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Abstract
Almonds are a major crop in California which produces 80% of all the world’s almonds. Widespread drought and strict ground-
water regulations pose significant challenges to growers. Irrigation regimes based on observed crop water status can help to 
optimize water use efficiency, but consistent and accurate measurement of water status can prove challenging. In almonds, crop 
water status is best represented by midday stem water potential measured using a pressure chamber, which despite its accuracy 
is impractical for growers to measure on a regular basis. This study aimed to use machine learning (ML) models to predict stem 
water potential in an almond orchard based on canopy spectral reflectance, soil moisture, and daily evapotranspiration. Both 
artificial neural network and random forest models were trained and used to produce high-resolution spatial maps of stem water 
potential covering the entire orchard. Also, for each ML model type, one model was trained to predict raw stem water potential 
values, while another was trained to predict baseline-adjusted values. Together, all models resulted in an average coefficient of 
correlation of  R2 = 0.73 and an average root mean squared error (RMSE) of 2.5 bars. Prediction accuracy decreased significantly 
when models were expanded to spatial maps  (R2 = 0.33, RMSE = 3.31 [avg]). These results indicate that both artificial neural 
networks and random forest frameworks can be used to predict stem water potential, but both approaches were unable to fully 
account for the spatial variability observed throughout the orchard. Overall, the most accurate maps were produced by the ran-
dom forest model (raw stem water potential  R2 = 0.47, RMSE = 2.71). The ability to predict stem water potential spatially can 
aid in the implementation of variable rate irrigation. Future studies should attempt to train similar models with larger datasets 
and develop a simpler faster workflow for producing stress predictions from field measurements.

Introduction

Almonds are a major crop in the state of California, 
contributing an estimated $11 billion annually to the 
state’s GDP (Sumner 2014). Along with their profitability, 
almonds are a highly water-intensive crop, requiring almost 
year-round irrigation to maintain optimal quality and yield 
at harvest. Recent droughts throughout the state coupled 
with groundwater regulations imposed through California’s 
Sustainable Groundwater Management Act have created 
a major water scarcity problem for this lucrative industry, 

with nearly every almond producer in the state facing 
water supply challenges. Thus, there is a high demand for 
increased water use efficiency in almond production.

Regulated deficit irrigation, applying just the right 
amount of water or slightly less water at less sensitive 
growth stages, has been shown to greatly increase water 
use efficiency with only moderate reductions in quality 
and yield (Drechsler and Kisekka 2022; DeJonge et  al. 
2015). However, proper implementation of regulated 
deficit irrigation requires an accurate assessment of crop 
water status (DeJonge et al. 2015), which can be difficult to 
obtain. The most widely accepted method of determining 
an almond tree’s water status is to measure its midday stem 
water potential (SWP) using a pressure chamber (Drechsler 
2019). Obtaining SWP measurements in this way is tedious 
and time-consuming and thus is rarely used to assess crop 
water status in commercial settings. According to an Almond 
Board of California survey, less than 30% of almond growers 
use the pressure chamber to guide irrigation (Almond Board 
of California 2019).
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The rationale for using SWP over leaf water potential by 
almond growers is that earlier provides a good indicator of 
the water status of the terminal stem and the canopy. SWP 
also tends to be less variable, therefore, almond growers pre-
fer SWP over leaf water potential. More recent research also 
confirms the superiority of stem water potential over leaf 
water potential as a plant water status for guiding irrigation 
management decision making (e.g., Santisteban et al. 2019).

Numerous past studies have attempted to predict water 
status through other means, such as crop water stress indi-
ces or predictive models. Jackson et al. (1981) derived the 
widely known crop water stress index (CWSI), which is 
defined as the ratio of a crop’s canopy temperature minus 
the air temperature, relative to the temperature differential 
of a well-watered plant and a non-transpiring plant (DeJonge 
et al. 2015). While crop water stress index has been demon-
strated to correlate well with SWP, it still requires the cal-
culation of a baseline stress value using a well-watered crop 
leaf (often impractical to obtain), and its correlation with 
SWP has been found to vary widely throughout a growing 
season (Möller et al. 2007). While the CWSI has its draw-
backs, its consistent correlation with SWP indicates that its 
key parameters, namely air temperature, leaf/canopy tem-
perature, relative humidity, and vapor pressure deficit, may 
be useful inputs in a predictive model of SWP (Blaya-Ros 
et al. 2020). Numerous other soil, plant, and atmospheric 
parameters show promising potential for the prediction of 
water stress. As reference evapotranspiration  (ETo) is calcu-
lated based on relative humidity and vapor pressure deficit, 
it follows that  ETo may be useful in a water status prediction 
model. Elevation data may help guide spatial predictions 
as it relates closely to the hydraulic gradient of an orchard, 
however, this may vary from site to site based on specific 
topographic features. Soil electrical conductivity  (ECa) is 
known to correlate with numerous soil properties, includ-
ing water content, texture, and porosity (Hawkins 2017). 
As such, it too may guide spatial predictions of SWP by 
helping to capture the variation of soil properties across an 
orchard’s area.

In addition to crop water stress indices, remotely sensed 
vegetation indices (VI’s), derived from reflectance values of 
specific electromagnetic wavelengths, may also be used to 
estimate crop water status. Water is known to absorb radi-
ant energy from many wavelengths throughout the electro-
magnetic spectrum, particularly throughout the mid-infrared 
region 6 (1300–2500 nm), with significant absorption bands 
centered on 1450, 1940, and 2500 nm wavelengths (Carter 
1991). By extension, absorption of 400–2500 nm radia-
tion by water causes the reflectance of a plant’s leaves to 
decrease. When water is lost from leaves, there is an increase 
in intracellular air space, consequently increasing the inten-
sity of reflections within the leaves. Based on this phenom-
enon, certain reflectance values may assist in the detection 

of water stress alongside other relevant data. While the Nor-
malized Difference Vegetation Index (NDVI) is certainly the 
most widely used VI, the Normalized Difference Red Edge 
Index (NDRE) has been demonstrated to correlate well with 
plant water content (Zhang 2019). NDRE is obtained using 
the following equation (Virnodkar et al., 2019):

where  R800 is the reflectance of the 800 nm near-infrared 
spectral band, and  R720 is the reflectance of the 720 nm red 
edge spectral band. The exact center wavelengths may vary 
slightly depending on the specific equipment used.

In recent years, machine learning (ML) algorithms have 
emerged as a novel tool for modeling a wide variety of agri-
cultural phenomena, including plant water status. Compared 
with more traditional modeling techniques, ML models can 
prove advantageous in capturing complex nonlinear rela-
tionships between variables, as is often seen when work-
ing with soil, plants, and atmospheric data. Two common 
ML approaches are Artificial Neural Networks (ANN) and 
Random Forest (RF). ANNs are comprised of input, hid-
den, and output layers, each of which contains a number of 
neurons representing predictive variables. They are particu-
larly useful for modeling of highly non-linear phenomenon 
(Virdnokar et al. 2020). A random forest model is made up 
of many decision “trees” which may be used for regression 
and classification. The defining attributes of this model type 
are the number of trees “n” and the number of variables used 
to make decisions at each tree, or “mtry”. Past studies have 
determined n = 500 as the optimal number of trees based on 
resulting error stabilization (Belgiu et al. 2016). “mtry” is 
typically set to the square root of the number of predictive 
variables (p), or p/3 if more precise integer value is desired 
(Gislason et al. 2006). RF models are advantageous as they 
are highly resistant to overfitting compared with other model 
types (Virdnokar et al. 2020).

ML models have already been applied in many case stud-
ies for water stress prediction. In a 2018 study, an ANN 
model utilizing thermal indices along with canopy and air 
temperature data predicted SWP in grapevines with rela-
tively good accuracy  [R2 = 0.61] (Gutierrez et al. 2018). It 
was found that whether baseline temperatures for the indices 
were included as inputs or not, the model predicted SWP 
equally well. Several other studies have utilized remotely 
sensed multispectral imagery in ANN models to predict 
SWP with promising results, with coefficients of correla-
tion ranging from 0.58 to 0.87 (Poblete et al. 2017; Romero 
et al. 2018). In another case, the predictive performance of 
an optimum regression equation was compared with that 
of an ANN model, utilizing various soil and environmental 
parameters (Marti et al. 2013). The ANN model and regres-
sion equation resulted in coefficients of correlation between 
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observed and predicted values of 0.93 and 0.85, respectively, 
indicating the superiority of the ANN framework for water 
stress prediction. Applications of random forest for crop 
water status are more limited however Yang et al. (2021) 
used a random forest model to predict canopy temperature 
of Chinese Brassica based on various meteorological data 
 (R2 = 0.77−0.9). Predicted temperatures were then used for 
the calculation of CWSI. Currently, applications of machine 
learning for water status prediction in almonds are relatively 
limited. In a 2018 study, an ANN model was used to predict 
water status in almonds with moderate success  (R2 = 0.78). 
In this case, the model was trained to predict  Tdiff dry, an 
alternative plant water status indicator, and utilized SWP as 
a predictive variable (Meyers et al. 2019).

Previous work has demonstrated that machine learning 
may be used effectively to predict water status in plants, 
based on soil and environmental variables, as well as infor-
mation obtained through remote sensing. This study aimed 
to investigate whether machine learning-based models could 
be trained to accurately predict SWP in almonds, utilizing 
a combination of soil, environmental, and UAV-based vari-
ables. Also, we investigated the ability of ANN and RF mod-
els to map SWP spatially across an entire orchard.

Materials and methods

Study site and experimental layout

The site used in this study was a 1.6 hectare orchard located 
at Nickels Soil Lab near Arbuckle, CA. Data from the Cali-
fornia Irrigation Management System (CIMIS) database 
shows that the average air temperature and monthly precipi-
tation from January 2021 through December 2022 was 17°C 
and 19.6 mm/month, respectively (CIMIS 2024). The plot 
contained a total of 15 rows of 50 trees, with 5 rows each of 
nonpareil, butte, and Aldrich almond varieties. Throughout 
the two seasons during which the study took place, each 
row received a standard irrigation treatment determined by 
the grower. Each week from bloom until harvest, approxi-
mately 70 mm of irrigation was applied over two 18-h peri-
ods, one Sunday and the other Wednesday. For each date, 
irrigation began at 3 pm and lasted until 9 am the next day. 
The irrigation regime aimed to replace water losses from 
averaged daily evapotranspiration, adjusted by a crop coef-
ficient  (ETc). The system itself consisted of double drip 
lines spanning the length of each row, with emitters spaced 
approximately 6 feet apart.

For data collection, twenty focus trees were chosen 
throughout the orchard to serve as sampling locations, with 
four locations occurring in each nonpareil row (Fig.  1). At 
each location, a 1.5 m aluminum access tube was installed 
near the base of the tree for collecting soil moisture 

measurements using neutron attenuation with a neutron 
probe (model: Instrotek 503 Hydroprobe, San Francisco, 
CA). An additional ten locations were designated for 
validation of SWP. Each validation measurement location 
occurred in a row of butte variety, while all main sampling 
locations occurred in nonpareil rows. Almond variety 
was not considered as a factor in observed SWP data, as 
a model that can assess water stress across an orchard’s 
entirety regardless of tree variety may have more robust 
applications. Furthermore, a 2019 study conducted in the 
same plot found no increase in marketable kernel yield as a 
result of variety specific implementation of regulated deficit 
irrigation (Dreschler and Kisekka 2022). Thus, differences 
in almond variety were not considered to significantly affect 
observed SWP values. Data collection was carried out 
once every one to two weeks, typically between the hours 
of 11 am—2:30 pm, in order to allow for the majority of 
measurements to be taken as close to solar noon as possible. 
The days of the week on which data were collected varied 
over time in an effort to capture a variety of water stress 
conditions (some before and some after irrigation events).

Midday stem water potential and soil moisture 
measurements

On each measurement date, soil moisture was measured at 
each focus tree using a neutron probe. Five measurements 
were collected at each sampling location from 0.3 to 1.5 m, 
in increments of 0.3 m. On each soil moisture measuring 
day, a “standard count” was performed on the neutron probe 
to calibrate readings for current environmental conditions.

At each sample location, midday stem water potential was 
measured using a pressure chamber filled with nitrogen gas 
(PMS Instrument Company Model 615, Albany, OR). To 
obtain midday stem water potential, a leaf was first cov-
ered for a minimum of fifteen minutes using a mylar foil 
bag (Fulton et al. 2001; Fulton 2018), which removes the 

Fig. 1  Locations of focus (cyan dots) and validation (yellow dots) 
trees for stem water potential measurements at the Nickels Soil Lab 
near Arbuckle, California
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effect of solar radiation on the stem water potential reading. 
Per established “best practices” for SWP measurement in 
California, only well-shaded leaves occurring in the lower 
canopy were selected for measurement (Fulton 2018). All 
stem water potential measurements were collected between 
the hours of 11 am and 2:30 pm, in an effort to center the 
time range of sample collection around solar noon. The leaf 
was then cut from the tree and inserted into the pressure 
chamber with the end of the severed stem protruding from 
the end of a small gasket. Then pressure was slowly added 
to the chamber using the nitrogen gas until water began to 
bubble out of the end of the stem. The pressure at which 
this occurred was considered the tree’s stem water potential 
(Dreschler et al. 2019). For each sample location, one leaf 
was measured from the focus tree, and one from the next tree 
immediately to the south. These two measurements were 
averaged and considered as the representative stem water 
potential for the location. Occasionally nitrogen gas would 
run low, in which case only one leaf would be measured 
at each location. While greater repetition of measurements 
would have been ideal, we chose to focus on capturing spa-
tial variability over repetition. It has also been established 
that lower shaded leaves equilibrate more readily with the 
tree’s water conducting system, requiring less repetition for 
accurate measurement (Fulton 2018). For eight of the 2022 
collection dates, ten extra measurements were obtained from 
each validation location for the purpose of spatial validation 
of SWP maps.

Environmental and soil data

Reference evapotranspiration  (ETo) data for each date was 
obtained from California’s CIMIS weather network to help 
improve the scalability of the research. The data consisted of 
daily  ETo (mm/day) and was derived from the CIMIS station 
near Williams, CA, located approximately 16 km north of 

the study area. Daily  ETo values were considered representa-
tive of the entire orchard.  ETo values were not multiplied 
by a crop coefficient, as variations in base  ETo values were 
considered sufficient for guiding model predictions. Addi-
tionally, maps of apparent soil electrical conductivity  (ECa) 
at depths of 0.75 and 1.5 m for the entire orchard were col-
lected using an EM-38 MK11 (Geonics Limited, Ontario 
Canada).

Remote sensing data collection and analysis

Multispectral imagery of the tree canopies was collected 
on each measurement date using a DJI Matrice 100 
quadcopter drone (Shenzhen DJI Sciences and Technologies 
Ltd., Shenzhen, Guangdong0 equipped with a Micasense 
RedEdge multispectral camera (AgEagle Aeriel Systems, 
Wichita, KS) [Fig. 2]. The six spectral bands measured were 
centered on the 475, 560, 668, 717, and 842 nm wavelengths. 
Flights were conducted as close to solar noon as logistics 
allowed, between the hours of 11:30 am and 2:30 pm local 
time. Flight altitude was set at 80 m, utilizing an 85% front 
and side overlap for the images obtained. Directly before 
and after each flight, multispectral images of a reflectance 
calibration panel were captured in order to account for 
current light conditions.

During the 2021 season, multispectral images were 
collected at too sparse a scale, so creation of a complete 
orthomosaic of canopy reflectance values for each date was 
not possible. Instead, corresponding images for each sample 
location were selected based on coordinates embedded in 
their metadata, and canopy reflectance values were extracted 
using R Studio. Reflectance values were calibrated using 
a reflectance panel to account for specific ambient light 
conditions of each date. For all 2022 collection dates, 
multispectral data was processed using Agisoft Metashape. 
By stitching together many overlapping images, an 

Fig. 2  Left to Right: DJI Matrice 100, Micasense Reflectance Calibration Panel, and Micasense RedEdge Multispectral Camera
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orthomosaic covering the entire area of the study site was 
produced. Using raster transformation functions within the 
software, each pixel was set to display its resultant NDRE 
value, based on the pixel’s reflectance values for the red 
edge and near-infrared spectral bands. Raster files displaying 
NDRE were then exported to ArcMap software, where they 
were all clipped to uniform boundaries and resampled to a 
pixel size of 0.2 m to decrease model processing time. Using 
GPS coordinates of each sample location, NDRE values 
were extracted from each raster.

Statistical metrics utilized

Coefficient of correlation  (R2), Root Mean Squared Error 
(RMSE), Normalized Root Mean Squared Error (nRMSE), 
and Index of Agreement (IOA) were used to evaluate model 
performance in this study. Normalization of RMSE can be 
performed in several ways; in this case, it was calculated 
by dividing RMSE by the range of predicted values from 
the corresponding dataset (Otto 2019). This is helpful when 
comparing datasets with significantly different spreads of 
values, such as the comparison of raw and baseline adjusted 
SWP predictions. The index of Agreement represents the 
ratio of the mean squared error and potential error and is 
effective at detecting differences in observed and predicted 
variances and means (Krause 2005).

Artificial neutral network (ANN) modeling

Following data collection in 2021, MATLAB’s Deep Learn-
ing Toolbox was used to set up and train artificial neural 
networks. In this case, baseline corrections were applied to 
all stem water potential values, with the intention of bet-
ter accounting for environmental conditions at the time of 
measurement. SWP baseline corrections are based on rela-
tive humidity and air temperature and can be obtained from 
tables available online (Fulton 2019). The baseline value is 
subtracted from the “raw” stem water potential value, giving 
baseline-adjusted stem water potential. Initially, eight neural 
network models were trained with different combinations of 
input parameters and compared based on their performance. 
The best model utilized soil moisture at 0.3 to 1.5 m depths, 
 ETo, and NDRE as predictive variables. Basic sensitivity 
analysis was performed by retraining the model numerous 
times, with a different predictive variable excluded each 
time. The most important variable was determined to be soil 
moisture, followed by NDRE, and  ETo. Sensitivity analysis 
of individual soil moisture depths was not performed at this 
stage.

Following the collection and processing of all data for 
the 2022 growing season, four more neural network models 
were trained. In order to simplify future model applications, 
soil moisture data for 1 m through 1.5 m depth was omitted. 

The first new ANN to be trained utilized soil moisture from 
0.3 to 0.6 m, daily  ETo, and NDRE as inputs. The second 
utilized the same predictors but was trained to predict raw 
SWP values rather than baseline-adjusted SWP. The third 
included elevation data as an additional predictor, and the 
fourth utilized soil moisture at 0.3, 0.6, and 1.5 m depths, 
 ETo, and NDRE. This was performed to mirror the exact 
parameters used to train random forest models and determine 
if this parameter combination also produced better results 
in an ANN model. The elevation data was obtained in 2019 
for a previous study at the same site (Dreschler and Kisekka 
2022), and was considered representative of current condi-
tions. The third model produced less accurate results than 
the first two based on resultant  R2 and RMSE values. Thus, 
the first and second were both selected for the generation 
of SWP maps in order to gain further insight into the effect 
of predicting baseline-adjusted versus non-baseline SWP 
values.

To generate maps of SWP using the selected ANN 
models, raster layers were first created for each input 
parameter using ArcMap. Maps were only generated for 
dates on which extra validation SWP measurements had 
been collected, which were May 17, May 27, June 1, June 
14, July 5, July 29, August 3, and August 18 (2022). To 
do so, kriging was performed using the coordinates and 
matching data of each sample location, using ArcGIS 10’s 
default measurement variation of 100%. The kriging was fit 
to the boundaries of the previously generated NDRE layers 
and sampled to the same pixel size (Fig. 3). Each matching 
set of input layers was then exported to R Studio, where 
their pixel values were extracted and transformed into a 
singular array in which each column represented a single 
input parameter. The array was then exported to MATLAB, 
where it was fed into the ANN model, resulting in an output 
array of predicted SWP values. The output array was then 
exported to R Studio, where it was then transformed back 
into a raster layer with the same boundaries and resolution 
as before. Each map was then displayed in ArcMap (Fig. 4), 
where predicted SWP values were extracted from all sample 
and validation locations for further analysis.

Random forest (RF) modeling

To train random forest models for SWP prediction, 
an R package called CAST was used which allows for 
spatial–temporal modeling using machine learning (Meyers 
2018). Initially, a “forward feature selection” (FFS) was 
performed on the training dataset with all predictive 
variables included (Fig.  5). The analysis showed that 
by starting with two predictive variables and iteratively 
increasing the number of predictors, the  R2 value of the 
resulting model’s predictions stopped improving after five 
predictors had been added. The FFS reported soil moisture at 
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0.3 and 0.6 m, NDRE, and  ETo to be the strongest predictive 
variables. Additionally, an initial random forest model was 
trained with all input variables and a “variable importance” 
function was applied, which consistently ranked 1.5 m soil 
moisture as the fifth most important variable (Fig. 6). It is 
not completely known why 1.5 m moisture had a significant 
impact on the model, but it is suspected that a layer of 
hardpan may be located at this depth in the soil, which when 
blocking percolation of moisture could indirectly impact 
the trees’ SWP. Thus, the final combination of predictive 
variables for random forest modeling was selected as 0.3, 
0.2, and 1.5 m soil moisture,  ETo, and NDRE.

Model validation

Using the designated input parameters, two random forest 
models were trained with 500 “trees” and an “mtry” value 
of two, based on the recommendation of using a value of p/3 
in which p represents the number of predictive variables. 
A K-fold function with ten repetitions was used for model 

Fig. 3  Examples of kriging 
based spatial input layers 
used for stem water potential 
mapping in an almond orchard 
at Nickels Soil Lab near 
Arbuckle California. Left: 
Soil Moisture (0.3 m), Center: 
Soil Moisture (0.6 m), Right: 
Remotely sensed Normalized 
Difference Red Edge Index

NDRESoil Moisture (0.3m) Soil Moisture (0.6m)

Fig. 4  ANN based maps displaying predicted raw stem water 
potential values for an almond orchard at Nickels Soil Lab near 
Arbuckle California

Fig. 5  Results of random forest forward feature election analysis. As 
seen in the chart legend, varying colors represent different numbers of 
predictive variable

Fig. 6  Results of variable importance analysis with all potential 
predictors
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validation. One model was trained to predict baseline 
adjusted SWP while the other predicted non-baseline values. 
In addition to regular model training and validation, a target-
oriented validation was also performed. Rather than random 
folds, this method utilized specified folds in which the entire 
time series data of a different sampling location was omitted, 
using the CAST package’s “CreateSpaceTimeFolds” 
function. This type of validation provided insight into the 
model’s ability to predict stem water potential spatially. The 
same variable importance analysis function was also applied 
to the results of the target-oriented validation in order to 
understand the importance of each variable as it pertains to 
spatial prediction specifically (Fig. 7).

Once sufficient random forest models had been trained 
and validated for both baseline adjusted and non-baseline 
SWP, maps were generated with the same input raster lay-
ers used for ANN map generation. For each date, the cor-
responding raster layers were imported to R Studio, where 
they were input to the model, which then returned a map of 
the predicted SWP.

Following SWP mapping using the random forest mod-
els described above, one more model was trained with the 
additional predictors of apparent soil electrical conductiv-
ity  (ECa) at 0.75 and 1.5 m depths. The purpose of this 
analysis was to observe whether additional soil variables 
may help improve the model’s predictions, either spa-
tially or simply with point data. In this case, the model 
was trained to predict raw SWP values only. A variable 
importance analysis was conducted in R to determine the 
importance of 0.75 and 1.5 m  ECa relative to the other 
selected variables. Results were identical to the analysis 
performed for the previous RF model (see Fig. 6), with 
the addition of 1.5 m  ECa and 0.75 m  ECa being ranked 
second to last and last, respectively. Despite both  ECa 

variables being ranked as least important, they were still 
included in the model along with the other five variables 
in order to observe whether their presence could improve 
the spatial performance of SWP maps. For this model, 
“Mtry” was set to a value of three, due to there being 
seven predictive variables. Once the model had been 
trained, maps were once again generated in R studio using 
the same input raster layers as the previous models.

Results and discussion

Measured stem water potential

Figure 8 illustrates the spread of measured SWP values 
used as model target values. Over the entire study period, 
observed water stress levels ranged from “minimal” to 
“severe”. Categorization provided by the University of 
California Agricultural Extension defines minimal stress as 
−6 to −10 bars, mild as −10 to −14 bars, moderate as −14 
to −18 bars, high as −18 to −22 bars, very high as −22 
to −30 bars, and below −30 bars as severe (Fulton 2019). 
Conditions ranging from mild to high or very high were 
observed on five out of seven measurement dates in 2021, 
and on eight out of ten measurement dates in 2022. At least 
moderate water stress was observed on every measurement 
date throughout the entire study period. The wide variations 
in water stress observed at the study site, often within the 
same several hour period, reinforces the applicability of 
SWP as an irrigation scheduling guide.

ANN based stem water potential modeling

Following the 2021 growing season, nine preliminary ANN 
models were trained with varying predictive variables. For 
all models, the coefficient of correlation between observed 
and predicted SWP ranged from 0.65 to 0.92. The best 
performing model utilized soil moisture,  ETo, and NDRE 
as predictive variables. Following collection of all 2022 
data, four additional ANN models were trained with two 
full seasons of data (Table 1). For these models, coefficient 
of correlation between observed and predicted values 
ranged from 0.74 to 0.8 for training data, and from 0.75 
to 0.88 for testing data (Table 1). Compared with ANN 1, 
the normalized RMSE of ANN 2 increased by about 13 
percent for both the training and testing datasets. Model 3 
included the same data as Model 2, with the addition of 
elevation as a predictor. No significant increase in model 
performance was observed, indicating that the addition of 
elevation data did not increase predictive power. Model 4 
was trained to reflect the performance of ANN modeling 
with the best combination of parameters from random forest 
modeling. All goodness-of-fit statistics showed a decrease 

Fig. 7  Results of variable importance analysis on target-oriented 
validation
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in model performance from model 2, indicating that the best 
parameter combination for random forest SWP modeling is 
not necessarily the best for ANN SWP modeling.

Following generation of SWP maps for designated dates 
using the selected ANN models, predicted SWP values 
were extracted from all sampling locations as well as extra 

Fig. 8  Range of measured stem 
water potential values observed 
on each data collection date an 
almond orchard at Nickels Soil 
Lab near Arbuckle California. 
Values shown in this figure do 
not include baseline adjustments

ANN 2 SWP Maps

Table 1  Goodness-of-fit 
statistics for different machine 
learning models used to predict 
stem water potential in an 
almond orchard at Nickels Soil 
Lab near Arbuckle California

*IOA Index of Agreement

Training data performance Testing data performance

Model R2 RMSE nRMSE IOA R2 RMSE nRMSE IOA

ANN 1 0.8 3.08 0.12 0.7 0.88 2.96 0.12 0.74
ANN 2 0.74 3.39 0.14 0.66 0.81 3.24 0.14 0.72
ANN 3 0.75 3.26 .14 0.67 0.79 3.84 0.16 0.71
ANN 4 0.75 3.34 0.13 0.67 0.75 3.56 0.16 0.67
RF 1 na na na na 0.6 3.32 0.13 na
RF 2 na na na na 0.57 3.36 0.14 na
RF 3 na na na na 0.57 3.39 0.14 na
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validation locations. These values were plotted against 
corresponding observed values, allowing for insight into 
the models’ abilities to predict SWP spatially. For spatially 
predicted values at sampling locations, the coefficient of 
correlation with observed values was much lower than for 
non-spatial point data, ranging from 0.2 to 0.3. RMSE and 
normalized RMSE both increased significantly as well. 
For extra validation locations, coefficient of correlation 
decreased slightly more, and RMSE and normalized 
RMSE both increased slightly. This makes sense, as model 
uncertainty would increase further the more you move 
away from data collection locations.

Random forest based stem water potential 
modeling

The variable importance analysis performed in R Studio 
on the random forest training dataset (Fig. 7) revealed 
NDRE, CIMIS  ETo, 0.6 m soil moisture, 0.3 m soil mois-
ture, and 1.5 m soil moisture to be the most important 
predictors, in that order. It is worth noting that the 0.9 
and 1.2 m soil moisture data were reported to have lit-
tle to no significance in regard to the model’s prediction 
this is probably due to a clay restricting layer underlying 
the alluvial Arbuckle soil series as reported in previous 
studies (Andreu et al. 1997; Drechsler and Kisekka 2022; 
Vanella et al. 2022). Elevation was also had no signifi-
cance whatsoever. While 1.5 m moisture was reported to 
have only slightly more significance than 0.9 and 1.2 m, 
it was included as a predictor due to the recommendation 
of five variables from the feed forward selection function. 
The same analysis applied to the target-oriented valida-
tion produced nearly the same result, with the exception 
of 0.6 m soil moisture being listed as more important than 
CIMIS  ETo. This was interpreted as an indication that 
while 0.6 m moisture may not be as significant as  ETo in 
prediction based solely on point data, it becomes more 
useful than  ETo when the model is extrapolated spatially 
between point data locations. The results of the forward 
feature selection function applied to all predictive data are 
shown in Fig. 5. The analysis showed that as models were 
successively trained with more predictive variables, the 
coefficient of correlation for the resulting model stopped 
improving after a fifth variable was added. This find-
ing agrees with the variable importance analysis, which 
indicated five parameters that were significant to model 
prediction.

Random forest stem water potential mapping

For the baseline-adjusted and non-baseline random for-
est models, coefficients of correlation were 0.57 and 0.6, 

respectively, and nRMSE values were 0.14 and 0.13, respec-
tively. These results indicate an increase in predictive per-
formance compared with ANN models. Due to the nature 
of the R Studio package used, it was not possible to esti-
mate the index of agreement for random forest models. A 
slight increase in performance was observed when compar-
ing baseline-adjusted with non-baseline model results. A 
roughly 5 percent increase in the coefficient of correlation 
was observed, while nRMSE decreased by approximately 
0.7 percent.

The performance of SWP maps generated by random 
forest models generally increased compared with that of 
ANN. For non-baseline SWP maps, the coefficient of cor-
relation at validation locations was 0.4, while nRMSE and 
index of agreement were 0.19 and 0.56, respectively. Con-
trary to model training results, the performance of baseline 
adjusted SWP maps was lower by comparison  (R2 = 0.17, 
nRMSE = 0.24, IOA = 0.52). The best spatial mapping 
results were produced by non-baseline adjusted random for-
est maps, while the best model training results occurred with 
baseline-adjusted random forest models. The reason behind 
this contradiction is not entirely known. Given that baseline 
SWP values were calculated from measurements collected 
16 km from the site, it is possible that baseline values helped 
to guide point-model predictions, but fell short in accounting 
for true variation throughout the orchard, leading to a slight 
increase in model uncertainty.

Comparison of RF and ANN models

No significant difference was observed in model perfor-
mance for ANN models versus RF. RF based maps pro-
duced noticeably more accurate predictions at data sampling 
locations than ANN based maps, but prediction accuracy at 
validation measurement locations was essentially the same 
for both map types (Table 2). For all models, a significant 
decrease in performance was observed when comparing 
respective map performance to model performance. Gener-
ally, coefficients of correlation decreased by roughly fifty 
percent, and nRMSE values roughly doubled. In models for 
which index of agreement could be calculated, an approxi-
mate twenty five percent decrease in value was observed. It 
is also worth noting that for all models at all sampling loca-
tions, the x–y distribution of observed and predicted values 
had a slope must steeper than the line y = x. This means 
that for potentially large observed values, models were often 
underestimating the magnitude of predicted values.

Figure 9 illustrates the ability of each model type to 
predict SWP at sampling (focus tree) locations, at which 
corresponding soil moisture values were also collected, 
while Fig. 10 illustrates the models’ abilities to predict 
SWP at spatially randomized validation locations (see 
Fig. 1). At sampling locations, models generally tended 
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to underestimate the magnitude of SWP values, while at 
validation locations they tended to overestimate (since 
SWP values are negative, negative bias indicates an 
overestimation of SWP magnitude). At validation locations, 
the methods of interpolation used to create the “input” layers 
shown in Fig. 3 increase uncertainty and variation across all 
predictors, which in turn appears to cause overestimation in 
the models’ predictions. For RF models, map performance 
at sampling locations remained mostly the same as model 
performance, while performance at validation locations was 
noticeably worse (Table 2, Figs. 9 and 10). For ANN models, 
map performance at sampling locations was significantly 
worse than model performance but remained mostly constant 
when considering performance at validation points. Thus, 
no significant difference in map performance at validation 
locations was observed between ANN and RF-based maps, 
but RF-based maps performed significantly better than ANN 
maps at sampling locations. The addition of  ECa data to 
the RF model produced results largely similar to those of 
the previous RF models (Table 2, Fig. 11). Model training 
with point data resulted in a coefficient of correlation of 
 R2 = 0.57 and an nRMSE of 0.14. Resultant SWP maps 
predicted SWP at sampling locations with  R2 = 0.57 and 
nRMSE of 0.17, and at validation locations with  R2 = 0.28 
and nRMSE = 0.19.

Discussion

Results from this study have demonstrated the potential 
for machine learning models to predict spatial SWP in 
almonds, although methods will need to be greatly refined 
in order to obtain any sort of commercial viability. The 
plausible indirect link between level-level vegetative indi-
ces (e.g., NDRE) estimated from remote sensing data and 
stem water potential could be that leaf-level indices are 
related to leaf water potential, and leaf water potential is 
related to stem water potential. In the same species leaf 
water potential and stem water potential are normally 
directly correlated.

Both ANN and RF models failed to accurately 
characterize spatial SWP variability throughout the orchard. 

Across all models, an average coefficient of correlation of 
 R2 = 0.73 and average normalized RMSE of 0.14 were 
observed between measured and predicted values, which 
is largely in agreement with the findings of recent similar 
studies. Poblete et al. (2017) and Pocas et al. (2017) used ML 
frameworks to predict grapevine SWP with  R2 = 0.58−0.87 
and  R2 = 0.77, respectively. Meyers et al. (2019) predicted 
 Tdiff dry, (novel plant water status indicator) with  R2 = 0.78 
(average). Based on sensitivity analysis from both RF and 
ANN models, it seems that spectral reflectance data was 
the strongest predictor of water stress, followed closely by 
root zone soil moisture. This confirms the findings of Zhang 
et al. (2019) that Normalized Difference Red Edge Index can 
vary significantly in response to changes in canopy water 
content. The same study also found the red edge spectral 
band (integral to NDRE calculation) to correlate well with 
canopy water content  (R2 = 0.78). Romero et al. (2018) used 
an ANN model to predict vineyard SWP using only remotely 
sensed vegetation indices  (R2 = 0.72). Both the literature and 
this study’s results indicate the potential for development 
of future almond SWP models based entirely on remotely 
sensed multispectral data, complementing in-situ sensors 
and minimizing labor requirements. Going forward, this 
could help to increase the commercial viability of similar 
workflows for the assessment of water stress. Another 
benefit is the framework proposed in this paper does not 
require thermal data, which may lower cost and allow greater 
flexibility in the development of future workflows.

In both RF and ANN models, map prediction accuracy 
was far less accurate than that of the point models them-
selves. It seems that a higher spatial sampling density for 
input variables is necessary in order to account for the 
true spatial variation encountered in an orchard. Addition-
ally, this performance gap might be improved upon by the 
inclusion of more remotely sensed parameters, such as leaf 
canopy temperature, which can be precisely measured on a 
pixel-by-pixel scale.

When comparing baseline-adjusted SWP predictions 
to raw SWP predictions, little difference was observed 
in model performance with point data. This agrees with 
results published by Gutierrez et  al. (2018), who used 
thermal indices as predictors in ANN models to predict 

Table 2  Summary of goodness-
of-fit for stem water potential 
mapping using different 
machine learning models in an 
almond orchard at Nickels Soil 
Lab near Arbuckle California

* IOA Index of Agreement; MSD Mean Signed Difference

Sampling locations Validation locations

Model R2 RMSE nRMSE IOA Bias (MSD) R2 RMSE nRMSE IOA Bias (MSD)

ANN 1 0.3 3.06 0.21 0.52 0.25 0.29 3.64 0.23 0.54 −0.42
ANN 2 0.2 3.11 0.2 0.46 0.73 0.18 3.81 0.2 0.5 0.18
RF 1 0.6 2.74 0.19 0.59 −0.32 0.17 3.84 0.24 0.52 −0.61
RF 2 0.47 2.71 0.18 0.56 0.04 0.4 3.6 0.19 0.56 −1.05
RF 3 0.57 2.61 0.17 0.57 0.07 0.28 3.8 0.19 0.54 −0.66
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grapevine SWP. It was found that whether or not baseline 
temperatures were included in thermal indices, the resulting 
models performed equally well. However, raw SWP showed 
a slight increase in accuracy for spatial map predictions. As 
previously mentioned, the single hourly value parameters 
used in baseline calculation likely do not account for 
variations occurring within the orchard. Furthermore, 
baseline calculations are by nature an approximation, 

which introduces further uncertainty to SWP models. It 
is possible that training models with larger datasets could 
reveal these uncertainties to a greater degree. It is also 
worth noting that baseline calculations may still play a role 
in making irrigation decisions based on predicted SWP 
values. Baselines reflecting daily conditions may influence 
the exact “threshold” of stress at which growers whether to 
apply irrigation.

Fig. 9  Model performance  (R2 and p-value) in predicting stem water potential at focus tree locations in an almond orchard at Nickels Soil Lab 
near Arbuckle California
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Both RF and ANN based models performed similarly, 
however, RF based maps showed more accurate predictions 
at data sampling locations. In ANN based maps, predic-
tion accuracy was roughly the same at both data sampling 
and validation locations. Both model types appeared to 
frequently underestimate the magnitude of predicted SWP 
values, when the target value would in fact be quite large. At 
sampling locations, the RF framework seemed to maintain a 
degree of consistency between model and map predictions 

that the ANN framework did not. Nonetheless, based on this 
study’s results it does not seem reasonable to suggest that 
either model type is better suited than the other for water 
stress prediction in almonds. Before that can be conclusively 
determined, spatial model performance must be drastically 
improved through other means, such as more robust train-
ing datasets. In all likelihood, the type of machine learning 
model is far less important than variable choice, sampling 
frequency, and spatial sampling distribution.

Fig. 10  Model performance  (R2 and p-value) at validation locations in an almond orchard at Nickels Soil Lab near Arbuckle California
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The addition of soil  ECa data to the RF model did 
not appear to have a significant effect on model or map 
prediction accuracy. As seen in Tables 2 and 3, RF3 (the 
model with  ECa data) performed nearly identically to RF2 
(the RF model predicting raw SWP values). Maps produced 
by the RF3 were found to have nearly the same accuracy of 
prediction as other RF maps, at both sampling and validation 
locations. One may note that  ECa data appears to have had 
some effect on spatial prediction, as the SWP maps in Fig. 16 
have a slightly blocky appearance, mirroring the shape of the 
 ECa raster layers used as inputs (see Fig. 12 in supplemental 

materials section for  ECa raster layer examples). It is possible 
that a more spatially dense collection of  ECa data could have 
a greater impact on model results, but based on the results 
of RF3  ECa does not appear to be a strong indicator of water 
stress in almonds (See Supplemental Figs. 13, 14 and 15).

The study’s methodology contains numerous limitations 
which may have hindered the accuracy and robustness of 
model predictions. Ideally, more than two repetitions of 
SWP measurement would have been performed at each focus 
tree, however, measurement quantity was often limited by 
the volume of nitrogen gas that was able to be transported to 
the field in one visit. The intense but varying heat of summer 
days at the site also made it difficult to predict the correct 
amount of gas to bring. Additionally, frequency and tim-
ing of data collection was significantly limited by external 
logistical factors. In an ideal scenario, site visits would have 
been structured to capture a variety of environmental condi-
tions more methodically. As seen in Fig. 8, the range of SWP 
values varied significantly throughout the season, often con-
taining apparent outliers. While a significant portion of this 
variation is likely due to field conditions, it is also possible 
that some measurement errors occurred while using the pres-
sure bomb. As it is an analog device that must be operated 
and read manually, a certain amount of measurement error 
is to be expected.

Fig. 11  Model performance  (R2 and p-value) at validation and focus tree locations for Random Forest Model 3 (random forest model with 
electrical conductivity data added) in an almond orchard at Nickels Soil Lab near Arbuckle California

Table 3  Descriptions of predictive variables names used for stem 
water prediction for all models in an almond orchard at Nickels Soil 
Lab near Arbuckle California

Model name Predictor variable SWP prediction

ANN 1 SM (0.3–0.6 m), ET, NDRE Baseline adjusted
ANN 2 SM (0.3–0.6 m), ET, NDRE Raw
ANN 3 SM (0.3–0.6 m), ET, NDRE, Eleva-

tion
Raw

ANN 4 SM (0.3, 0.6, 1.5 m), ET, NDRE Raw
RF 1 SM (0.3, 0.6, 1.5 m), ET, NDRE Baseline adjusted
RF 2 SM (0.3, 0.6, 1.5 m), ET, NDRE Raw
RF 3 Same as RF 2, plus soil EC (0.5 

and 1 m)
Raw
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The results of this study have demonstrated the potential 
for SWP prediction through machine learning frameworks 
but fall short of providing a truly promising basis for 
development of commercially viable irrigation decision 
tools. Even if these models had produced strong spatial 
predictions, the framework utilized for data collection and 
modeling must be greatly simplified to become practical 
in industry settings. Although the goal of this study was 
to find a replacement for labor intensive pressure bomb 
measurements, the collection of data and modeling 
processes described require just as much if not more labor. 
Due to its complexity, it certainly cannot be performed 
quickly enough to detect water stress in time to be properly 
addressed by a grower. What results have demonstrated 
though is that certain multispectral reflectance values can 
be strong predictors of water status and can quickly be 
gathered over a very large area. Using this knowledge, it 
may be possible to develop a greatly simplified modeling 
approach which allows SWP predictions to be generated on 
a same-day basis, perhaps in combination with strategically 
placed soil moisture sensors. This study does however 
inform several recommendations for future work. Whenever 
possible, studies should utilize larger training datasets for 
model training. If possible, increasing the frequency and 
regularity of data collection may allow researchers to 
better capture a meaningful variety of water stress levels. 
More robust data would likely help to eliminate some 
of the ambiguities encountered while analyzing model 
performance and likely would increase model and map 
performance in all aspects. Additionally, large datasets 
collected from a variety of regional geographies could help 
to increase model applicability. Increasing spatial sampling 
density and including more “high spatial density” variables, 
such as remotely sensed canopy temperature may also 
improve results. Alternate spatial interpolation methods 
may also be investigated in order to improve the spatial 
representation of predictive variables. Lastly, future studies 
should investigate the utility of SWP maps as an irrigation 
scheduling decision guide, in which irrigation events for 
different management zones are triggered once predicted 
SWP reaches a predetermined value.

Conclusions

This study sought to investigate the viability of using 
ANN and RF machine learning models and multispectral 
remote sensing to predict stem water potential in almond 
orchards. Its findings indicate overall that workflows 
combining machine learning and remote sensing can 
produce acceptable values of SWP at locations of trees 
whose data was used in the training of the models. 

However, the performance of the machine learning models 
was unacceptable when extrapolated to non-sampled 
locations. Given the water use challenges facing the 
California almond industry, irrigation decision support 
tools based on this study’s workflow may prove to be an 
integral component in developing more robust irrigation 
scheduling using tree water status as feedback which has 
been hampered in the past by low adoption of the pressure 
chamber. However, the accuracy and turn-around time of 
spatial predictions must be greatly improved (e.g., using 
more data in the training of machine learning models). At 
the very least, the data collection and image processing, 
and machine learning modeling must be automated 
or greatly simplified to truly reduce labor costs and 
enhance adoption. Larger training datasets with a high 
spatiotemporal resolution of the explanatory variables will 
also be necessary to achieve acceptable levels of spatial 
prediction of stem water potential. Nonetheless, this study 
has demonstrated the potential of predicting stem water 
potential using machine learning and multispectral remote 
sensing at least at tree locations whose data was used in 
model training which can provide a low-cost feedback for 
irrigation scheduling in the absence of stem water sensors 
or pressure chamber.
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