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Abstract
Precise irrigation management requires accurate knowledge of crop water demand to adequately optimize water use effi-
ciency, especially relevant in arid and semi-arid regions. While unoccupied aerial vehicles (UAV) have shown great promise 
to improve the water management for crops such as vineyards, there still remains large uncertainties to accurately quantify 
vegetation water requirements, especially through physically-based methods. Notably, thermal remote sensing has been 
shown to be a promising tool to evaluate water stress at different scales, most commonly through the Crop Water Stress Index 
(CWSI). This work aimed to evaluate the potential of a UAV payload to estimate evapotranspiration (ET) and alternative 
ET-based crop water stress indices to better monitor and detect irrigation requirements in vineyards. As a case study, three 
irrigation treatments within a vineyard were implemented to impose weekly crop coefficient (Kc) of 0.2 (extreme deficit 
irrigation), 0.4 (typical deficit irrigation) and 0.8 (over-irrigated) of reference ET. Both the original Priestley-Taylor initial-
ized two-source energy balance model (TSEB-PT) and the dual temperature TSEB (TSEB-2T), which takes advantage of 
high-resolution imagery to discriminate canopy and soil temperatures, were implemented to estimate ET. In a first step, 
both ET models were evaluated at the footprint level using an eddy covariance (EC) tower, with modelled fluxes comparing 
well against the EC measurements. Secondly, in-situ physiological measurements at vine level, such as stomatal conduct-
ance (gst), leaf (Ψleaf) and stem (Ψstem) water potential, were collected simultaneously to UAV overpasses as plant proxies of 
water stress. Different variants of the CWSI and alternative metrics that take advantage of the partitioned ET from TSEB, 
such as Crop Transpiration Stress Index (CTSI) and the Crop Stomatal Stress Index (CSSI), were also evaluated to test their 
statistical relationship against these in-situ physiological indicators using the Spearman correlation coefficient (ρ). Both 
TSEB-PT and TSEB-2T CWSI related similarly to in-situ measurements (Ψleaf: ρ ~ 0.4; Ψstem: ρ ~ 0.55). On the other hand, 
stress indicators using canopy fluxes (i.e. CTSI and CSSI) were much more effective when using TSEB-2 T (Ψleaf: ρ = 0.45; 
Ψstem: ρ = 0.62) compared to TSEB-PT (Ψleaf: ρ = 0.18; Ψstem: ρ = 0.49), revealing important differences in the ET partition-
ing between model variants. These results demonstrate the utility of physically-based models to estimate ET and partitioned 
canopy fluxes, which can enhance the detection of vine water stress and quantitatively assess vine water demand to better 
manage irrigation practices.
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Introduction

Water is often the main limiting resource for agricultural 
production in arid and semi-arid regions, with increasing 
climate variability and demand for crop products further 
exacerbating pressure on hydrological resources. Vineyards 
occupy a particular cultural and economic importance in the 
Mediterranean region (Limier et al. 2018) and its relevance 
has also increased globally in other semi-arid regions such 
as USA, South America, South Africa and Australia (OIV 
2022). Irrigation practices are becoming increasingly wide-
spread in vineyards, particularly to control deficit irrigation 
practices and, especially, in light of the increase of extreme 
heat and drought events due to climate change (Rienth and 
Scholasch 2019; Romero et al. 2022).

As such, the precise spatio-temporal detection of vine 
water status can provide valuable guidelines for agronomic 
management practices to optimize water use and grape pro-
duction. This is notably relevant for regulated deficit irri-
gation practices, a common strategy in viticulture to con-
trol wine quality and production, which needs an accurate 
assessment of crop water needs at different phenological 
periods (Coombe and McCarthy 2000; Girona et al. 2006). 
Indeed, water availability is a major factor for regulating 
both quality and productivity in grapevines with photosyn-
thesis being primarily affected by stomatal closure (Escalona 
et al. 2000). Remote sensing, especially based on thermal 
infrared (TIR) information, has shown great promise to 
monitor vine water stress in both space and time (Bellvert 
et al., 2014; Kustas et al. 2022). It is well established that 
the canopy temperature is a sensitive indicator of vegetation 
water status (Jackson et al. 1981), through the relationship 
between canopy temperature, stomatal conductance and 
transpiration. Indeed, transpiration, consuming part of the 
energy from incoming solar irradiance, results in the cool-
ing of canopy leaves. Water stress causes stomatal closure, 
inducing a reduction of transpiration and an increase in 
canopy temperature. As such, canopy temperature based on 
TIR has been widely applied in remote sensing to monitor 
water stress, most commonly through the crop water stress 
index (CWSI) as proposed by Jackson et al. (1981). The 
CWSI is related to the difference between actual evapo-
transpiration (ET) and potential ET without water limita-
tion (i.e. CWSI = 1−ET/ETpot) and is most commonly esti-
mated empirically by applying threshold limits normalizing 
between canopy temperature conditions for a well-watered 
crop and that with maximum stress (Maes and Steppe 2012). 
However, this empirical approach is often limited to depict 
the spatial variability of a given area with the empirically 
derived thresholds being dependent of the structural char-
acteristics of the vegetation, phenological stage and sur-
rounding environmental conditions (Bellvert et al. 2015; 

Gonzalez-Dugo and Zarco-Tejada 2022; Maes and Steppe 
2012).

Other remote sensing-based methods use TIR observa-
tions to estimate ET through physically-based approaches 
such as surface energy balance models. In recent studies, 
notably through the GRAPEX project (Kustas et al. 2018, 
2019, 2022), great advances have been made in estimating 
ET in vineyards at different spatial scales using various 
adaptations of the Two-Source Energy Balance (TSEB, Nor-
man et al. 1995) with input data ranging from tower-based 
proximal sensors (e.g. Kustas, et al. 2022) to spaceborne 
imagery (e.g. Knipper et al. 2019). TSEB is particularly use-
ful to detect crop water status as it inherently partitions the 
energy balance between the vegetation canopy and soil, thus 
providing an estimate of vegetation transpiration. Indeed, 
Bellvert et al. (2020) demonstrated that TSEB-derived can-
opy transpiration had a more robust relationship with stem 
water potential compared to bulk (i.e., canopy + soil) fluxes, 
which may be influenced by the background soil/substrate 
conditions. In light of this, Nieto et al. (2022) proposed a set 
of alternative crop water stress indicators that took advan-
tage of TSEB’s ability to estimate canopy fluxes as well as 
describing a method to estimate leaf stomatal conductance 
(gst) by inverting flux estimates from TSEB. Through this, 
the Crop Stomatal Stress Index (CSSI), relating actual gst 
based on TSEB estimates and maximum gst, was proposed 
using tower-based inputs and obtained stronger correlations 
with in-situ water stress proxies compared to the more tradi-
tional CWSI using bulk fluxes (Nieto et al. 2022).

While bulk flux estimates from TSEB are generally well 
modelled when compared to EC measurements, the modelled 
ET partitioning has shown less consistency with mixed results 
observed in the literature (Gao et al. 2023; Kool et al. 2021; 
Kustas et al. 2019). Indeed, Kool et al. (2021) showed that 
ET partitioning was sensitive to the estimation of soil heat 
flux, the simulated radiation partitioning between canopy and 
soil and the transpiration initialization method. The original 
TSEB algorithm (Norman et al. 1995) implemented a Priest-
ley and Taylor (1972) framework for an initial transpiration 
estimate (TSEB-PT) but other TSEB refinements have imple-
mented a Penman–Monteith (PM) initialization (Colaizzi et al. 
2012, 2014) or dual-source Shuttleworth and Wallace (1985) 
(SW) initialization (Kustas, et al. 2022a, b). In certain cases, 
TSEB-PT was shown to effectively estimate canopy fluxes in 
vineyards (Kool et al. 2021; Nieto et al. 2022) but other stud-
ies reported larger uncertainties (Kustas et al. 2019). Kustas 
and Norman (1997) proposed the use of TIR measurements 
at multiple viewing angles to separate canopy and soil tem-
peratures analytically, eliminating the need to parameterize 
the canopy transpiration through energy combination models. 
Indeed, using a similar approach but taking advantage of high-
spatial resolution imagery, as those obtained from Unmanned 
Aerial Vehicles (UAVs), Nieto et  al. (2019) proposed a 
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dual-temperature TSEB (TSEB-2T), which directly retrieves 
canopy and soil temperatures from the TIR imagery and, as 
such, does not need to parameterize an a priori transpiration 
estimate.

Indeed, there is a growing interest from the research com-
munity to further develop methods that take advantage of 
UAVs to detect water stress at fine spatial scales to implement 
precision agriculture practices (Bellvert et al. 2016; de Castro 
et al. 2021; Nassar et al. 2020; Nieto et al. 2019). The use of 
high spatial resolution imagery can isolate the flux signals at 
the plant level and allow to better understand the spatial vari-
ability of crop stress within plot scales. In addition, using phys-
ically-based models to derive ET at fine resolution allows to 
not only assess the spatio-temporal variability of water stress 
but also to quantitatively assess the vine water demand giv-
ing potentially better recommendations for irrigation inputs 
required for different production goals. As such, this study 
aimed to evaluate the capabilities of different crop water stress 
metrics derived from process-based surface energy balance 
models and high-resolution UAV imagery to detect within-plot 
water stress over an experimental vineyard. In this study, both 
the original TSEB-PT and TSEB-2 T were implemented and 
were, as a first step, evaluated against eddy-covariance (EC) 
tower measurements located at the study site, to assess the 
general accuracy and expected uncertainties of these models 
at the EC footprint level. Subsequently, different crop water 
stress metrics, taking advantage of both modelled bulk and 
canopy fluxes, were computed and examined against in-situ 
vine physiological measurements, such as stomatal conduct-
ance (gst), leaf (Ψleaf) and stem (Ψstem) water potential, serving 
as in-situ vine water stress proxies at treatment/irrigation sec-
tor level. In fact, the discrimination of the transpiration sig-
nal from soil evaporation has potentially very high utility to 
viticulture since transpiration is linked to photosynthesis, and 
thus grape productivity, while soil evaporation may be seen as 
a loss of water from an agronomic point of view. This study 
allows us to better understand how these UAV and ET-based 
indicators relate to vine water stress and demand over a small 
area of interest, assessing its potential to support decision 
making processes with quantitative estimates of vine water 
demand to better implement the most appropriate irrigation 
regime depending on production objectives, such as applying 
deficit irrigation practices to control vine quality or to optimize 
water use efficiency and grape production.

Materials and methods

Study site

The study was implemented in a 0.5 ha vineyard (Petit Ver-
dot variety) located at the ‘El Socorro’ experimental farm in 
central Spain (40.14 N 3.37 E, Belmonte de Tajo, Madrid, 

Spain; altitude 755 m.a.s.l.). The grapevines were planted 
following a 2 m inter-row spacing by 1.1 m inter-vine spac-
ing, with rows oriented in the North–South direction. The 
area is characterized by a typical semi-arid continental 
Mediterranean climate with mean annual air temperatures of 
about 14 °C and average annual rainfall of 420 mm (Guerra 
et al. 2022). The soil is characterized as Calcic Haploxer-
alf (pH 8.4) with a clay-loam texture. The inter-rows were 
mowed with a flail mower (Guerra et al. 2022), leaving no 
cover crop understory. The grapevines were placed on a ver-
tical shoot position (VSP) trellis system with the crop height 
reaching maximums of roughly 1.5 m. In 2021, a drip irri-
gation system was installed allowing to establish an experi-
mental design of randomized blocks of three replications 
for three different irrigation treatments (Fig. 1). The three 
different irrigation treatments consisted on maintaining three 
different crop coefficient (Kc) compared to the reference ET 
(ET0) as calculated by the FAO56 Penman–Monteith method 
(Allen et al. 1998) using daily meteorological data from the 
nearby Chinchón weather station of the Spanish Agrocli-
matic information systems for irrigation (SIAR, https://​eport​
al.​mapa.​gob.​es/​websi​ar/​Selec​cionP​arame​trosM​ap.​aspx?​
dst=1). The typical deficit irrigation practice of the region 
maintains Kc values at around 0.4 throughout the growing 
season (Romero et al. 2016; Rallo et al. 2021). Therefore to 
induce a large contrast and variability of vine water stress 
in the experimental study, we implemented treatments that 
imposed an extreme deficit irrigation (0.2Kc; 20% of ET0), 
typical deficit irrigation (0.4Kc; 40% of ET0) and highly 
irrigated practices (0.8Kc; 80% of ET0.). Irrigation began 
during the grapevine flowering (early June) and ended prior 
to harvest (mid-September) and were adjusted weekly over 
the three treatments taking into account the weekly accumu-
lated rainfall and reference ET. This study was implemented 
over two vine growing seasons in 2022 and 2023, with an 
average annual irrigation input of 93, 194 and 371 mm for 
the 0.2Kc, 0.4Kc and 0.8Kc treatments, respectively.

Data and instrumentation

For both 2022 and 2023, field campaigns were performed 
every 2 weeks between June and September. During each 
campaign, a UAV flight was performed during midday con-
ditions (~ 11–13 UTC) with a thermal infrared (TIR) and 
multispectral visible-to-near-infrared (VNIR) sensors, in 
addition to a high-resolution visible (RGB) camera (see 
Sect. “UAV imagery”). An eddy-covariance (EC) tower was 
installed on August 4th 2022 to sample continuous flux and 
meteorological measurements at high temporal frequency 
(see Sect. “Flux and energy balance data”). In this study, 
we solely made use of UAV campaigns with simultaneous 
measurements from the EC tower to apply and evaluate the 
TSEB modelling methods, resulting in a total of eight UAV 

https://eportal.mapa.gob.es/websiar/SeleccionParametrosMap.aspx?dst=1
https://eportal.mapa.gob.es/websiar/SeleccionParametrosMap.aspx?dst=1
https://eportal.mapa.gob.es/websiar/SeleccionParametrosMap.aspx?dst=1
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campaigns (Table 1). During each flight overpass, in-situ 
physiological data of leaf (Ψleaf) and stem (Ψstem) water 
potential, along with leaf stomatal conductance (gst) were 

acquired to obtain a reference dataset of vine water stress 
during different phenological periods ranging from BBCH 

Fig. 1   Aerial view of the experimental scheme in ‘El Socorro’ farm 
with three different irrigation treatments and repetitions (0.2Kc in 
red, 0.4Kc in green and 0.8 Kc in blue) along with 27 permanent 
sampling points used to measure in-situ vine physiological measure-
ments (orange circles) and location of eddy-covariance (EC) tower 

(red triangle) with the typical 2D footprint dimensions and weighted 
contribution to flux measurements where yellow-purple indicates a 
greater weight (estimated from Kljun et al. 2015 on 2022-08-30 11:00 
UTC) directed towards the dominant southwest fetch. Orthomosaic 
taken from RGB camera camera (DJI P1) acquired on 2022-08-30

Table 1   Date, UAV takeoff time, meteorological conditions during 
flight time and vine phenological stage according to BBCH scale 
(mode of in-situ observations) for each field campaign performed at 

El Socorro experimental farm. Meteorological data were acquired 
from EC tower installed within experimental farm

Date UAV Takeoff 
time (UTC)

Air tempera-
ture (ºC)

Relative 
humidity (%)

Shortwave irradi-
ance (W/m2)

Wind 
speed (m/s)

Phenological 
stage (BBCH)

‍Three-day accumulated 
rainfall prior to campaign 
(mm)

2022-08-16 11:19 25.11 27 883 3.9 83 ‍0
2022-08-30 11:23 28.80 31 843 3.4 85 ‍0
2023-06-22 13:02 24.74 22 877 1.5 75 ‍9.41
2023-07-04 13:03 30.69 40 981 3.6 77 ‍0
2023-07-18 11:17 34.66 54 908 3.9 77 0‍
2023-08-01 11:38 31.03 44 959 2.4 79 ‍0
2023-08-16 11:25 30.99 42 922 2.5 83 ‍0
2023-08-29 11:39 23.24 25 856 3.6 85 ‍0
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scale (Lorenz et al. 1995) of 77 (fruit development) to 85 
(Ripening of berries) (see Sect. “In-situ physiological data”).

UAV imagery

A DJI Matrice-300 UAV (DJI Technology Co., Ltd, Shen-
zhen, China) was used to acquire VNIR, TIR and RGB 
imagery using the sensors Parrot Sequoia + (Parrot S.A., 
Paris, France), DJI’s Zenmuse H20T and DJI’s Zenmuse P1, 
respectively. The VNIR Sequoia + and TIR H20T acquired 
images simultaneous at 40 m above surface looking at nadir 
with 70 and 80% frontal and lateral overlap, resulting in a 
native pixel resolution of about 3–4 cm. The RGB images 
were acquired at 15 m above surface (also with 70 and 80% 
frontal and lateral overlap) to acquire a dense point cloud to 
do a 3D reconstruction through photogrammetric techniques.

UAV images were processed using OpenDroneMap 
(https://​www.​opend​ronem​ap.​org/), an open-source drone 
processing software. Raw TIR H20T image tiles (i.e. in 
R-JPEG format) were first converted to single band radi-
ometric temperatures using the open-source DJI Thermal 
SDK software (https://​www.​dji.​com/​downl​oads/​softw​ares/​
dji-​therm​al-​sdk). These individual temperature image tiles 
were then mosaicked together with OpenDroneMap. Con-
gruently, multispectral images from Sequoia + were radio-
metrically calibrated using camera corrections, such as 
vignetting, black level and gain/exposure compensations, 
using the available routines developed for OpenDroneMap. 
(https://​github.​com/​OpenD​roneM​ap/​ODM/​blob/​master/​
opendm/​multi​spect​ral.​py).

Flux and energy balance data

The EC and energy balance tower measurement system was 
located on the eastern edge of the experiment (Fig. 1) to 
have an adequate fetch from the dominant prevailing winds 
from the South-West. The tower was instrumented with an 
integrated open-path infrared gas analyzer and 3D Sonic 
anemometer Campbell Scientific1 (IRGASON, Campbell 
Scientific, Logan, UT, USA) to measure ecosystem-level 
carbon and water gas exchanges. The raw data were sampled 
at a frequency of 20 Hz and recorded using a CR6 datalogger 
(Campbell Scientific, Logan, UT, USA). The Easyflux data-
logger program (Easyflux-DL, Campbell Scientific, 2020) 
corrected the raw high-frequency data using the full suite 
of standard corrections and adjustments, including spike 
filtering, measurement quality control flags and applying 

correction for high/low frequency losses, to generate cor-
rected half-hourly turbulent fluxes. More details of EC data 
post-processing are available in the EasyFlux-DL product 
manual (Campbell Scientific, 2020).

The full radiation budget, both shortwave and longwave, 
were measured using a four-component net radiometer (SN-
500-SS, Apogee, Logan, UT, USA). Both EC and radiation 
instrumentation were installed on the tower at 3.3 m above 
ground level (agl) during the 2022 campaign and at 3.5 m 
agl during the 2023 campaign, over two times the maximum 
heights reached by the vine canopies. In addition, five soil 
heat flux plates (HFT-3, Radiation Energy Balance Systems, 
Bellevue, WA, USA) were installed along a cross-row south-
west diagonal transect between the two vine rows following 
the dominant wind fetch (as shown in Fig. 1) each buried at 
10 cm depth. This was done to characterize G conditions at 
different distances to the vine canopies but also takes into 
account the two outer rows of treatments 0.8Kc and 0.4Kc, 
which are the most dominant treatments within the flux 
footprint (Fig. 1). Five pairs of soil thermocouple probes 
(TCAV-L, Campbell Scientific, Logan, UT, USA) and five 
soil moisture sensors (CS655, Campbell Scientific, Logan, 
UT, USA) were co-located with each soil heat flux plate 
along the transect at depths of 2 and 8 and 5 cm depths, 
respectively for estimating storage term above the the heat 
flux plates.

Due to the well-known issue of the frequent lack of 
energy balance closure (EBC) from the EC system meas-
urement technique, latent heat fluxes (LE) and sensible 
heat fluxes (H) were corrected, as described in Kustas et al. 
(2022), using the average of three typical closure methods: 
(1) assigning all residuals to LE, (2) assigning all residuals 
to H and (3) assigning residuals proportionally to LE and 
H maintaining the Bowen Ratio (i.e., H/LE). It is assumed 
that the ensemble mean comes closer to the ‘true’ observed 
flux values compared to any single correction method. This 
rationale is described and justified in Kustas et al. (2022) 
and Bambach et al. (2022). The energy balance closure (i.e. 
Rn-G vs H + LE) is shown in Fig. A1 for the entire sam-
pling time of the EC measurements and for the specific time 
steps of the UAV overpasses, where the average closure ratio 
(H + LE/Rn-G) was 0.79 and 0.81, respectively.

In‑situ physiological data

Midday leaf-level Ψleaf, Ψstem and gst were acquired simulta-
neous to UAV overpass over 3 vines per treatment and block, 
resulting in a total of 27 evenly spaced sampling vines (3 
treatments × 3 blocks × 3 vines) (Fig. 1). This resulted in a 
total of 72 and 54 measurements within each treatment for 
Ψleaf/stem and gst, respectively, with gst only being sampled 
during the 2023 campaigns. Ψleaf and Ψstem were measured 
using a pressure chamber (Scholander et al. 1965), where 

1  The use of trade, firm, or corporation names in this article is for the 
information and convenience of the reader. Such use does not consti-
tute official endorsement or approval by the US Department of Agri-
culture or the Agricultural Research Service of any product or service 
to the exclusion of others that may be suitable.

https://www.opendronemap.org/
https://www.dji.com/downloads/softwares/dji-thermal-sdk
https://www.dji.com/downloads/softwares/dji-thermal-sdk
https://github.com/OpenDroneMap/ODM/blob/master/opendm/multispectral.py
https://github.com/OpenDroneMap/ODM/blob/master/opendm/multispectral.py
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a well-developed sunlit leaf was excised in each sampled 
vine for the Ψleaf sample while the Ψstem sample was covered 
using an opaque aluminum bag prior to excision (at least 
one hour before sampling). Simultaneous to this, gst was 
measured using the LI-600 porometer (LI-COR model 660, 
LI-COR Biosciences, Lincoln, NE, USA) by sampling six 
leaf samples per vine (three in the upper canopy and three 
in lower canopy). All three of these physiological measure-
ments were acquired during midday conditions (between 11 
and 13 UTC) simultaneous to UAV overpass.

TSEB‑PT and TSEB‑2 T models

Model descriptions

Remote sensing-based surface energy balance (SEB) models 
estimate LE as residual of the energy balance, relying on the 
ability of radiometric remote sensing information to estimate 
net radiation (Rn) and sensible heat flux (H), along with soil 
heat flux (G) usually as a proportion of Rn at the soil surface. 
There are different types of SEB models, broadly grouped 
between one-source models, which do not discriminate 
between soil and vegetation components over the surface, and 
multi-source models, which explicitly solves the energy bal-
ance over the different soil and vegetation sources. The main 
source of uncertainty in these models lies in the estimation of 
H, which is computed with the heat transport equation (Eq. 1).

where ρCp is the volumetric heat capacity of air (J m−3 K−1), 
T0 is the aerodynamic surface temperature (K), TA is the air 
temperature at a reference height (K) and RAH is the aerody-
namic resistance to heat transport (s m−1). This heat trans-
port equation is only satisfied when using the conceptual 
aerodynamic surface temperature at the canopy source-sink 
height (i.e. T0). However, the radiometric LST from remote 
sensing can differ significantly to T0, with their relation-
ship not well establish and dependent on the surface and 
observation conditions (Colaizzi et al. 2004). One-source 
models therefore need to relate remotely sensed LST with 
T0, often parameterizing additional resistance terms (Kus-
tas et al. 2016) or applying empirical contextual methods 
(i.e., Allen et al. 2007) to account for these differences. By 
contrast, two-source models consider soil and vegetation 
sources separately within their framework, which explicitly 
accommodates the major factors that influence the relation-
ship between radiometric LST and T0, such as vegetation gap 
fraction and viewing angle. Indeed, the Two-Source Energy 
Balance (TSEB) model (Norman et al. 1995) is well estab-
lished and has been shown to effectively simulate energy 
fluxes in vineyards, notably through the various scientific 

(1)H =
�Cp

(

T0 − TA
)

RAH

advances from the GRAPEX project (Kustas et al. 2018, 
2019, 2022).

In TSEB, the energy balance is separated between a can-
opy (or vegetated) and soil sources (Eq. 2a, b), explicitly 
accounting for the aerodynamic coupling between the soil 
(subscript s) and vegetation canopy (subscript c) layers.

The radiative transfer through the canopy and soil (Rn,c 
and Rn, s) were estimated using an extinction coefficient 
approach as described in chapter 15 of Campbell and Nor-
man (1998) and incorporated into TSEB by Kustas and 
Norman (1999). This is primarily dictated by the foliage 
density (i.e. LAI) and architecture of the vegetated canopy. 
In this case, we incorporated the clumping index taking into 
account the row structure of the grapevines, simulating them 
as simplified clumped rectangular canopies as described in 
Nieto et al. (2019). On the other hand, the ratio approach was 
used to model G, where it was estimated as 20% of the net 
radiation reaching the soil (Rn,s).

To decompose the energy balance, TSEB must separate 
the radiometric land surface temperature (LST) into its veg-
etation and soil components, assuming that the total tem-
perature emitted by the surface is the combined emission of 
both vegetation and soil sources weighted by the fraction of 
vegetation canopy observed by the sensor (Eq. 3).

where f (�) is the fraction of vegetation observed by the TIR 
sensor looking at a zenith angle � , which also depends on 
LAI (Kustas and Norman 1999); Tc is the vegetation canopy 
temperature (K) and Ts is the soil substrate temperature (K).

Since both Tc and Ts are unknown a priori in Eq. 3, dif-
ferent approaches have been developed to estimate both 
component temperatures to solve the series of equations in 
TSEB. In this study, we make use of two approaches: the 
original modeling scheme based on a Priestley-Taylor (PT) 
initialization (TSEB-PT, Norman et al. 1995) and the con-
textual retrieval of both component temperatures using high 
resolution imagery Nieto et al. 2019).

TSEB-PT initializes the model by assuming, as a first 
guess, that the photosynthetically active part of the vegeta-
tion is transpiring at a potential rate (Eq. 4) and iteratively 
accounts for vegetation water stress until conservation of 
energy and temperature is achieved assuming daytime con-
straints and LST as a boundary condition.

(2a)Rn, c = LEc + Hc

(2b)Rn, s = LEs + Hs + G

(3)LST(�) =
[

f (�, LAI)T4

c
+ (1 − f (�, LAI))T4

s

]1
∕4

(4)LEc = �PT fg
Δ

Δ + �
Rn, c



Irrigation Science	

where �PT is the Priestley–Taylor coefficient, initially set 
to 1.26 but automatically reduced in TSEB-PT until con-
vergence is reached, fg is the fraction of vegetation that is 
photosynthetically active, Δ is the slope of the saturation 
vapour pressure versus temperature and γ is the psychromet-
ric constant. For more details regarding the TSEB-PT model 
scheme, the reader is referred to Norman et al. (1995) and 
Kustas and Norman (1999).

For the TSEB-2  T implementation, Tc and Ts were 
directly retrieved using high resolution UAV imagery (see 
Sect. “TSEB implementation with UAV imagery”). This 
removes the need for a parametrization of the initial canopy 
transpiration of Eq. 4 and was originally proposed by Kustas 
and Norman (1997) using multiple TIR viewing angles. For 
more details regarding TSEB-2 T using UAV imagery, the 
reader is referred to Nieto et al. (2019a).

TSEB implementation with UAV imagery

The TSEB model runs were implemented by resampling 
the original UAV orthomosaics to 2 m pixel size, which is 
roughly the width of the grapevine rows. We assume that 
this spatial resolution is compatible with aerodynamic and 
radiation formulations applied within TSEB to be consistent 
with micro-meteorological lengths scales (Xia et al. 2016) 
and, therefore, contain both the vine canopy and soil inter-
row at the pixel level.

Ancillary canopy structural variables are required in 
TSEB to account for both radiation transmission in row 
crops and turbulent heat exchange between the soil, plant 
and the atmosphere (Parry et al. 2019, Raupach 1994). Can-
opy height (CH) was estimated by generating the digital ter-
rain model (DTM) and the digital elevation model (DEM) 
using photogrammetric techniques from the overlapping 
UAV-based RGB images (i.e. CH = DEM – DTM). CH was 
then resampled by extracting the maximum value within the 
2 × 2 m pixel window.

Vegetation fractional cover (fc) was estimated from the 
classification of vine pixels at 0.03 m using a supervised 
classification (random forest classification) and further lim-
ited to pixels with normalized-difference-vegetation-index 
(NDVI) greater than 0.3 (limiting edge effects) and CH 
greater than 0.5 m to avoid non-vine vegetation (i.e. weeds) 
present in the interrows. Then, fc was obtained from the frac-
tion of vine pixels identified across the 2 × 2 m window. 
Similarly, Tc and Ts, needed for TSEB-2 T, were estimated 
by acquiring the mean of pixels classified as vine and soil, 
respectively within the 2 × 2 m window.

Finally, the leaf area index (LAI) at 2 m pixel resolu-
tion was estimated by developing a random forest regres-
sion model based on in-situ LAI measurements acquired at 
the sampling points shown in Fig. 1 using VNIR vegetation 

indices (OSAVI, Rondeaux et al. 1996 and reNDVI, Gitel-
son and Merzlyak 1994) and structural metrics (CH, fc) as 
predictor variables. Refer Fig. A1 to see the calibration and 
validation of the LAI model. During each campaign, in-situ 
LAI measurements were acquired over the 27 vine sampling 
points (Fig. 1) using the LAI-2200C (LI-COR, Biosciences, 
Lincoln, NE, USA) following the protocol developed by 
White et al. (2019) for vineyards. In this case, four meas-
urements were performed at each of the 27 sampling point 
below the vine-row and then 1⁄4, 1⁄2 and 3⁄4 distance from 
vine-row to obtain an ‘ecosystem’-level (i.e. vine + interrow) 
LAI reference. These references values were used to train 
the empirical model as similarly implemented by Kang et al. 
(2022) (see Fig. A2 for the LAI model training and testing).

Crop water stress metrics

From the TSEB outputs, different crop water stress indices 
were estimated and applied in this study to evaluate which 
indices were more related to in-situ physiological measure-
ments. Traditionally, the Crop Water Stress Index (CWSI), 
based on the relationship between actual and potential evap-
otranspiration (Jackson et al. 1981), has been widely used 
to detect water stress from thermal remote sensing imagery. 
However, as discussed in Nieto et al. (2022) other stress 
indicators can also be generated taking advantage that two-
source models, such as TSEB, separating canopy and soil 
fluxes. Nieto et al. (2022) proposed the Crop Transpiration 
Stress Index (CTSI, Eq. 5a) and Crop Stomatal Stress Index 
(CSSI, Eq. 5b).

where LEc,sw is the potential canopy latent heat flux com-
puted by Shuttleworth-Wallace model (Shuttleworth and 
Wallace 1985) (described in appendix B) and gst,0 is the 
maximum stomatal conductance (see Nieto et al. 2022 for 
its derivation). Effective gst can be estimated from TSEB 
modelled fluxes and aerodynamic resistances as demon-
strated by Nieto et al. (2022). This is done by deriving the 
effective resistance to water vapour diffusion exerted by all 
leaves (Rc, Eq. 6)

where �a is the air density, eL is water vapour pressure in the 
leaf, which is assumed saturated at leaf temperature Tc (Far-
quhar and Sharkey 1982), e0 is the vapour pressure of the air 

(5a)CTSI =
LEc

LEc, sw

(5b)CSSI =
gs

gst,0

(6)Rc =
�aCp

(

eL − e0
)

LEc�
− Rx
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at the canopy interface, related to air vapour pressure (ea) 
measured at reference height as e0 = ea +

LE�Ra

paCp

 and Rx is the 

resistance to momentum and heat transport at the boundary 
layer of the canopy interface (see Norman et al. 1995 for 
details). As such, effective leaf-level gst is estimated by 
inverting Eq. 7 (Kustas et al. 2022)

where ft is either 1 or 2 depending on stomatal distribution 
in the leaves (1 for hypostomatous and 2 for amphistomatous 
leaves).

Along with these stress indices that take advantage of 
partitioned LE, more traditional indices were also computed 
such as the Crop Water Stress Index using the one-source or 
big-leaf Penman–Monteith formulation to estimate poten-
tial LE (Eq. 8a, CSWI-PM), using the two-source Shuttle-
worth-Wallace formulation to estimate potential LE (Eq. 8b, 
CWSI-SW) and the widely used evaporative stress index 
(Eq. 8c, ESI; Anderson et al. 2007), which uses the FAO56 
reference ET (Allen et al. 1998) to normalize the actual ET. 
The Penman–Monteith and Shuttleworth-Wallace energy 
combination equations are described in Appendix B.

Both LEPM and LESW use a minimum stomatal resistance 
dependant on the vapour pressure deficit (VPD) as derived 
and detailed in Nieto et al. (2022) and Kustas et al. (2022).

Model evaluation

Modelled fluxes from both TSEB-PT and TSEB-2T were 
evaluated against tower measurements using the eddy-
covariance (EC) technique. The two-dimensional EC foot-
print areas were estimated following the method described 
in Kljun et al. (2015) during the time step of the image 
acquisition, including estimating the footprint probability 
density function. Winds were often light and conditions were 
strongly unstable resulting in a relatively small footprint 
(Fig. 1) given the EC measurement height to canopy height 
ratio of ~ 2. The mean of the instantaneous modelled fluxes 
(LE, H, Rn and G) of all pixels located within the footprint 
were weighted by the normalized probability density func-
tion and evaluated against EC tower measurements.

(7)Rc =
1

ftfgLAIgst

(8a)CWSI-PM =

LE

LE
PM

(8b)CWSI-SW =

LE

LE
SW

(8c)ESI =
LE

LEfao56

In addition, modelled gst based on TSEB-based LEc 
inversion were compared against in-situ gst measured with 
the LI-600 porometer over sampled vines (Sect. “In-situ 
physiological data”, Fig. 1). Model performance was evalu-
ated based on the root-mean-square-error (RMSE, Eq. 9a), 
the relative RMSE (rRMSE, Eq. 9b), the mean bias (bias, 
Eq. 9c) and Pearson correlation coefficient (r, 9d).

where Yobs are the observed values, Ymod are the modelled 
values, N is the sample size and di represents the differ-
ence between the ranks of corresponding variables in the 
two datasets.

To understand how sensitive the modelled fluxes were to 
the irrigation treatments over the study area, a one-way anal-
ysis of variance (ANOVA) was performed to test whether 
the distribution of values between irrigation regimes were 
statistically different. In this case, we report both the F 
value, the ratio of variances where a high value indicates 
that the variance between treatment means was larger than 
the variance within treatment groups, and the p value, which 
quantifies the probability of obtaining such a F value if null 
hypothesis were true (i.e. that the distribution of values from 
the different treatments are the same). In addition, the dif-
ferent TSEB-based stress metrics were compared to in-situ 
physiological measurements and their relation was quanti-
fied through the Spearman rank correlation coefficient ( � , 
Eq. 9e), which is a non-parametric measure of the monotonic 
relationship of variables, to account for possible non-linear 
relationships.

(9a)RMSE =

�

∑
�

Yobs − Ymod
�2

N

(9b)rRMSE =
RMSE

Yobs,max − Yobs,min

(9c)bias =

∑
�

Ymod − Yobs
�

N

(9d)

r =

∑
��

Ymod − Ymod,mean
��

Yobs − Yobs,mean
��

�

∑

�

�

Ymod − Ymod,mean
�2
�

∑

�

�

Yivs − Yobs,mean
�2
�

(9e)� = 1 −
6
∑

d2
i

N(N2 − 1)
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Results

Evaluation of TSEB‑PT and TSEB‑2T

In Fig. 2, the instantaneous flux estimates from both TSEB-
PT (Fig. 2a) and TSEB-2 T (Fig. 2b) were plotted against EC 
measurements over the study area. In general, both TSEB 
variants performed similarly, with error metrics within 
comparable ranges (Table 2), although LE (H) was more 
systematically overestimated (underestimated) with TSEB-
PT compared to TSEB-2 T. H was generally well modelled 
by TSEB-2T (RMSE = 79 Wm−2; bias = 3 Wm−2), but was 
more consistently underestimated by TSEB-PT (bias = −49 
Wm−2). By consequence, TSEB-PT modelled LE was more 
overestimated (RMSE = 85 Wm−2; bias = 67 Wm−2) com-
pared to TSEB-2T (RMSE = 44 Wm−2; bias = 31 Wm−2), as 
well as being less correlated (r = 0.83 vs 0.94). In general, 
both models simulated Rn and G with low systematic errors. 
However, Rn was somewhat more overestimated by TSEB-
2T (bias = 15 Wm−2) while having a greater negative G bias 
(−20 Wm−2), resulting in an overall larger overestimation 
of available energy (AE, Rn—G). This led to a modest sys-
tematic LE bias (31 Wm−2) for TSEB-2 T even though H 
was largely in line with EC measurements (bias = 3 Wm−2). 

For TSEB-PT, the AE was less overestimated but the larger 
H bias (−33 Wm−2) led to a more consistent LE overesti-
mation (bias = 47 Wm−2). It should be noted that only eight 
UAV flights were used, therefore overall error metrics were 
sensitive to any significant discrepancies from one day. For 
example, TSEB-2 T H estimates from 2023-06-22 showed a 
larger bias compared to the other dates, increasing the scatter 
of errors. Indeed, while the average energy balance closure 
(i.e. [LE + H]/[Rn – G]) during the UAV overpass time steps 
was 0.81, the energy balance closure on 2023-06-22 was one 
of the lowest at 0.58. This may be a factor in the observed 
biases as the correction method has a more important weight 
leading to greater possible uncertainties in the observations 
than the model estimates. It also should be mentioned that 
the EC measurements are influenced by sources from both 
the 0.8Kc and 0.2Kc treatments, thus the model validation 
should be considered more qualitatively as an indicator that 
the models provide satisfactory flux estimates.

LE spatial distribution and irrigation treatment 
effects

In general, different LE distributions were detected over 
the study area as a consequence of the different irrigation 
regimes (Fig. 3). Modelled LE showed a distinct spatial 

Fig. 2   Evaluation of modelled fluxes from TSEB-PT (a) and TSEB-2 T (b) against eddy-covariance (EC) observations

Table 2   Model performance 
indicators of root-mean-square-
error (RMSE), relative RMSE 
(rRMSE), bias and pearson’s 
correlation coefficient (r) for 
TSEB-PT and TSEB-2T against 
tower measurements

TSEB-PT TSEB-2 T

RMSE 
(W m−2)

rRMSE (%) bias (W m−2) r (–) RMSE 
(W m−2)

rRMSE (%) bias (W m−2) r (−)

Rn 25 20 7 0.79 29 23 15 0.79
H 74 38 −49 0.72 79 41 3 0.34
LE 85 29 67 0.83 44 15 31 0.94
G 50 31 −10 −0.34 56 35 −20 −0.76
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distribution due to different irrigation regimes, with visu-
ally distinct spatial patterns observed in the map in Fig. 3 
for both TSEB-PT and TSEB-2 T. This is supported quanti-
tatively by the boxplots in Fig. 3 showing different distribu-
tion of values for each irrigation regime, where an ANOVA 
test revealed significant treatment effects for LE for both 
TSEB-PT (F value = 35.83; p value = 1.65e-14) and TSEB-
2T (F value = 24.71; p value = 1.59e-10). Pairwise z-tests 
between each pair of treatments also revealed significantly 
different LE distributions for all pairs (p value < 0.001), 
except between 0.2 and 0.4 Kc treatment for TSEB-2T (p 
value = 0.16). By contrast, TSEB-PT modelled LE were 
significantly different between 0.2 and 0.4 Kc treatments 
(p value = 0.04), as well as all other treatment pairs (p 
value < 0.001).

While LE estimates from TSEB-PT and TSEB-2T were 
relatively similar, much greater contrast was observed for 
the modelled LE partitioning (LEc/LE). As Fig. 4 shows, 
TSEB-PT’s median LEc/LE oscillated around 0.4 for all 
treatments, much lower than TSEB-2T’s LEc/LE, which 
treatment median ranged roughly between 0.7 and 0.9. This 
was due to the important differences in estimated canopy 
and soil temperatures between both TSEB variants (Fig. 5). 
In general, the canopy (soil) temperature used in TSEB-2T 
were roughly 4 degrees cooler (hotter) than those estimated 
from TSEB-PT (Fig. 5). By using LEc/LE estimates, TSEB-
2T outputs were found to have more significant treatment 
effects (F value = 18.71; p value = 2.77e-08) compared to 
TSEB-PT (F value = 7.21; p value = 0.0009). TSEB-2T 
had significant differences for all pairwise comparisons (p 
value < 0.05) while TSEB-PT had generally higher p values 

Fig. 3   TSEB-PT (top row) and TSEB-2T (bottom row) modelled 
latent heat flux (LE) on 2023-08-16 11:30 UTC over study area (left 
column) and corresponding boxplots for all dates grouped by 0.2 
(red), 0.4 (green) and 0.8 (blue) Kc treatments (right column). The 

eddy-covariance (EC) tower is depicted by a black circle. The coor-
dinates on X–Y axis are projected in UTM zone 30N with units in 
meters
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Fig. 4   TSEB-PT (top row) and TSEB-2T (bottom row) modelled 
latent heat flux (LE) partitioning (LEc/LE) on 2023-08-16 11:30 
UTC over study area (left column) and corresponding boxplots for all 
dates grouped by 0.2 (red), 0.4 (green) and 0.8 (blue) Kc treatments 

(right column). Eddy-covariance (EC) tower is depicted by a black 
circle. The coordinates on X–Y axis are projected in UTM zone 30N 
with units in meters

Fig. 5   Comparison between 
the estimated canopy (Tc, left 
panel) and soil (Ts, right panel) 
temperatures estimated by 
TSEB-PT and those applied in 
TSEB-2T over the 27 sam-
pling points for all campaigns 
assessed
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for each pairwise comparison, including demonstrating a 
non-significant difference between 0.2 and 0.4 Kc treatments 
(p value = 0.12).

Estimation of gst through TSEB inversion

Leaf stomatal conductance (gst) was estimated by invert-
ing both TSEB-PT and TSEB-2T fluxes and were compared 
against in-situ leaf-level measurements (Fig. 6). Considering 
the scaling difficulty of comparing downscaled ecosystem-
level fluxes (TSEB outputs) and upscaled leaf-level meas-
urements (in-situ), modelled results agreed reasonably well, 
where values were within similar ranges to in-situ meas-
urements with low bias (TSEB-PT bias = 0.1 mol m−2 s−1; 
TSEB-2T bias = 0.05 mol  m−2  s−1). TSEB-2T achieved 

higher correlation (r = 0.35) than TSEB-PT but larger disper-
sion and errors (RMSE = 0.11 mol m−2 s−1; rRMSE = 46%). 
However, the largest biases for TSEB-2T were primar-
ily concentrated during early and late phenological peri-
ods. By solely evaluating the results of the UAV flights 
during the peak growth period (2023-07-18, 2023-08-01 
and 2023-08-16), as shown in Fig.  7, TSEB-2T errors 
decreased (RMSE = 0.05 mol m−2 s−1; rRMSE = 20%) and 
showed higher correlation (r = 0.59). By contrast, TSEB-PT, 
although with low errors and biases, did not capture as much 
variability during this peak growth period (r = 0.28). This 
result is likely due to TSEB-PT LEc/LE values having little 
change with treatment.

Fig. 6   Evaluation of TSEB-PT (a) and TSEB-2T (b) inversion for stomatal conductance (gs) estimations against in-situ observations measured 
with handheld porometer (LI-600) across all sampling dates in 2023

Fig. 7   Evaluation of TSEB-PT (a) and TSEB-2T (b) inversion for stomatal conductance (gs) estimations against in-situ observations measured 
with handheld porometer (LI-600) during the peak vegetation growth period (2023-07-18, 2023-08-01 and 2023-08-16)
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Performance of different stress indices compared 
to in‑situ measurements

Figures 8 and 9 illustrate the relationship between bulk 
crop water stress indices computed with TSEB-PT and 
TSEB-2T, respectively and in-situ Ψleaf and Ψstem measure-
ments. Results follow very similar patterns with little dif-
ference between stress indices and between TSEB-2T and 
TSEB-PT. CWSI-PM was most related to Ψstem with both 
TSEB-PT ( � = 0.56) and TSEB-2T ( � = 0.57). In gen-
eral, we observed that stress indices based on bulk fluxes 
tend to plateau for lowest Ψstem values (Ψstem < -1.0 Mpa), 
indicating that perhaps the UAV-based stress indicators 
were less able to capture the variability of highly stressed 
plants. Ψleaf was generally less related to stress indices ( � 
< 0.4) with the highest score achieved by TSEB-2T with 
CWSI-SW ( � = 0.4).

By contrast, when comparing the crop water stress indi-
ces computed with partitioned or canopy fluxes (i.e. LEc, 
CTSI, CSSI), large differences were observed between 
TSEB-PT and TSEB-2T (Fig. 10 vs Fig. 11). In general, 
TSEB-PT based stress indices based on canopy fluxes 
had low correlation with Ψleaf and Ψstem, with the highest 
correlation observed between with CTSI and Ψstem ( � = 
0.49). TSEB-2T stress indices generally achieved higher 
correlation with Ψleaf ( � > 0.4) and Ψstem ( � > 0.6), where 
the highest correlation was observed between CSSI and 
Ψstem ( � = 0.62).

Discussion

The results from this study indicated that TSEB, either 
through TSEB-PT or TSEB-2T, was capable of reliably 
estimating energy fluxes through UAV imagery with RMSE 

Fig. 8   TSEB-PT crop water stress indexes (CWSI) using bulk fluxes against in-situ measurements of leaf (Ψleaf) and stem (Ψstem) water potential
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bounds within 25–80 W/m2 compared to EC measurements. 
These errors are within the expected uncertainties for the 
models and measurements (50–100 W/m2) and are within 
similar ranges compared to other studies in vineyards (Gao 
et al. 2023; Kustas, et al. 2022; Nieto et al. 2019, 2022). For 
instance, LE errors using UAVs and different TSEB model 
versions were reported by Gao et al. (2023) to be between 
69–90 W/m2 for vineyards in California while Ortega-Farias 
et al. (2021) obtained an RMSE of 55 W/m2 using a two-
source patch energy balance model in a Chilean vineyard 
site. Similar error ranges (i.e., roughly 60 W/m2) were also 
reported by Simpson et al. (2022) for a savanna ecosystem 
in Spain applying TSEB with over 25 UAV overpasses and 
evaluated using 6 different EC towers. Therefore, the results 
and energy flux uncertainties presented in this study were 
very much in agreement with similar studies available in the 
literature. However, the in-situ EC measurements are also 
expected to have their own uncertainties, especially since 
the tower footprint overlaps at least two different irrigation 
treatments leading to a certain level of heterogeneity, which 

may not be captured as effectively by the net radiometer or 
the soil heat flux plates. For example, while the five soil 
heat flux plates were installed cross sectionally between 
two treatments, this sampling design may not effectively 
capture the G heterogeneity present in the flux footprint, 
which must account for both irrigation treatment effects 
but also differences between the row crop and interrow 
since the drip irrigation applies the water input locally near 
grapevine. As such, there is likely additional uncertainties 
related to the estimation of the available energy compared to 
sampling over a uniform site, even though the estimated Rn 
and G compared rather well to tower measurements (Fig. 2, 
Table 2). Furthermore, the widely acknowledged energy 
balance closure issue (Bambach et al. 2022; Mauder et al. 
2020) is another source of uncertainty and it is worth noting 
that the largest discrepancy between modelled and measured 
H occurred on the date with lowest energy balance closure 
(i.e. 0.58).

The different stress indicators estimated through bulk 
fluxes (i.e. CWSI-PM, CWSI-SW and ESI) related similarly 

Fig. 9   TSEB-2T crop water stress indexes (CWSI) using bulk fluxes against in-situ measurements of leaf (Ψleaf) and stem (Ψstem) water potential
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to in-situ measurements, either applied with TSEB-PT or 
TSEB-2T. The CWSI-PM yielded slightly better results 
compared to CWSI-SW, showing little evidence of the 
advantage of using the SW model to compute potential LE 
(LEpot) compared to PM, even though its dual-source model 
structure should be more suited for clumped row vegetation 
structures such as grapevines. As Nieto et al. (2022) noted, 
this may be an issue of how LEpot is defined, where, in this 
study, we parameterized LEpot in the SW model as having 
a rather constant dry top soil but with enough water in the 
root-zone for vegetation to transpire at a potential rate. It is 
likely that the assumption of a very dry soil was not adequate 
for all the different UAV campaigns assessed here, with soil 
conditions being affected by seasonal changes and, in certain 
cases, by precipitation events occurring relatively close in 
time to the field campaigns, especially during the first cam-
paign of 2023. Soil conditions not only affects the bulk LE 
(through soil evaporation) but also interacts with the canopy 
fluxes as it influences the evaporative demand in the canopy 

by transporting hot (or cool) and dry (or wet) air parcels 
from the soil towards the canopy-air interface (Kustas and 
Norman 1999).

The crop water stress indicators that took advantage of 
modelled canopy fluxes (CTSI and CSSI) showed large dif-
ferences between TSEB-PT and TSEB-2T. The CTSI and 
CSSI estimated by TSEB-PT were much less correlated with 
in-situ measurements, with the highest correlation achieved 
by CSSI and Ψstem (⍴ = 0.49). On the other hand, the CTSI 
and CSSI estimated by TSEB-2T were much more correlated 
with in-situ measurements, with both yielding better results 
compared to the indices based on bulk fluxes (i.e., CWSI-
PM, CWSI-SW or ESI). In fact, CSSI had the highest corre-
lation out of all studied indices with both Ψleaf (⍴ = 0.43) and 
Ψstem (⍴ = 0.61). These correlations are largely in line with 
results presented in Bellvert et al. (2020) which reported an 
R2 ranging from 0.29 to 0.55 between a transpiration-based 
CWSI and Ψstem. Indeed, Bellvert et al. (2020) also showed 
that the relationship between Ψstem and canopy transpiration 

Fig. 10   TSEB-PT crop water stress indexes (CWSI) using partitioned canopy latent heat fluxes (LEc) against in-situ measurements of leaf (Ψleaf) 
and stem (Ψstem) water potential
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was stronger and more consistent compared to bulk ET in 
vineyards, as estimated through TSEB with both satellite 
and airborne imagery. These results, along with the results 
presented in Nieto et al. (2022) demonstrate the potential of 
using partitioned canopy fluxes to limit the effect of the soil 
signal on CWSI and to improve crop water stress detection 
using remote sensing.

In general, Ψstem was more correlated (⍴ > 0.5) to UAV 
ET-based stress indices compared to Ψleaf (⍴ < 0.4). The poor 
results with Ψleaf were also observed by Nieto et al. (2022), 
while several studies have highlighted the limitation of Ψleaf 
to robustly represent water stress (García-Tejera et al. 2021; 
Jones 2004). Clearly, one of the main limitations is that these 
measurements are highly sensitive to plant architecture with 
different management interventions, such as vine pruning, 
affecting the hydraulic conductivity from the root to leaf. 
As such, Ψleaf at different phenological periods may be 
more affected by structural changes than to water stress. For 
example, Bellvert et al. (2015) showed that the relationship 

between CWSI and Ψleaf was significantly affected by both 
the grapevine variety and phenological stage, requiring 
model calibration to account for these effects.

Several authors have suggested the use of gst rather than 
water potential for water stress detection as it accounts for 
crop physiology within atmospheric conditions, along with 
linking the processes of transpiration and photosynthesis 
(Jarvis 1986). Nieto et al. (2022) demonstrated TSEB’s 
effectiveness to estimate gst through flux inversion and 
tower-based inputs, which compared well with in-situ meas-
urements of leaf gas exchange. In this study, we also show 
that TSEB-based gst estimated through UAV imagery were 
within similar error ranges (RMSD ~ 0.1 mol m−2 s−1) com-
pared to in-situ leaf measurements, although we observed 
a lower correlation (r < 0.35). There was also a large differ-
ence between TSEB-PT and TSEB-2T, where gst estimated 
by TSEB-PT showed much less variability, likely affected 
from the apparent underestimation of LEc (Fig. 3). This 
was particularly apparent when solely evaluating the peak 

Fig. 11   TSEB-2T crop water stress indexes (CWSI) using partitioned canopy latent heat fluxes (LEc) against in-situ measurements of leaf (Ψleaf) 
and stem (Ψstem) water potential
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vine growth period (Fig. 5) where TSEB-2T very effectively 
estimated gst during this period (RMSE = 0.05 mol m−2 s−1; 
r = 0.59) compared to TSEB-PT (RMSE = 0.06 mol m−2 s−1; 
r = 0.28). The larger errors during the early and late pheno-
logical periods may be related to (i) lower fg·LAI values 
during these dates, that might cause arithmetic instability 
when inverting Eq. 7 and (ii) the greater difficulty to meas-
ure in-situ gst since fewer well-developed leaves are present 
or, especially for late phenological period, may be diseased 
or damaged. In fact, there is an implicit bias to sample well 
illuminated and healthy leaves, which also depends on the 
subjectivity of the operator, while the UAV imagery samples 
the entire top of the canopy, composed of leaves with vary-
ing conditions including being sunlit and shaded. Jones et al. 
(2002) demonstrated significant differences in gst between 
sunlit and shaded leaves, with sunlit leaves having, on aver-
age, double the gst values as shaded leaves. As such, there 
is an inherent difficulty in comparing top-down ecosystem-
level fluxes (TSEB outputs) and leaf-level measurements 
(in-situ), which can be a factor that increases the scatter of 
results observed between the UAV imagery and the leaf-
scale measurements.

Large differences in modelled LE partitioning (LEc/
LE) between TSEB-PT and TSEB-2 T were apparent in 
this study, both by evaluating CTSI and CSSI against in-
situ indicators (Fig. 9 vs Fig. 10) and by observing the spa-
tial variability and sensitivity to treatment effects (Fig. 4). 
TSEB-PT showed on average a much lower LEc/LE (~ 0.4) 
compared to TSEB-2T (~ 0.8). Burchard-Levine et al. (2022) 
reported a LEc/LE of about 0.8 during the main grapevine 
growing season in California, USA, both by applying an 
adapted TSEB version (three-source energy balance model, 
3SEB) and an EC-based partitioning method (Zahn et al. 
2022). Kustas et al. (2019) also reported a monthly LEc/
LE between 0.8 and 0.9 during the summer months as esti-
mated from EC partitioning method (Scanlon and Kustas 
2012) and showed that TSEB-PT, forced from tower-based 
inputs, largely underestimated LEc/LE with values below 
0.6 during these periods. Using UAV imagery, Gao et al. 
(2023) also compared TSEB-PT and TSEB-2T in a vine-
yard and showed that LEc/LE was better depicted by TSEB-
2T, especially when applying the so-called quantile tem-
perature separation algorithm to better extract Tc from the 
canopy. By contrast, using tower-based measurements, Kool 
et al. (2021) showed that TSEB-PT was more reliable than 
TSEB-2T for LEc/LE retrievals. At the satellite level, when 
comparing the atmosphere–land exchange inverse model 
(ALEXI) model, based on TSEB, using both a PT and PM 
initialization, Knipper et al., (2022) also revealed that the 
PT initialization had greater uncertainty for LEc/LE com-
pared to the PM initialization, even though bulk fluxes were 
well simulated. Indeed, our results, along with past studies, 
show that TSEB’s ET partitioning is sensitive to the initial 

transpiration parameterization, necessary to decompose LST 
into canopy and soil sources when the pixel is mixed by 
both components. Future work should concentrate on better 
understanding the effect of the different transpiration ini-
tialization, such as using a PM (Colaizzi et al. 2014) or SW 
(Kustas, et al. 2022) parameterization, and understand the 
respective sensitivity of input variables affecting LEc/LE 
estimations.

Conclusion

These results demonstrate the utility of physically-based 
models (i.e. TSEB) and UAV imagery to estimate ET and 
partitioned canopy fluxes, which can enhance the detection 
of vine water stress. Moreover, the results indicate satisfac-
tory congruence of modelled energy fluxes compared to a 
reference EC tower. Modelled bulk fluxes were able to depict 
irrigation treatment effects and were somewhat correlated to 
in-situ measurements (more notably with Ψstem). However, 
partitioned flux indicators, by better isolating the vegetation 
signal and limiting soil/substrate effects, were more effec-
tive in detecting these irrigation treatment effects and had 
higher correlation to in-situ water stress proxies, including 
comparing well to in-situ gst measurements. Since TSEB-2T 
and TSEB-PT showed large differences in modelled LEc/LE, 
future work should concentrate on better evaluating the mod-
elled ET partitioning. This includes testing different TSEB 
transpiration formulations and soil and canopy temperature 
partitioning methods, to better understand the effects of the 
different model initializations on LEc/LE estimates, espe-
cially under different agronomic (e.g. presence of cover 
crop) and climatic conditions. This includes better under-
standing the effect of advection present in many irrigated 
agricultural regions as explored by Kustas et al. (2022).

Appendix A

See Figs. 12 and 13

Appendix B

The Penman–Monteith (PM) model combines aerodynamic 
theory with surface energy balance using a ‘big leaf’ frame-
work assuming a single plane within the vegetation as a 
source and sink for mass and energy transfer. The general 
PM equation is expressed as:
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 Where Δ = Δes/ΔTA and is the slope of the saturation vapor 
pressure curve with respect to air temperature, VPD is the 
atmospheric vapor presure deficit. To obtain a potential 
LE, a fixed Rc may be used (i.e. 50 s m−1) as described 
in Colaizzi et al. (2012, 2014). However, in this study, we 
implemented an estimation of Rc that depends on VPD, 
where vegetation more coupled to the atmosphere, such as 
taller tree crops, have shown more sensitivity to VPD condi-
tions. As such, Rc was estimated based on parametrization 
proposed by Montheith (1995) as described in Kustas et al. 
(2022).

(B1)LE =
Δ(Rn − G) + �Cp

(

VPD

RAH

)

Δ + �

(

Rc

RAH

)

To account for conditions of sparse vegetation where 
both soil and vegetation contribute significantly to LE, the 
Shuttleworth-Wallace (SW) model was developed as two-
source energy combination model, which is based on PM-
like equations. The canopy latent heat flux (or transpiration) 
is computed as:

where VPD0 is the vapor pressure deficit at the canopy-air 
interface and is estimated as:

(B2)LEc =
ΔRn, c + �Cp

(

VPD0

Rx

)

Δ + �

(

Rc

Rx

)

Fig. 12   Energy balance closure of the half-hourly available energy (Rn-G) and turbulent fluxes (H + LE) over the entire sampling period (2022-
08-04 to 2022-09-19) (left panel) and during the time steps corresponding to the UAV overpasses (right panel)

Fig. 13   Calibration (left panel) and validation (right panel) of random 
forest LAI model applied with OSAVI, reNDVI, canopy height (CH) 
and fractional cover (fc) inputs and trained with in-situ LAI meas-

urements using the LAI-2200C (LI-COR Biosciences, Lincoln, NE). 
Dataset was divided 80/20 between calibration and validation groups
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LE is estimated through the general form of SW:

The PMc and PMs are PM-like equations that describe 
the LE expressions from the canopy and soil sources, respec-
tively; Cc and Cs are weighing factors based on the canopy 
and soil effective resistance terms, respectively (see Shut-
tleworth & Wallace (1985) for their derivations), The model 
describes five resistances to vapour flow: canopy stomatal 
resistance to water transport (Rc), bulk aerodynamic resist-
ance to heat and water transport to the canopy elements (Rx), 
aerodynamic resistance to heat and water transport between 
the source-sink height and reference level (RAH) and soil 
aerodynamic resistance to heat and water transport (Rs), soil 
surface resistance to water transport (Rss). When computing 
potential LE, the latter is fixed to Rss = 2000s m−1 to consider 
a rather dry soil surface, consistent with the definition of 
potential LE used with the PM approach.
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