartorius is the only hip and knee flexor muscle, it is 
commonly targeted for BoNT injections to ease spastic-
ity. BoNT injection in the sartorius muscle is not only 
for spasticity treatment, as many studies have performed 
BoNT injection to effectively prevent muscle contractures 
in total hip and knee arthroplasties and other surgeries 
[3, 28]. Awaad et al. [1] reported the functional contribu-
tion of BoNT injection into the sartorius muscle in the 
treatment of postoperative stiff hips. Hamdy et al. [9, 10] 
used BoNT in femoral lengthening surgery and concluded 
that it improved the post-operative pain reduction. On the 

Fig. 2   The sartorius muscle underwent modified Sihler’s staining. 
The method consists of the procedures of fixation (FX), maceration 
and depigmentation (MD), decalcification, staining (ST), and clearing 
(CL)
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contrary, Park et al. [23] reported that BoNT had no sig-
nificant impact on pain reduction after lengthening oste-
otomy. However, their study had the limitation of using 
smaller doses than Hamdy et al. and had targeted only 
the proximal part of the sartorius muscles with no clear 
injection points.

The major therapeutic effects of BoNT are by imped-
ing muscle contractions at the neuromuscular junction and 

cutting off the vicious cycle of pain [22, 31, 32]. However, 
there is still a risk of damaging the nerve trunks when BoNT 
was not injected into the neural arborized area, even if it is 
minimally invasive compared to surgical procedures. Like-
wise, substantial BoNT injections have resulted in the for-
mation of antibodies which lowers its effectiveness [11, 15, 
18]. Consequently, to increase the effectiveness and reduce 
the negative effects, a smaller amount of BoNT needs to 
be injected directly into the neural arborized areas, where 
most neuromuscular junctions are assumed to be located. Its 
efficacy was recognized in a clinical study on psoas major 
and biceps brachii muscles. Intramuscular neural arborized 
area-targeted injection in these studies resulted in a higher 
reduction in muscle volume than conventional injection 
methods [5, 8].

Ultrasound and electromyography devices are used to 
detect the sartorius muscle [13, 19]. Ultrasound imaging 
detection with electromyography guidance has been dem-
onstrated to be an ideal method for avoiding side effects 
associated with BoNT injections. Overdose of BoNT may 
cause the neurotoxin to spread to adjacent muscles causing 
undesirable paralysis and lead to the development of anti-
bodies against the toxin. Consequently, attempting to pre-
vent toxin resistance from antibody production by exactly 
locating sartorius muscle with smaller doses is an important 
consideration [11, 15, 18].

Currently, there is no standardized injection point for 
BoNT treatment of the sartorius muscle. The amount of 
BoNT should be adequate to introduce a sufficient toxin 
level in the arborized area of neural distribution. This study 
used the Sihler’s staining method, which provides a possi-
ble solution to resolve the limitations of manual dissection. 
The application of Sihler’s staining to sartorius muscle will 
facilitate accurate and thorough understanding of the neu-
ral distribution. This study performed Sihler’s staining to 
reveal the intramuscular neural distribution of the sartorius 
muscle to determine the most suggestive BoNT injection 
point (Fig. 4).

Fig. 3   A Sihler’s-stained sartorius muscle with enlarged images of 
intramuscular neural distributions. Intramuscular nerve pattern and 
entry points were revealed by dissection and staining
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