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Introduction

Fresh water scarcity is an increasing problem worldwide, 
with the impact of rapidly increasing demand and climate 
change. Hanjra and Qureshi (2010) reported that approxi-
mately 3 billion people will experience water and food pov-
erty in 2025. Burak and Margat (2016) stated that global 
water demand will increase by 23–42% in 2050 compared to 
2010. The amount of water available should be increased by 
53% and agricultural areas by 38% to meet the food needs 
of the increasing population in 2050 (Mancosu et al. 2015).

Agricultural activities consume fresh water resources 
the most compared to other sectors. FAO (2020) has stated 
that the amount of water used for agricultural activities on a 
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Abstract
Irrigation with recycled domestic wastewater has been known to obtain positive effects on improving soil fertility, but 
it may also become a risk factor in case of causing an increase in soil salinity and/or heavy metal concentration of soil. 
No-tillage can retain soil moisture, helping to reduce irrigation water necessity, and thus lower amounts of heavy metals 
and salts are added to soil under wastewater irrigation conditions. The objective of this study was to analyze the effects 
of wastewater irrigation at different levels of on silage maize cultivation under conventional tillage and no-tillage condi-
tions by comparing to full irrigation with fresh water. The two-year experiment was planned according to the split-plots 
design in the random blocks with three replications. The results indicated that full irrigation with wastewater increased 
soil salinity, organic matter content, total nitrogen, plant available phosphous, exchangeable cations, exchangeable sodium 
percentage and soil essential and non-essential heavy metal contents, but decreased soil pH and lime content. Increasing 
rates in organic matter content, total nitrogen, plant available phosphorus and exchangeable potassium were higher, but 
in electrical conductivity, and heavy metal accumulation were lower in soil under no-tillage as compared to conventional 
tillage. Contamination and enrichment factors and geographic accumulation index showed that non-essential heavy metal 
contamination due to cadmium and nickel, increased in full irrigation with wastewater. Irrigation with wastewater also 
increased heavy metal accumulation in silage maize. No-tillage can be a recommendable water management practice con-
sidering that the risks of soil salinity and heavy metal accumulation can be reduced and that soil fertility can be increased. 
Also, in reducing the risk of accumulation of cadmium and nickel in soil, 33% deficit irrigation with wastewater can make 
no-tillage more available.
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global scale is 69% of the total amount of water. This ratio 
differs depending on the development level of the countries, 
nevertheless, it is still a concern for the future of fresh water 
resources. Therefore, using marginal water resources such 
as wastewater in agricultural irrigation and saving water are 
considered an option.

A very large part of the wastewater, such as 99%, is 
water, and the remaining part is colloidal and dissolved 
solid particles (UN 2014). Wastewater is a potential source 
of nutrients with its high organic and inorganic contents, 
improves soil structure and makes positive contributions 
for increasing yield and crop quality (Tunc and Sahin 2016; 
Dogan Demir and Sahin 2017; Cakmakci and Sahin 2021b). 
Qin and Horvath (2020) reported that crude wastewater can 
contain more macro and micronutrients than chemical fertil-
izer, even under treated conditions. With use of wastewater 
in irrigation, structural properties of soil and microorganism 
activities can be improved, as well as discharge problems 
of wastewater can be solved (Cakmakci and Sahin 2021a). 
Thus, wastewater use reduces the need for chemical fertil-
izers and offers a more economical and environmental pro-
duction alternative through its disposal. However, under 
conditions with greater nutrient input to soil, synergism or 
antagonism nutrient interactions can increase or decrease 
yield (René et al. 2017). In addition, continious use of 
wastewaters in irrigation cannot improve soil structure if 
its high sodium adsorption ratio (> 4) and pH (> 8) value 
and can also be detrimental the dissolved organic carbon 
contribution (Suarez and Gonzalez-Rubio 2017). Thus, high 
concentrations of Na and the resulting increased SAR can 
cause severe decreases in soil permeability.

Recycled wastewater may also contain serious risk fac-
tors such as soil salinity and heavy metal pollution. High 
EC value of wastewater may increase salinity level of soils, 
reducing the yield and quality, and the soils become barren 
in the following processes (Wen et al. 2018).

The heavy metal content of wastewater mostly originates 
from industry and industrial wastes. In general, domes-
tic wastewater does not contain high heavy metal content 
since not including industrial wastes (Agyei and Ensink 
2016). Heavy metals present in domestic wastewater origi-
nate from chemicals such as detergents, softeners and other 
cleaning materials (Jenkins and Russell 1994). Heavy met-
als in soils in diverse dissolved (free cations and complexed 
species of positive, neutral, negative charges), particulate 
(sorbed, structural, coprecipitated), and colloidal (micro and 
nano sized particles) species may be found (Uchimiya et al. 
2020).

Heavy metals have a toxic effect on crop, preventing or 
limiting the functions of crop physiology (Yerli et al. 2020). 
In fact, some heavy metals such as Fe, Cu, Mn, Mo and Zn 
are micronutrients. However, while small amounts of these 

microelements are needed by plants, higher concentrations 
have toxic effects.

The extent of heavy metal contamination in soil under 
wastewater irrigation conditions varies depending on source 
of wastewater and the length of application period. There-
fore, numerous studies have reported that there were no 
significant increases in heavy metals in soils irrigated with 
recycled domestic wastewater due to the short-term applica-
tion effect, and the values were below the allowable thresh-
old heavy metal contents in soil (Kiziloglu et al. 2008; Tunc 
and Sahin 2016; Dogan Demir and Sahin 2017; Cakmakci 
and Sahin 2021a). However, serious heavy metal pollution 
and salinity problems can be seen in soils irrigated with 
wastewater for long periods (Al-Omron et al. 2012). These 
risks can be reduced and also water savings can be achieved 
by deficit irrigation approach where irrigation is carried out 
with less water than the amount of water needed by crops. 
Therefore, deficit irrigation approach can be considered as a 
good practice to decrease excessive accumulation of heavy 
metals in agricultural soils through wastewater irrigation. 
Additionally, as a result of reducing the amount of irrigation 
water by preserving soil moisture for longer periods in no-
tillage practice (Gozubuyuk et al. 2020), less heavy metals 
contamination and salt accumulation can be achieved with 
wastewater irrigation.

Maize, one of the most grown product groups in the 
world with more than 1.1 million tonnes production on an 
area of 194 million hectares (FAO 2020), is an accumulator 
crop with high resistance to heavy metal pollution with its 
ability to accumulate heavy metal (Aladesanmi et al. 2019). 
In irrigation with wastewater, available soil moisture can be 
accompanied by increased heavy metals in soil can increase 
transfer from soil to crops (Wei et al. 2020). Cakmakci and 
Sahin (2021a) reported that heavy metal accumulation in 
maize irrigated with wastewater was due to the heavy metal 
content of soil. However, metal speciation and spatial con-
siderations generally control plant uptake rather than total 
metal concentration (Uchimiya et al. 2010). The specifica-
tion controls toxicokinetics (uptake and transport of met-
als by crop) while toxicodynamics (interaction between 
the crop and absorbed species) drives the toxicity outcome 
(Uchimiya et al. 2020).

Therefore, it is important to limit heavy metal accumula-
tion in areas irrigated with recycled wastewater to ensure 
food chain safety by preventing heavy metal accumulation 
in the crop in the use of recycled wastewater in irrigation 
for the sustainability of fresh water resources. Previous 
studies focused on the efficiency and soil quality of silage 
maize grown with recycled wastewater (Asgari et al. 2007; 
Mousavi and Shahsavari 2014; Tabatabaei et al. 2017; Bashir 
et al. 2021; Cakmakci and Sahin 2021b) but did not focus 
on potential risks and management of these risks. Practical 
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approaches for reducing the risks of heavy metal pollution 
and soil salinity, and improving soil fertility in soil irrigated 
with recycled wastewater showed that the issue can be regu-
lated with deficit irrigation and tillage-sowing approaches. 
This study examined the hypotheses that no-tillage practice 
under irrigation conditions with recycled domestic wastewa-
ter could reduce wastewater-induced heavy metal pollution 
of silage maize field soil as well as soil salinity compared to 
conventional tillage, and that no-tillage could save irrigation 
water and improve soil fertility.

Materials and methods

The location, climate and soil properties of the 
study area

Field studies were carried out in the vegetation period 
between May and September 2020 and 2021 in the experi-
mental field of Van Yuzuncu Yil University, Faculty of Agri-
culture, located in the eastern part of Turkiye, at 38°34’35” 
North latitude and 43°17’26” East longitude and 1670 m 
altitude.

The long-term data of the Van Meteorology Station 
(1976–2021) showed that the region has a semi-arid cli-
mate with a mean annual precipitation of 391.9 mm (GDM 
2021). The data measured with the climate station (Imetos 
2) installed right next to the experimental area, the mean 
temperature and total precipitation values in the production 
period of 2020 (15 May − 13 September) − 2021 (11 May 
− 4 September) were 22.4 °C and 37.0 mm, and 22.8 °C and 
52.1 mm, respectively.

The initial soil properties showed that the texture of the 
experimental soil was sandy clay loam (USDA classifica-
tion) with medium alkalinity and medium lime content, and 
having low organic matter content without salinity problem 
(Table 1).

Irrigation system, irrigation water resources and 
analysis

Irrigation water was applied by surface drip irrigation sys-
tem using dripelines with an in-line dripper 2.3 L h− 1 flow 
rate at 0.1 MPa operation pressure with 33 cm spacing. The 
volume of applied irrigation water was controlled using a 
water meter placed on each plot.

The tap water was used as the fresh water source. The 
recycled wastewater was taken from the discharge point of 
the Biological Waste Water Treatment Plant, which con-
tains only domestic pollution elements of approximately 
125 000 inhabitants in the central Edremit district of Van. It 
was transported to the experimental area with a water tanker 
before each irrigation, transferred to polyethylene water 
tank and used in irrigation.

Water samples were taken to represent each month dur-
ing the irrigation periods. The results of quality analysis of 
irrigation water as the mean of the sampling periods and the 
two years are presented in Table 2. The methods and pro-
cedures used in analysis were described in Yerli and Sahin 
(2022).

It was concluded that the heavy metal contents of recy-
cled wastewater were below the maximum concentrations 
and there was no harm in using them in irrigation in terms 
of other quality criteria (Yerli and Sahin 2022), based upon 
the “Water Pollution Control Regulation” inland water 
resources classification (Anonymous 2008), “Waste Water 
Treatment Plants Technical Procedures Communique” 
(Anonymous 2010), and also according to other interna-
tional criteria (Ayers and Westcot 1994; EPA 2004).

Experimental design, tillage-sowing and irrigation 
practices

The experiment was carried out according to the split-
plots experimental design in random blocks and with three 

Table 1 Soil properties of the study field prior to the experiment
Property 0–30 cm 30–60 cm 60–90 cm
Sand (%) 45.6 44.5 46.7
Silt (%) 24.6 23.8 24.7
Clay (%) 29.8 31.8 28.6
Soil texture class Sandy clay loam
EC (dS m− 1) 0.335 0.363 0.390
pH 8.17 8.20 8.50
CaCO3 (%) 10.7 12.0 15.2
Organic matter (%) 1.36 1.23 1.03
Total Kjeldahl N (%) 0.081 0.078 0.079
P2O5 (kg ha− 1) 89 86 78
K2O (kg ha− 1) 878 890 910
Exchangeable Ca (cmol kg− 1) 14.91 15.23 14.99
Exchangeable Mg (cmol kg− 1) 5.11 5.21 5.21
Exchangeable Na (cmol kg− 1) 0.32 0.35 0.33
Exchangeable K (cmol kg− 1) 1.14 0.97 1.09
CEC (cmol kg− 1) 21.49 21.77 21.62
ESP (%) 1.48 1.62 1.53
B (mg kg− 1) 0.193 0.189 0.190
Fe (mg kg− 1) 4.25 3.96 3.25
Cu (mg kg− 1) 2.10 1.98 1.63
Mn (mg kg− 1) 7.45 6.93 5.11
Zn (mg kg− 1) 50.7 45.9 34.2
Pb (mg kg− 1) 3.35 3.20 2.86
Cd (mg kg− 1) 0.022 0.023 0.019
Cr (mg kg− 1) 0.165 0.145 0.131
Ni (mg kg− 1) 0.112 0.088 0.073
EC: Electrical conductivity, CEC: cation exchange capacity, ESP: 
exchangeable sodium percentage
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7.2 m (25.2 m2) dimensions, with 5 rows (70 cm interrow 
and 15 cm row spacing).

In the CT, the soil was first plowed with a plow, then the 
clods formed in the soil were broken down by using a culti-
vator-rotary harrow and the field surface was leveled. Sub-
sequently, silage maize seeds (cv. OSSK-644) were sowed 
via a pneumatic seeder. Sowing was carried out with a direct 
sowing machine on the same day as CT, without any tillage 
application in the NT plots.

Until the crop reaches 40–50 cm height, all plots were 
equally irrigated using only fresh water, with a 30% wet-
ting percentage so that the decreased moisture content at 
a depth of 30 cm was completed to the field capacity. In 
determining the irrigation time in this period, it has been 
taken into account that Σ [ETc – precipitation] reached 40% 
of the available water at 30 cm depth (≈ 19.1 mm). After 
this period, irrigation practices with wastewater were initi-
ated, separately for tillage-sowing practices. Thus, by deter-
mining the decrease in the moisture in the fresh water plots 
according to the field capacity, 100%, 67%, and 33% irriga-
tion applications with wastewater and also 100% irrigation 
applications with fresh water were carried out with a 65% 
wetting percentage. In order to determine irrigation time in 
this period, the fact that Σ [ETc – precipitation] reaches 40% 
of the available water at a depth of 90 cm (≈ 59.5 mm) was 
taken into account. To calculate the ETc used to determine 
the irrigation time (ETc = kc × ETo), kc was provided from 
the “Crop Water Consumption Guide for Irrigated Crops 
in Turkey”, and ETo was calculated daily in the Cropwat 
software using the data obtained from the climate station 
(Imetos 2) installed in the experimental area. The amounts 
and volumes of irrigation water applied for each plot were 
determined by basic equations (Kanber and Unlu 2010), the 
controls of irrigation water volumes were made with water 
meter readings. The amount of seasonal irrigation water 
applied to the subjects as a result of the study is given in 
Fig. 1.

replications. In the experiment, the main treatments were set 
as two different tillage-sowing practices; conventional till-
age (CT) and no-tillage (NT), and the sub-treatments were 
at 100% (full) (WW100), 67% (WW67) and 33% (WW33) 
levels irrigations (100%) with recycled wastewater, and a 
control group constituting at 100% (full) level irrigation 
with fresh water (FW100). Thus, the total number of plots 
was 24 (3 replications × 2 tillages-sowing practices × 4 irri-
gation treatments), and each plot was planned in 3.5 m × 

Table 2 Quality analysis results of irrigation waters
Property Fresh water Recycled wastewater
pH 8.14 ± 0.05 7.55 ± 0.08
EC (dS m− 1) 0.35 ± 0.01 1.12 ± 0.03
Ca (me l− 1) 0.98 ± 003 2.28 ± 0.09
Mg (me l− 1) 1.34 ± 0.06 3.06 ± 0.08
Na (me l− 1) 0.88 ± 0.03 4.13 ± 0.04
K (me l− 1) 0.14 ± 0.01 1.10 ± 0.09
CO3 (me l− 1) - -
HCO3 (me l− 1) 2.12 ± 0.06 5.10 ± 0.06
Cl (me l− 1) 0.38 ± 0.02 2.02 ± 0.06
SO4 (me l− 1) 0.81 ± 0.04 1.65 ± 0.08
NO3 (me l− 1) - 1.57 ± 0.05
B (mg l− 1) - 0.51 ± 0.03
Fe (mg l− 1) 0.05 ± 0.01 0.41 ± 0.01
Cu (mg l− 1) - 0.011 ± 0.001
Mn (mg l− 1) - 0.081 ± 0.007
Zn (mg l− 1) - 0.015 ± 0.001
Pb (mg l− 1) - 0.001 ± 0.001
Cd (mg l− 1) - 0.001 ± 0.001
Cr (mg l− 1) - 0.001 ± 0.001
Ni (mg l− 1) - 0.042 ± 0.002
Total Kjeldahl N (mg l− 1) - 10.89 ± 0.49
Total P (mg l− 1) - 1.49 ± 0.14
SSM (mg l− 1) - 25.06 ± 2.16
COD (mg l− 1) - 37.24 ± 1.21
BOD5 (mg l− 1) - 22.94 ± 0.877
SAR 0.83 ± 0.03 2.53 ± 0.04
Fecal coliform
(EMS 100 ml− 1)

- 144.2 ± 7.5

- : not detected, EC: electrical conductivity, SSM: suspended solid 
material, COD: chemical oxygen demand, BOD5: biological oxygen 
demand, SAR: sodium adsorption ratio

Fig. 1 Seasonal irrigation quanti-
ties in experimental years (100%, 
67% and 33% represent irrigation 
water levels)
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tubes, 9 ml HNO3 and 3 ml H2O2 were added and subjected 
to wet combustion at high pressure, and then the samples 
filtered through filter paper were determined by readings 
on the Inductively Coupled Plasma-Optical Emission Spec-
trometer device (Anonymous 2007).

Soil contamination indicators by heavy metals

The contamination factor (CF), enrichment factor (EF), 
geographic accumulation index (GAI), and the pollution 
load index (PLI) were calculated using the Eqs. 1, 2, 3, 
and 4 (Weissmannová and Pavlovský 2017; El-Anwar and 
Ahmed 2019) and used for determining the degree of pollu-
tion caused by heavy metals in soils.

CF =
C
Cr

 (1)

EF =
( C

CFe

)
( C

CFe

)
r
 (2)

GAI = log2

(
C

1.5× Cr

)
 (3)

PLI = n
√
CF1× CF2× . . .× CFn (4)

Where the CF is the contamination factor, the C is the metal 
concentration of the soil sample, the Cr is the value of the 
same element in the reference environment, the EF is the 
enrichment factor, the (C/CFe) is the ratio of heavy metal 
content to Fe content in the soil sample, the (C/CFe)r is the 
same ratio of heavy metal content in the reference environ-
ment, the GAI is geographic accumulation index, 1.5 is a 
constant factor depending on the formulation to improve the 
reference environment conditions, the PLI is pollution load 
index, the n is the number of heavy metals in the study. The 
contents of all heavy metals used in the calculation of the 
CF, EF, GAI, and the PLI were evaluated as mg kg− 1.

The metals that are generally referenced in the calcula-
tion of soil pollution indicators are Mn, Al, and Fe (Weiss-
mannová and Pavlovský 2017). However, since the trace 
elements of the soils may differ depending on the climate, 
environmental or other external conditions of the regions, 
the use of the same reference metals in different regions 
prevents the appropriate calculation of soil pollution indica-
tors. Therefore, calculating soil pollution indicators using a 
reference metal to represent the region is a more valuable 
approach (Santos-Francés et al. 2017). Accordingly, based 
on different studies carried out in the same region (Cak-
makci and Sahin 2021a), Fe was considered as the reference 
metal in the calculations. Also, since the surface soil layer 
is more critical in crop production (Dogan Demir and Sahin 

Cultural practices

For weed control in the CT, the first hoeing and the second 
hoeing was carried out when the crop height was 15–20 cm 
and 40–50 cm, respectively. Hoeing was not carried out 
in the NT, the weed characteristics of the field were deter-
mined and herbicide containing Linuron and 2.4-D Fluoro-
sulan active substance was applied.

In the first year, urea (45–46% N) and triple superphos-
phate (43–46% P2O5) fertilizers were applied to all plots at 
doses of 100 kg ha− 1 and 150 kg ha− 1, respectively, with 
seed sowing. The second urea fertilization was carried out 
by fertigation program equal to the first dose when the crop 
height was 40–50 cm (Celebi et al. 2010). However, the 
fertilization in the second year was applied to only FW100 
plots considering residual fertilizer effect form previous 
year in wastewater plots, and missing doses were com-
pleted based upon the result of total N and P2O5 analyzes 
before sowing. Thus 67 kg ha− 1 and 56 kg ha− 1 urea, 65 kg 
ha− 1 and 60 kg ha− 1 triple super phosphate fertilizers were 
applied to the FW100 plots of CT and NT, respectively, in 
the seed sowing. The second urea fertilization was carried 
out by fertigation equal to the first dose when the height was 
40–50 cm as in the first year.

Soil analysis

At the end of both years of the experiment, soil samples were 
taken from the midpoint of the middle row of all parcels, 
from three different layers, to a depth of 90 cm (0–30 cm, 
30–60 cm, 60–90 cm), within the wet front. In soil samples, 
EC (Corwin and Rhoades 19824) and pH (McLean 1982) 
were determined by direct reading in the saturation extract. 
The principles of Calcimeter, Walkley-Black, and Kjeldahl 
methods were applied for CaCO3 (Nelson 1982), organic 
matter (Nelson and Sommers 1982), and total N (Bremner 
and Mulvaney 1982) analyses, respectively. Plant available 
P (Olsen et al. 1982) and exchangeable K (Knudsen et al. 
1982) were determined using Atomic Absorption Spectro-
photometer and fleymphotometer, respectively. By shaking 
the samples with 1 N ammonium acetate, the displacement 
of cations was ensured and the quantifying exchangeable 
cations (K+, Ca++, + Mg++ and + Na+) were determined by 
reading in Atomic Absorption Spectrophotometer (Thomas 
1982). CEC was calculated by the sum of four exchangeable 
cations determined in soil. Exchangeable Sodium Percent-
age (ESP) was obtained as a percentage Exchangeable Na/
CEC (Kanber and Unlu 2010). The microelements (B, Fe, 
Cu, Mn, Zn) and and non-essential heavy metals (Pb, Cd, 
Cr and Ni) were analyzed according to DTPA extraction in 
available form. After air-dry soil samples sieved through a 
0.15 mm sieve were placed in the wet combustion device 
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carried out on 0–30 cm soil layer and in the mean of the 
experimental years (Cakmakci and Sahin 2021a). Thus, 
by accepting the variables of tillage-sowing and irrigation 
practices as constant, the importance and interactions of 
the variables were analyzed in the SPSS package program 
adopting the General Linear Model approach and the mean 
values   were compared at 5% probability level by the Dun-
can multiple comparison test. Correlograms with a scatter-
plot, correlation coefficient, and variable distribution were 
built using the RStudio package to determine the correlation 
relationships among parameters.

Results and discussion

Soil chemical properties (EC, pH, CaCO3 organic 
matter, total Kjeldahl N, plant available P and K)

The effects of both irrigation and tillage-sowing practices 
on EC, organic matter, total Kjeldahl N, and plant available 
P and K (as P2O5 and K2O) values were significant, and 
the effect of only irrigation treatments on pH and CaCO3 
values was significant (Table 3). The EC values increased 
compared to the pre-experimental values (Table 1); how-
ever, a higher increase was determined by 2.2 times in full 
irrigation with wastewater. A positive correlation was deter-
mined between the EC and the amount of irrigation water 

2017), the 0–30 cm soil layer was accepted as the reference 
environment layer for the present study. The evaluation of 
soil pollution indicators by heavy metals was carried out 
according to Zhao et al. (2014) and Weissmannová and Pav-
lovský (2017).

Heavy metal content of silage maize crops

At the end of both years, the harvested silage maizes were 
kept for a certain period of time until they became air-dry. 
Then, dried-milled-sieved crop samples were subjected to 
wet burning in wet burning device tubes, and the essen-
tial heavy metal (Fe, Cu, Mn, Zn) and non-essential heavy 
metal (Pb, Cd, Cr, Ni) contents of the samples filtered on 
filter paper were determined by reading in an Inductively 
Coupled Plasma-Optical Emission Spectrometer (Anony-
mous 2007).

Evaluation of the dataset

The ANOVA analysis was performed for all parameters 
to determine the differences in the experimental years 
(2020 and 2021) and soil layers (0–30 cm, 30–60 cm, and 
60–90 cm), and the results showed that there was a gen-
eral similarity for all parameters in the experimental years 
and soil layers. Also, considering that the surface soil layer 
is more critical in crop production, the evaluations were 

Table 3 The chemical properties of the soil in different irrigation and tillage-sowing treatments
Treatment EC

(dS m− 1)
pH CaCO3

(%)
Organic
matter (%)

Total Kjeldahl N
(%)

P2O5
(kg ha− 1)

K2O
(kg ha− 1)

CT FW100 0.542 ± 0.006 8.13 ± 0.01 10.3 ± 0.01 1.75 ± 0.01 0.088 ± 0.001 110 ± 1.8 905 ± 1
WW100 0.735 ± 0.004 7.92 ± 0.01 9.1 ± 0.02 2.04 ± 0.01 0.127 ± 0.003 131 ± 0.6 1007 ± 7
WW67 0.587 ± 0.003 8.10 ± 0.02 9.4 ± 0.02 1.81 ± 0.01 0.111 ± 0.001 126 ± 0.2 967 ± 3
WW33 0.442 ± 0.006 8.12 ± 0.01 10.5 ± 0.01 1.52 ± 0.02 0.082 ± 0.001 124 ± 0.4 883 ± 2

NT FW100 0.520 ± 0.004 8.13 ± 0.01 10.3 ± 0.02 1.77 ± 0.02 0.096 ± 0.001 115 ± 0.5 917 ± 3
WW100 0.710 ± 0.004 7.94 ± 0.01 9.1 ± 0.03 2.08 ± 0.01 0.137 ± 0.003 134 ± 0.4 1015 ± 3
WW67 0.561 ± 0.005 8.10 ± 0.02 9.4 ± 0.02 1.83 ± 0.02 0.120 ± 0.001 127 ± 0.3 972 ± 1
WW33 0.423 ± 0.004 8.13 ± 0.01 10.6 ± 0.02 1.55 ± 0.01 0.087 ± 0.001 125 ± 0.8 882 ± 4

Irrigation FW100 0.531 ± 0.006 C 8.13 ± 0.01 A 10.3 ± 0.01 B 1.76 ± 0.01 C 0.092 ± 0.002 C 112 ± 1.3 D 911 ± 3 C
WW100 0.723 ± 0.006 A 7.93 ± 0.01 C 9.1 ± 0.02 D 2.06 ± 0.01 A 0.132 ± 0.003 A 133 ± 0.7 A 1011 ± 4 A
WW67 0.574 ± 0.006 B 8.10 ± 0.01 B 9.4 ± 0.02 C 1.82 ± 0.01 B 0.116 ± 0.002 B 126 ± 0.3 B 970 ± 2 B
WW33 0.433 ± 0.005 D 8.13 ± 0.01 A 10.6 ± 0.01 A 1.54 ± 0.01 D 0.085 ± 0.001 D 125 ± 0.5 C 883 ± 2 D

Tillage-
sowing

CT 0.577 ± 0.032 A 8.07 ± 0.03 9.8 ± 0.18 1.78 ± 0.06 B 0.102 ± 0.005 B 123 ± 2.4 B 941 ± 2 B
NT 0.554 ± 0.031 B 8.08 ± 0.02 9.9 ± 0.19 1.81 ± 0.06 A 0.110 ± 0.006 A 125 ± 2.1 A 947 ± 2 A

P
value

Interaction 0.866 0.903 0.0725 0.602 0.317 0.088 0.315
Irrigation 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Tillage-sowing 0.000 0.245 0.732 0.008 0.000 0.000 0.031

Mean
square

Interaction 0.241 0.189 0.444 0.637 1.272 2.597 1.280
Irrigation 1 497.082 129.859 2 439.663 585.404 310.514 255.793 5.558
Tillage-sowing 55.680 1.455 0.121 9.062 43.854 22.028 528.645

CT: Conventional tillage, NT: No-tillage, FW100: Full irrigation with fresh water, WW100: Full irrigation with recycled wastewater, WW67: 
Irrigation at 67% level with recycled wastewater, WW33: Irrigation at 33% level with recycled wastewater, ±: Standard error of the mean, Sig-
nificant differences at 5% probability level between treatments are indicated by different letters
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et al. 2014; Tunc and Sahin 2016; Dogan Demir and Sahin 
2017). Less N contribution of wastewater to the soil under 
deficit irrigation conditions (Table 3) explains the limitation 
in pH reduction (Cakmakci and Sahin 2021a). The negative 
correlation relations of pH with irrigation water amount and 
total N (P < 0.01) also support this result (Fig. 2).

The CaCO3 values in WW33 and FW100 were close 
to the pre-experimental values (Table 1); whereas CaCO3 
decreased significantly in WW100 and WW67. This 
decrease was associated with a decrease in pH due to the 
positive correlation between CaCO3 and pH (Fig. 2). This 
can be explained by low pH values in the soil increase 
CaCO3 solubility. Kiziloglu et al. (2008), Tunc and Sahin 
(2016), and Dogan Demir and Sahin (2017) have reported 
that irrigation with wastewater leads to a decrease in pH, 
resulting in a decrease in the CaCO3 content.

Organic matter increased in all irrigation and tillage-
sowing treatments compared to the pre-experimental values 
(Table 1), and the increase was significant in WW100. The 
higher increase in irrigation conditions with wastewater 
compared to fresh water can be evaluated in relation to the 
higher COD and BOD5 content of wastewater (Table 2). In a 
similar with, Bedbabis et al. (2015) have reported increases 
in soil organic matter due to the high COD and BOD5 con-
tent of wastewater under wastewater irrigation conditions. 
In previous studies, it has been reported that soil organic 

(Fig. 2). The higher EC values in WW100 can be considered 
a result of wastewater containing more salt than fresh water 
(Table 2). In various studies, the EC values increased due 
to irrigation with wastewater (Singh et al. 2012; Cicek et 
al. 2013; Bedbabis et al. 2014) and it was reported that this 
increase was limited by the deficit irrigation with wastewa-
ter (Tunc and Sahin 2016; Dogan Demir and Sahin 2017; 
Cakmakci and Sahin 2021a). Also, with a similar approach, 
due to less irrigation water amount of the NT (Fig. 1), soil 
EC value was lower than the CT.

The pH values decreased in all irrigation treatments 
compared to the pre-experimental values (Table 1); how-
ever, this decrease was substantially higher in WW100. The 
wastewater has a significantly lower pH value than fresh-
water (Table 2) and likely has a greater buffering capacity. 
The fact that the soil pH was found to be lower in WW100 
compared to FW100 can be related to the high N content of 
the wastewater (Table 2). The soil pH decreases as a result 
of the release of three protons (H+) for each mole of NO2 
formed by the nitrification of NH3 with the introduction of 
N into the soil (Silva et al. 2016). Also, soil acidity may 
increase as a result of the decomposition of organic acids 
and organic substances in the soil under irrigation with 
wastewater conditions (Vaseghi et al. 2005). Many studies 
reported that soil pH values decrease due to irrigation with 
wastewater (Singh et al. 2012; Cicek et al. 2013; Bedbabis 

Fig. 2 Correlation matrix among parameters (***: P < 0.001, **: P < 0.01, *: P < 0.05)
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The exchangeable cations, cation exchange capacity 
and exchangeable sodium percentage of the soil

The effects of irrigation treatments on CEC, ESP, and all 
exchangeable cations and the effects of tillage-sowing prac-
tices on CEC and exchangeable Ca and Na values were 
significant (Table 4). Except for WW33, the Ca, Na and K 
values increased in all irrigation and tillage-sowing appli-
cations compared to the pre-experimental values (Table 1). 
The highest increase was determined in WW100, whereas 
Mg decreased in all treatments (Table 1). While the increas-
ing exchangeable cation content of soil in the WW100 treat-
ment can be explained depending on the cation content of 
the wastewater (Table 2), the decreasing content in the defi-
cit irrigation can be evaluated due to less cation entry into 
the soil with wastewater. Similarly, Cakmakci and Sahin 
(2021a) also stated that cations in the soil increased by irri-
gation with wastewater, but the increasing rate decreased 
in deficit irrigation with wastewater. In addition, in many 
studies, the exchangeable cation content of soils increased 
due to irrigation with wastewater (Singh et al. 2009, 2012; 
Silva et al. 2016; Feder 2021) and it has been reported that 
exchangeable cations decreased with increase in deficit irri-
gation level (Cicek et al. 2013; Tunc and Sahin 2016; Dogan 
Demir and Sahin 2020).

The fact that the exchangeable Ca and Na contents in the 
NT were also lower than in the CT was thought to be related 
to the decrease in Ca and Na passage to the soil due to less 
irrigation quantity in the NT (Fig. 1). Furthermore, the fact 
that the exchangeable Mg was below the soil’s initial con-
tent (Table 1) can be regarded as an indication that Mg plays 
an active role in the nutrition of silage maize. Rehm et al. 
(2002) have reported that Mg is an essential nutrient for 
maize. Additionally, competition between exchangeable Mg 
and Ca can be mentioned (Rufyikiri et al. 2002). Unlukara 
et al. (2008) stated that increasing the amount of exchange-
able Ca in the soil by using water with high salt content in 
irrigation may increase Mg uptake from crop.

The CEC increased significantly in WW100 compared to 
pre-experimental values (Table 1), and it was partially close 
to the pre-experimental values in FW100, the CT, and the 
NT, whereas decreased in WW67 and WW33 applications. 
Lower CEC values in the NT were found due to less Ca, 
Mg, Na, and K contents in the soil (Table 4). The increase in 
CEC in WW100 can be associated with the cation content of 
the wastewater and also the high organic matter contribution 
of the wastewater to the soils (Tables 2 and 3). Wastewa-
ter treatment increased organic matter content in soil and 
then CEC. Thus, it was believed that our findings reliably 
reflect organic matter affects CEC. The positive correlation 
between CEC and organic matter also supported this result 
(Fig. 2). The organic matter increased in soil supports the 

matter content was enriched due to irrigation with waste-
water (Dogan Demir and Sahin 2020; Liu et al. 2021). Also, 
it was thought that crop residues contribute to the increase 
of organic matter in the soil as a result of the better devel-
opment of crops irrigated with wastewater (Cakmakci and 
Sahin 2021a). Similarly, the increase under freshwater irri-
gation relative to pre-experimental values was evaluated to 
be because of the decomposition of plant residues remain-
ing in the soil due to crop production. Organic matter val-
ues, which increased at lower levels in WW33, can also be 
explained by the limitation of organic matter accumulation 
due to less water application to the soil as mentioned by 
Dogan Demir and Sahin (2017).

It is thought that the increase in mineralization and 
decomposition as a result of increased aeration due to till-
age may have caused the CT to have lower organic matter 
than the NT. Malhi et al. (2018) reported that the increase 
in mineralization and decomposition as a result of increased 
aeration due to tillage caused the NT to have lower organic 
matter than the NT. Crop residues also left on the soil sur-
face in the NT enrich the soil with organic matter (Taba-
glio et al. 2009). In numerous studies, it has been reported 
that organic matter increased in the NT compared to that in 
intensive tillage (Yang et al. 2019; Gozubuyuk et al. 2020; 
Kan et al. 2020).

The total Kjeldahl N, P2O5, and K2O increased in all irri-
gation and tillage-sowing treatments compared to the pre-
experimental values (Table 1). This increase was the highest 
in WW100 with the rich N, P, and K content of the wastewa-
ter, and decreased by less nutrient inputs due to less water 
application to the soil. In many studies, total N, P2O5, and 
K2O increased due to irrigation with wastewater (Galavi 
et al. 2010; Tunc and Sahin 2017; Erel et al. 2019; Xi et 
al. 2021) and limited by the deficit wastewater irrigation 
application (Tunc and Sahin 2016; Dogan Demir and Sahin 
2017; Cakmakci and Sahin 2021a).

The higher total N, P2O5, and K2O content in the NT 
compared to the CT can be explained by the contribution 
of crop residues to the increase in the N, P, and K content 
of the soil. Also, increased decomposition in the soil as a 
result of intensive tillage with the CT application may have 
reduced the total N, P2O5, and K2O content. Malhi et al. 
(2018) have reported that intensive tillage causes a decrease 
in the N content of the soil by increasing the incorporation 
of crop residues into the soil. Schmer et al. (2014) have 
stated that the NT application increased N accumulation on 
the soil surface. Dalal et al. (2011) have stated that crop resi-
dues have positive contributions to increasing the amount of 
macro and secondary elements in minimum tillage.
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The DTPA extractable microelement and heavy 
metal contents of soil samples

The effects of irrigation treatments and tillage-sowing prac-
tices on all microelement and heavy metal contents were 
significant (Table 5). The microelement and heavy metal 
contents increased compared to the pre-experimental values 
in wastewater irrigation and tillage-sowing applications, the 
increases were limited in FW100 and the values were found 
close to the initial contents (Table 1). The higher micro-
element and heavy metal content in wastewater irrigation 
conditions compared to fresh water irrigation was associ-
ated with the microelement and metal content of the waste-
water (Table 2). However, due to the decrease in the level 
of irrigation with wastewater, the passage of heavy metals 
to the soil was limited. Various studies have reported that 
microelement and heavy metal accumulation in the soil 
increased as a result of irrigation with wastewater (Galavi 
et al. 2010; Avci and Deveci 2013; Tunc and Sahin 2017; 
Cakmakci and Sahin 2021a; Nawaz et al. 2021). The higher 
amount of microelements and heavy metal accumulation 
in the CT compared to the NT application was associated 
with the more amount of irrigation water in the CT (Fig. 1). 
However, unlike other microelements and heavy metals, Fe 

development of CEC of the soil by providing a larger CEC 
volume, thanks to the negatively charged surfaces of the 
organic matter (Villa et al. 2021). In addition, the presence 
of sufficient organic matter in soil also reduces loss of CEC 
of the soil (Curtin et al. 2015). Similarly, many studies have 
reported that the exchangeable cation contents of the surface 
soil increase due to irrigation with wastewater (Khurana and 
Singh 2012; Cicek et al. 2013; Silva et al. 2016). Dogan 
Demir and Sahin (2020) have stated that the CEC decreased 
due to the increase in deficit level in wastewater irrigation.

The ESP increased in all irrigation treatments compared 
to the pre-experimental values (Table 1), and the highest and 
the lowest increases were in WW100 and WW33, respec-
tively. The change of ESP is directly related to the trends 
of exchangeable Na and CEC, which are the formulaic cal-
culation components of the ESP. Therefore, the higher and 
lower ESP values in WW100 and WW33 can be explained 
by exchangeable Na content and CEC (Table 4). Sou et al. 
(2013); Cakmakci and Sahin (2021a) have reported that 
increased ESP values in wastewater irrigation conditions 
were due to the Na content increasing more than the CEC.

Table 4 The exchangeable cations, cation exchange capacity and exchangeable sodium percentage of the soil in different irrigation and tillage-
sowing treatments
Treatment Exchangeable Ca 

(cmol kg− 1)
Exchangeable 
Mg (cmol kg− 1)

Exchangeable Na 
(cmol kg− 1)

Exchangeable 
K (cmol kg− 1)

CEC
(cmol kg− 1)

ESP
(%)

CT FW100 16.13 ± 0.03 4.15 ± 0.02 0.52 ± 0.004 1.21 ± 0.01 22.02 ± 0.04 2.38 ± 0.02
WW100 17.24 ± 0.01 4.37 ± 0.02 0.59 ± 0.003 1.40 ± 0.04 23.59 ± 0.06 2.48 ± 0.02
WW67 15.23 ± 0.12 4.08 ± 0.03 0.48 ± 0.005 1.23 ± 0.02 21.01 ± 0.15 2.30 ± 0.02
WW33 14.83 ± 0.04 3.86 ± 0.05 0.34 ± 0.010 1.12 ± 0.02 20.16 ± 0.03 1.69 ± 0.05

NT FW100 16.02 ± 0.07 4.12 ± 0.06 0.51 ± 0.003 1.20 ± 0.02 21.84 ± 0.10 2.33 ± 0.02
WW100 17.03 ± 0.06 4.34 ± 0.01 0.58 ± 0.004 1.38 ± 0.03 23.32 ± 0.07 2.46 ± 0.01
WW67 15.04 ± 0.05 4.06 ± 0.01 0.47 ± 0.004 1.23 ± 0.01 20.80 ± 0.06 2.25 ± 0.01
WW33 14.74 ± 0.05 3.93 ± 0.02 0.34 ± 0.003 1.10 ± 0.02 20.12 ± 0.08 1.67 ± 0.02

Irrigation FW100 16.08 ± 0.04 B 4.14 ± 0.03 B 0.52 ± 0.004 B 1.21 ± 0.01 B 21.93 ± 0.06 B 2.36 ± 0.02 B
WW100 17.14 ± 0.05 A 4.36 ± 0.01 A 0.59 ± 0.003 A 1.39 ± 0.02 A 23.46 ± 0.07 A 2.47 ± 0.01 A
WW67 15.14 ± 0.07 C 4.07 ± 0.01 B 0.48 ± 0.005 C 1.23 ± 0.01 B 20.91 ± 0.09 C 2.28 ± 0.02 C
WW33 14.79 ± 0.03 D 3.90 ± 0.03 C 0.34 ± 0.004 D 1.11 ± 0.01 C 20.14 ± 0.04 D 1.68 ± 0.03 

D
Tillage-sowing CT 15.86 ± 0.28 A 4.12 ± 0.06 0.48 ± 0.027 A 1.24 ± 0.03 21.70 ± 0.39 A 2.21 ± 0.09

NT 15.71 ± 0.27 B 4.11 ± 0.03 0.47 ± 0.026 B 1.23 ± 0.03 21.52 ± 0.37 B 2.18 ± 0.09
P
value

Interaction 0.773 0.390 0.652 0.979 0.604 0.810
Irrigation 0.000 0.000 0.000 0.000 0.000 0.000
Tillage-sowing 0.005 1.000 0.004 0.475 0.011 0.059

Mean
square

Interaction 0.374 1.069 0.555 0.062 0.634 0.321
Irrigation 558.611 74.890 841.636 50.925 576.283 395.406
Tillage-sowing 10.749 0.000 11.271 0.534 8.247 4.135

CT: Conventional tillage, NT: No-tillage, FW100: Full irrigation with fresh water, WW100: Full irrigation with recycled wastewater, WW67: 
Irrigation at 67% level with recycled wastewater, WW33: Irrigation at 33% level with recycled wastewater, CEC: Cation exchange capacity, 
ESP: Exchangeable sodium percentage, ±: Standard error of the mean, Significant differences at 5% probability level between treatments are 
indicated by different letters
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crops and increasing the mobilization of heavy metals away 
from the rhizosphere region (Cakmakci and Sahin 2021a). 
Singh et al. (2009) and Navarro-Pedreño et al. (2018) have 
reported a strong positive correlation between heavy metals 
in soil with organic matter. In another, it has been stated 
that the contribution of organic matter to soil decreased the 
heavy metal uptake of crops and increased the accumulation 
of heavy metals in the soil (Fijałkowski et al. 2012).

High N input to the soil significantly increases the 
heavy metal content (Bolan et al. 2014). This increase was 
explained by the indirect effect of N on pH (Cakmakci and 
Sahin 2021a). Ammonium, a formation of N, increases 
the effectiveness of heavy metals by decreasing soil pH 
(Fijałkowski et al. 2012). Similarly, phosphate compounds 
can directly trigger the mobility of heavy metals (Bolan et 
al. 2014). The relationship between heavy metals and CEC 
can be explained by the relationship of CEC with organic 
matter and clay minerals. The increase in organic matter in 
the soil can increase heavy metal mobility as well as support 
the increase of CEC and cause heavy metal accumulation in 
the soil (Kizilkaya et al. 2004). Xiao et al. (2022) pointed 
out that CEC and heavy metal concentration in the soil may 
show a positive correlation.

Although heavy metals increased in wastewater irriga-
tion treatments after the study, Zn, Cu, Cd, Ni, Pb and Cr 
contents were below the limit values (Zn: 300 mg kg− 1, 
Cu: 140 mg kg− 1, Cd: 3 mg kg− 1, Ni: 75 mg kg− 1 and Pb: 
300 mg kg− 1) specified by the World Health Organization 
(Khan et al. 2013). Considering the National Regulation 
also, that the Zn, Cu, Cd, Ni, Pb and Cr contents were below 
the limit values (Zn: 200 mg kg− 1, Cu: 100 mg kg− 1, Cd: 
1.5 mg kg− 1, Ni: 70 mg kg− 1, Pb: 100 mg kg− 1 and Cr: 
100 mg kg− 1 for pH ≥ 7) (Anonymous 2010).

Soil contamination indicators by heavy metals

The CF values showed moderate enrichment for B, Fe, Cu, 
Mn, Zn micronutritions and contamination for non-essen-
tial heavy metals Pb and Cr in two tillage-sowing practices 
also, whereas they showed considerable pollution for Ni in 
WW100 and WW67 treatments, for Cd in WW100 treat-
ment (Fig. 3).

Examining the EF values, minimal enrichment was 
observed in all applications for B, Cu, Mn, Zn, Pb, and 
Cr, while the pollution degree was determined at moderate 
enrichment level for Cd and Ni in WW100 in CT and Cd in 
WW100 in the NT practice. However, in WW100, the pol-
lution level was at the limit for Ni (Fig. 4).

Considering the GAI values, the B, Fe, Cu, Mn, Zn, and 
Cr heavy metals were found at unpolluted and unpolluted 
to moderately polluted levels in all treatments, whereas 
Pb was found at the lowest pollution level (unpolluted) in 

was higher in the NT. This may be due to the antagonistic 
or synergistic effects of Fe with B, Mg, Ca, P, and N ele-
ments (Sonmez et al. 2006). Also, the differentiation of the 
accumulation of some heavy metals in the soil by organic 
matter, clay, Fe, and Al oxides (Montiel-Rozas et al. 2016) 
may explain this result. In general, it has been reported that 
lower amounts of microelements and heavy metal contents 
are obtained in the NT or reduced soil tillage applications in 
many studies (García-Marco et al. 2014; Gómez-Rey et al. 
2014; Kumar and Kumari 2020).

Soil pH, CaCO3, EC, organic matter, total N, P2O5, K2O, 
and CEC play an important role in the accumulation of 
heavy metals in the soil. In the present study, heavy metals 
were in a negative correlation with pH and CaCO3, whereas 
a positive correlation with EC, organic matter, total N, P2O5, 
K2O and CEC (Fig. 2). Wei et al. (2020) determined a nega-
tive correlation relationship between heavy metal content 
in the soil and soil pH. In soils irrigated with wastewater, 
increases in heavy metal contents can be observed since 
hydrogen ions, which occur due to the decrease in pH, cre-
ate a higher attraction power than metal ions (Singh et al. 
2009). In general, pH values   lower than 6.5 to 7.0 favor the 
availability and mobility of heavy metals (Khaskhoussy et 
al. 2015).

The effect of CaCO3 on heavy metals can be indirectly 
evaluated by pH effect. Decreased pH increases CaCO3 sol-
ubility, causing a decrease in CaCO3 in soil (Table 3), thus 
increasing the availability of heavy metals (Table 5) (Cak-
makci and Sahin 2021a). Similarly, Mico et al. (2006) have 
reported that a significant negative correlation was deter-
mined between CaCO3 and heavy metals.

High soil water salinity causes osmotic stress in crops 
growth. In these conditions, even if there is water in the soil, 
the plant cannot benefit from water sufficiently, therefore, 
with the decrease in water intake, the intake of nutrient and 
metals is also limited. Nutrients and metals that the crop 
cannot absorb tend to accumulate in soil, and the behav-
ior of metals in soil changes significantly (Bartkowiak et 
al. 2020). Bolan et al. (2014) pointed out that the mobility 
of heavy metals increased due to the increase in salinity in 
the soil. Similarly, Acosta et al. (2011) stated that increasing 
soil EC increased the mobilization of heavy metals. Cak-
makci and Sahin (2021a) also determined a positive correla-
tion between soil EC and heavy metals.

The increasing amount of organic matter in soil reduces 
heavy metal uptake of crops and causes soil contamination. 
Soil organic matter content directly or indirectly affects the 
distribution of heavy metals in soil (Bolan et al. 2014). Low 
molecular weight organic acids in the structure of organic 
matter increase the accumulation of heavy metals in soil and 
control their distribution (Park et al. 2016). These organic 
acids act as chelators, limiting the uptake of heavy metals by 
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The PLI values   showing the total pollution load of heavy 
metals in the soil resulted in the moderately polluted level 
in WW100 (Fig. 6). The WW67 and WW33 treatments 
listed after WW100 in terms of pollution load showed an 
unpolluted to the moderate pollute level of pollution load. 
The FW100 treatment at the same pollution class; however, 

all treatments (Fig. 5). Ni was at the moderately polluted 
level in WW100 and WW67 for both tillage-sowing prac-
tices, while Cd was at the moderately polluted level only 
in WW100. In WW67, Cd was determined from unpolluted 
to moderately polluted level, while in WW33 it was deter-
mined just below this level.

Fig. 4 Enrichment factor (EF) for 
soil heavy metals in different irri-
gation and tillage-sowing treat-
ments (FW100: Full irrigation 
with fresh water, WW100: Full 
irrigation with recycled waste-
water, WW67: Irrigation at 67% 
level with recycled wastewater, 
WW33: Irrigation at 33% level 
with recycled wastewater)

 

Fig. 3 Contamination factor (CF) 
for soil heavy metals in different 
irrigation and tillage-sowing 
treatments (FW100: Full irriga-
tion with fresh water, WW100: 
Full irrigation with recycled 
wastewater, WW67: Irrigation at 
67% level with recycled waste-
water, WW33: Irrigation at 33% 
level with recycled wastewater)
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Cd and Ni. Khaskhoussy et al. (2015) have stated that the 
Cd and Ni concentrations in the soil exceeded the threshold 
values   in irrigation with wastewater.

Microelement and heavy metal content of silage 
maize crop

The effect of irrigation treatments on all microelement 
and heavy metal contents of silage maize   was significant, 
whereas the effect of tillage-sowing practices was signifi-
cant for only Cd (Table 6). Microelement and non-essential 
heavy metal content of silage maize increased under waste-
water irrigation and resulted in an accumulation in the form 
of Fe > Mn > Zn > Cu > Cr > Ni > Pb > Cd.

exceeded the unpolluted to moderate pollute pollution level 
by a very low amount and remained at the limit.

As a result, although the level of heavy metals in 
wastewater irrigation conditions did not pose a significant 
problem (Figs. 3, 4, 5 and 6) in terms of essential and non-
essential heavy metal pollution indices, it was seen that 
heavy metal tend to accumulate in the soil in wastewater 
irrigation. Especially in terms of non-essential heavy metals 
Cd and Ni, the effect of this risk increases even more. Con-
sidering the high harmful impact of Cd and Ni among heavy 
metals (Yerli et al. 2020), this may affect forage quality in 
silage maize under the irrigation conditions with wastewa-
ter. SimilarlyCakmakci and Sahin (2021a) have stated that 
the pollution indicators in the silage maize field irrigated 
with recycled wastewater are at risky levels, especially for 

Fig. 6 Pollution load index (PLI) 
for soil heavy metals in different 
irrigation and tillage-sowing 
treatments (FW100: Full irriga-
tion with fresh water, WW100: 
Full irrigation with recycled 
wastewater, WW67: Irrigation at 
67% level with recycled waste-
water, WW33: Irrigation at 33% 
level with recycled wastewater)

 

Fig. 5 Geographic accumulation 
index (GAI) for soil heavy metals 
in different irrigation and tillage-
sowing treatments (FW100: 
Full irrigation with fresh water, 
WW100: Full irrigation with 
recycled wastewater, WW67: 
Irrigation at 67% level with 
recycled wastewater, WW33: Irri-
gation at 33% level with recycled 
wastewater)
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evaluated as related to the higher Cd accumulation in the 
soil of the CT compared to NT (Table 5) and the contribu-
tion of higher irrigation water amount (Fig. 5) to Cd uptake 
in this treatment. In addition, it is thought that the element 
uptake differences between tillage-sowing practices may 
occur with the changing root development depending on the 
change in the tillage-sowing practice or may be caused by 
the differentiation of the interactions between the elements 
as a result of the possible effects of the tillage-sowing prac-
tice on the soil properties. Sungur et al. (2014) stated that 
element uptake into the crop is closely related to many soil 
properties, especially soil pH, CaCO3, organic matter and 
CEC. Kobaissi et al. (2014) stated that Fe content in soil 
reduced the uptake of heavy metals, especially Cd. There-
fore, the fact that Fe content in soil was determined higher 
under the NT conditions compared to the CT application 
(Table 5) may also support this situation.

Considering that maize is a potential accumulator crop 
(Aladesanmi et al. 2019), increased heavy metal contents 
in soil under wastewater irrigation conditions (Table 5) 
caused more heavy metal accumulation in the organs of 
maize. As parallel to the results of this study, the results of 
many studies have also revealed that due to the high ele-
ment content of wastewater, heavy metal accumulation in 
the crop increases with accumulation in soil (Kiziloglu et al. 
2008; Avci and Deveci 2013; Erel et al. 2019; Cakmakci and 
Sahin 2021a; Nawaz et al. 2021). In addition, it has been 
determined in many studies that the heavy metal contents of 
the crop decrease due to the deficit irrigation (Simsek et al. 
2011; Dogan Demir and Sahin 2017; Tunc and Sahin 2017).

Kobaissi et al. (2014) stated that Cd was the most accu-
mulated heavy metal in the leaf of maize irrigated with 
wastewater. It has been stated that Cd contents in the tissues 
of the crops are highly correlated with Cd concentrations 
in the solution (Grant et al. 1998). In this case, the higher 
Cd content in crops grown under the CT conditions can be 

Table 6 The essential heavy metal (Fe, Cu, Mn, Zn) and non-essential heavy metal (Pb, Cd, Cr, Ni) contents of the silage maize crop in different 
irrigation and tillage-sowing treatments
Treatment Fe (mg kg− 1) Cu (mg 

kg− 1)
Mn (mg 
kg− 1)

Zn (mg 
kg− 1)

Pb (mg kg− 1) Cd (mg kg− 1) Cr (mg kg− 1) Ni (mg kg− 1)

CT FW100 147.7 ± 2.2 3.88 ± 0.15 24.1 ± 0.4 24.3 ± 0.1 0.055 ± 0.001 0.060 ± 0.002 0.20 ± 0.01 0.039 ± 0.001
WW100 182.8 ± 1.8 7.32 ± 0.14 61.9 ± 0.8 42.9 ± 0.4 0.308 ± 0.004 0.201 ± 0.001 0.98 ± 0.04 0.209 ± 0.004
WW67 152.3 ± 2.6 5.90 ± 0.15 47.9 ± 0.7 37.2 ± 0.7 0.242 ± 0.003 0.139 ± 0.002 0.72 ± 0.06 0.164 ± 0.001
WW33 114.7 ± 1.6 2.32 ± 0.11 13.7 ± 0.2 20.0 ± 0.6 0.162 ± 0.004 0.068 ± 0.001 0.48 ± 0.02 0.088 ± 0.002

NT FW100 148.9 ± 2.4 4.00 ± 0.12 24.4 ± 0.4 24.0 ± 0.4 0.053 ± 0.001 0.048 ± 0.003 0.19 ± 0.01 0.038 ± 0.002
WW100 182.5 ± 1.3 7.29 ± 0.11 62.4 ± 0.4 42.8 ± 0.4 0.304 ± 0.003 0.193 ± 0.003 0.85 ± 0.02 0.206 ± 0.002
WW67 156.9 ± 4.0 5.82 ± 0.17 49.5 ± 0.6 39.7 ± 0.8 0.239 ± 0.003 0.129 ± 0.004 0.72 ± 0.02 0.164 ± 0.002
WW33 111.7 ± 2.0 2.49 ± 0.05 13.7 ± 0.2 19.8 ± 0.4 0.165 ± 0.007 0.058 ± 0.001 0.44 ± 0.01 0.089 ± 0.002

Irriga-
tion

FW100 148.3 ± 1.5 C 3.94 ± 0.09 C 24.3 ± 0.3 C 24.2 ± 0.2 C 0.054 ± 0.001 
D

0.054 ± 0.003 
D

0.20 ± 0.01 
D

0.039 ± 0.001 
D

WW100 182.7 ± 1.0 A 7.31 ± 0.08 A 62.2 ± 0.4 A 42.9 ± 0.3 A 0.306 ± 0.003 A 0.197 ± 0.002 A 0.92 ± 0.03 A 0.208 ± 0.002 A
WW67 154.6 ± 2.4 B 5.86 ± 0.01 B 48.7 ± 0.6 B 37.0 ± 0.5 B 0.241 ± 0.002 B 0.134 ± 0.003 B 0.72 ± 0.03 B 0.164 ± 0.001 B
WW33 113.2 ± 1.4 D 2.41 ± 0.06 

D
13.7 ± 0.1 
D

19.9 ± 0.3 
D

0.164 ± 0.004 C 0.063 ± 0.002 C 0.46 ± 0.01 C 0.089 ± 0.001 C

Tillage-
sowing

CT 149.4 ± 7.3 4.86 ± 0.58 36.9 ± 5.7 31.1 ± 2.8 0.192 ± 0.029 0.117 ± 0.017 A 0.60 ± 0.09 0.125 ± 0.020
NT 150.0 ± 7.7 4.90 ± 0.55 37.5 ± 5.8 30.8 ± 2.8 0.190 ± 0.028 0.107 ± 0.018 B 0.55 ± 0.08 0.124 ± 0.020

P
value

Interac-
tion

0.466 0.732 0.453 0.969 0.778 0.838 0.109 0.877

Irriga-
tion

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Tillage-
sowing

0.724 0.637 0.104 0.503 0.682 0.000 0.052 0.822

Mean
square

Interac-
tion

15.282 0.021 0.727 0.065 1.482E-005 4.819E-006 0.006 2.889E-006

Irriga-
tion

4 884.434 27.693 2 952.705 691.396 0.070 0.027 0.585 0.034

Tillage-
sowing

2.220 0.011 2.344 0.375 7.042E-006 0.001 0.010 6.667E-007

CT: Conventional tillage, NT: No-tillage, FW100: Full irrigation with fresh water, WW100: Full irrigation with recycled wastewater, WW67: 
Irrigation at 67% level with recycled wastewater, WW33: Irrigation at 33% level with recycled wastewater, ±: Standard error of the mean, Sig-
nificant differences at 5% probability level between treatments are indicated by different letters
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Conclusion

Although soil nutrient content was improved under full irri-
gation conditions with recycled domestic wastewater, soil 
salinity and the heavy metal content of soil and silage maize 
were also increased. The evaluations with the contamination 
factor, enrichment factor, geographic accumulation index, 
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and Ni metals was found at levels that may pose a risk in 
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It was concluded that no-tillage is a recommendable pro-
duction practice in silage maize irrigated with wastewater 
that can reduce soil salinity and heavy metal pollution and 
improve soil fertility. However, there is a need for further 
studies on the wastewater management to reduce the pos-
sible pollution risks of Cd and Ni metals.
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