#### REVIEW



# Single and basal crop coefficients for estimation of water use of tree and vine woody crops with consideration of fraction of ground cover, height, and training system for Mediterranean and warm temperate fruit and leaf crops

Luis S. Pereira<sup>1</sup> · Paula Paredes<sup>1</sup> · Cristina M. Oliveira<sup>1</sup> · Francisco Montoya<sup>2</sup> · Ramón López-Urrea<sup>3</sup> · Maher Salman<sup>4</sup>

Received: 30 May 2023 / Accepted: 8 November 2023  $\ensuremath{\mathbb{C}}$  The Author(s) 2023

#### Abstract

This paper reviews the research on the FAO56 single and basal crop coefficients of fruit trees and vines performed over the past twenty-five years and focus on Mediterranean and warm temperate trees and vines. Two companion papers (López-Urrea et al., (2023) Single and basal crop coefficients for estimation of water use of tree and vine woody crops with consideration of fraction of ground cover, height, and training system for temperate climate fruit crops. Irrig Sci (submitted); Paredes et al. (2023) Single and basal crop coefficients for estimation of water use of tree and vine woody crops with consideration of fraction of ground cover, height, and training system for tropical and subtropical fruit crops. Irrig Sci (submitted)) are dedicated, respectively, to Temperate and to Tropical and Subtropical trees and vines. The main objective of the paper is to update available information on single ( $K_c$ ) and basal ( $K_{cb}$ ) standard crop coefficients, and to provide for updating and completing the FAO56 tabulated  $K_c$  and  $K_{cb}$ . The  $K_c$  is the ratio between non-stressed crop evapotranspiration (ET<sub>c</sub>) and the grass reference evapotranspiration (ET<sub>o</sub>), while  $K_{cb}$  is the ratio between crop transpiration (T<sub>c</sub>) and ET<sub>o</sub>. The selection and analysis of the literature were performed considering only studies that adhere to the FAO56 method, thus computing ET<sub>o</sub> with the FAO Penman–Monteith ET<sub>o</sub> equation, the ASCE grass ET<sub>o</sub>, or another equation that could be properly related with the former, and ET<sub>c</sub>, or T<sub>c</sub>, was obtained using properly accurate field measurements on crops under pristine or eustress conditions. The crops considered refer to Mediterranean (grapes and olive) and warm temperate areas (avocado, citrus, persimmon, loquat, and tea) fruit and leaf crops. Papers satisfying the above conditions were selected to provide for standard  $K_c$ and K<sub>ch</sub> data. Preferably, studies should report on the crop cultivar and rootstock, planting density or plant spacing, fraction of ground cover  $(f_c)$ , crop height (h), crop age and training systems. Additional information was collected on pruning and irrigation method and strategy. The ranges of reported  $K_c$  and  $K_{cb}$  values were grouped according to crop density in relation with  $f_c$ , h, and the training system, namely vase, hedgerow, or trellis systems. Literature collected  $K_c$  or  $K_{cb}$  values were compared with previously tabulated  $K_c$  and  $K_{cb}$  values, namely in FAO56, to define the standard  $K_c$  and  $K_{cb}$  values for the referred selected crops. The tabulated values are, therefore, transferable to other locations and aimed for use in crop water requirement computations and modeling, mainly for irrigation planning and scheduling, and for supporting improved water use and saving in orchards and vineyards.

#### Abbreviations

|          |                                   |                        | 8,                                                 |
|----------|-----------------------------------|------------------------|----------------------------------------------------|
| A&P      | Allen and Pereira (2009) approach | DPS                    | Density of plants and spacing                      |
| AGC      | Active ground cover               | EBL                    | Equilibrium boundary layer of air                  |
| Avg.     | Average                           | EC                     | Eddy covariance                                    |
| BC       | Bilateral cordon                  | FAO-PM-ET <sub>o</sub> | Grass reference ET <sub>o</sub> computed with full |
| BREB     | Bowen ratio energy balance        |                        | data                                               |
| BS       | Bare soil                         | FAO-PMT                | Grass reference ET <sub>o</sub> computed with      |
| Capacit. | Capacitance sensors               |                        | temperature                                        |
| DI       | Deficit Irrigation                | FDR                    | Frequency domain reflectometry                     |
|          |                                   | FI                     | Full irrigation                                    |
|          |                                   | GDC                    | Geneva double curtain                              |

DL

grav.

Drainage lysimeters

Gravimetric method

Extended author information available on the last page of the article

| HWC                 | High-wire cordon                                           | K <sub>c</sub>    | (Standard) crop coefficient [-]                        |
|---------------------|------------------------------------------------------------|-------------------|--------------------------------------------------------|
| IS-APP              | Irrigation scheduling app                                  | $K_{c act}$       | Actual crop coefficient (non-standard                  |
| LAI                 | Leaf area index                                            | e det             | conditions) [-]                                        |
| Lys.                | Lysimeter                                                  | $K_{\rm c avg}$   | (Standard) average crop coefficient [-]                |
| Med                 | Mediterranean                                              | $K_{\rm c ini}$   | Crop coefficient during the initial growth             |
| METRIC              | Energy balance model for mapping evapo-                    |                   | stage [-]                                              |
|                     | transpiration with internalized calibration                | $K_{\rm c \ mid}$ | Crop coefficient during the mid-season                 |
| Micro-spr           | Micro-sprinkler or micro-sprayer                           |                   | stage [-]                                              |
| ML                  | Mini or micro lysimeters                                   | $K_{\rm c \ end}$ | Crop coefficient at end of the late season             |
| n/r                 | Not reported                                               |                   | stage [-]                                              |
| NDVI                | Normalized difference vegetation index                     | K <sub>cb</sub>   | Standard basal crop coefficient [-]                    |
| OPEC                | Open-path Eddy-covariance                                  | $K_{\rm cb\ act}$ | Actual basal crop coefficient (non-stand-              |
| PM-eq.              | Penman–Monteith combination equation                       |                   | ard conditions) [-]                                    |
| PRD                 | Partial rootzone drying                                    | $K_{\rm cb\ ini}$ | Basal crop coefficient during the initial              |
| PT                  | Priestley–Taylor equation                                  |                   | stage [-]                                              |
| QCT                 | Quadrilateral cordon trained                               | $K_{\rm cb\ mid}$ | Basal crop coefficient during the mid-                 |
| RDI                 | Regulated deficit irrigation                               |                   | season stage [-]                                       |
| Reflec              | Reflectometer                                              | $K_{\rm cb\ end}$ | Basal crop coefficient at end of the late              |
| RS                  | Remote sensing                                             |                   | season stage [-]                                       |
| <b>RS-SEB</b>       | Remote sensing surface energy balance                      | Ks                | Water stress coefficient [-]                           |
| Scintil.            | Scintillometer                                             | $M_{ m L}$        | Multiplier relative to the canopy transpar-            |
| SDI                 | Sustained deficit irrigation                               | _                 | ency [-]                                               |
| SEB                 | Surface energy balance                                     | $r_{a}$           | Aerodynamic resistance [s m <sup>-1</sup> ]            |
| SF                  | Sap flow                                                   | r <sub>s</sub>    | Bulk crop–soil surface resistance [s m <sup>-1</sup> ] |
| Spr.                | Sprinkler                                                  | $R_{\rm n}$       | Net radiation at the crop surface $[MJ m^{-2}]$        |
| SR                  | Surface renewal                                            |                   | d <sup>-1</sup> ]                                      |
| SW                  | Shuttleworth and Wallace double source                     | $T_{\rm c}$       | Crop transpiration [mm $d^{-1}$ or mm $h^{-1}$ ]       |
|                     | model                                                      | λĒT               | Latent heat flux [MJ $m^{-2} d^{-1}$ ]                 |
| SWB                 | Soil water balance                                         |                   |                                                        |
| TDR                 | Time domain reflectometer                                  |                   |                                                        |
| Tens.               | Tensiometers                                               | Introducti        | ion                                                    |
| TREL                | Trellis systems                                            |                   |                                                        |
| TTS                 | Training and/or trellis systems                            | Orchards and      | l vineyards are increasingly irrigated. Knowing        |
| VI                  | Vegetation index                                           | their water re    | equirements is essential to estimate their irriga-     |
| VSP                 | Vertical shoot positioning                                 | tion requiren     | nents, planning and management of crop water           |
| WL                  | Weighing lysimeter                                         | use, assessin     | g water resources availability and demand at           |
| 1 : <b>.</b>        |                                                            | basin level, a    | s well as developing hydrologic studies. Accu-         |
| List of symbols     | Come and attended in the standard                          | racy in evap      | potranspiration (ET) estimates is necessary,           |
| EIc                 | Crop evaporranspiration under standard                     | mainly when       | water scarcity prevails, and because sustain-          |
| БФ                  | conditions [mm d <sup>-</sup> or mm n <sup>-</sup> ]       | able irrigatio    | n requires not exceeding crop demand to break          |
| EI <sub>c act</sub> | Actual crop evapotranspiration, i.e., under                | the trend for     | water over-use (Pereira et al. 2009; Wada and          |
|                     | non-standard conditions $[mm d^{-1} or mm ]$               | Bierkens 20       | 14; Müller Schmied et al. 2016). In addition,          |
| <b>FT</b>           |                                                            | related chall     | lenges are becoming more difficult due to a            |
| Elo                 | (Grass) reference crop evapotranspiration $1-1$            | continuously      | increased demand for food to nourish an ever-          |
| C                   | [mm d <sup>-</sup> or mm h <sup>-</sup> ]                  | growing popu      | ulation, increasing drought occurrences, and cli-      |
| 1 <sub>c</sub>      | Fraction of soil surface covered by vegeta-                | mate change.      | . As recently reviewed by Pereira (2017), high         |
| C                   | tion [-]                                                   | water use pe      | rformance and productivity, as well as water           |
| t <sub>IPAR</sub>   | Fraction of the intercepted PAR [-]                        | conservation      | and saving in irrigation, require solutions that       |
| r <sub>r</sub>      | Adjustment factor relative to stomatal                     | need improv       | ed knowledge of crop evapotranspiration and            |
| C                   | control [-]                                                | water use.        |                                                        |
| G                   | Soil heat flux density [MJ m <sup>2</sup> d <sup>2</sup> ] | The applic        | ention of water conservation and saving in addi        |

water use. The application of water conservation and saving, in addition to the knowledge of water needs and their relations to growth and yield, also require institutional interventions,

Crop height [m]

Sensible heat flux [MJ  $m^{-2} d^{-1}$ ]

h

Η

sectoral policies and new technologies that support improved irrigation management and performance by farmers and sustainable, eco-friendly use of water for food production (Pereira et al. 2009). Literature on management of fruit trees and grapevines is quite extensive, namely relative to water management, and particularly aimed at defining deficit irrigation (DI) strategies.

The concept of standard crop coefficient implies its determination in the absence of water stress, or other stress conditions. However, research on tree and vine crops is demonstrating that the best crop management does not correspond to the full satisfaction of crop water demand, but to the adoption of controlled water deficit at given periods, or in selected modes during the crop cycle aiming that yields are less affected (Chaves et al. 2010; Rallo et al. 2017; Romero et al. 2022) and quality is improved (e.g., López-Urrea et al. 2012). The concept of eustress may better describe such conditions than deficit irrigation (Paço et al. 2019; Rallo et al. 2021). Expanding basic and accurate information on crop water needs is paramount to improve water use and irrigation management, particularly of fruit trees and vines.

Crop evapotranspiration  $(ET_c)$  is typically computed or modeled using the well-known FAO56 calculation procedure (Allen et al. 1998), which uses the simple  $K_c$ -ET<sub>o</sub> approach to compute  $ET_c$ , or alternatively  $K_{cb}$ - $ET_o$  to compute crop transpiration (T<sub>c</sub>), i.e., the product of a crop coefficient ( $K_c$ ) by the grass reference evapotranspiration (ET<sub>o</sub>), or the product of a basal crop coefficient  $(K_{cb})$  by ET<sub>o</sub>. The latter represents the actual evaporative demand of the atmosphere, while  $K_c$  (ratio ET<sub>c</sub>/ET<sub>o</sub>) represents an integration of the effects of the main characteristics that distinguish, in terms of the energy balance, the grass reference crop from the crop under study (Allen et al. 1998; Pereira et al. 1999). Adopting the  $K_c$ -ET<sub>o</sub> approach is simple but requires the application of accurate measurements and computations, particularly when deriving  $K_c$  values for a crop using field observations (Allen et al. 2011; Pereira et al. 2021a, b).

Standard, transferable crop coefficients must be obtained from accurate  $ET_c$  field measurements under non- or eustress conditions, and  $ET_o$  computed with the FAO-PM  $ET_o$ (Allen et al. 1998), or the ASCE-PM  $ET_o$  (Allen et al. 2005). Other equations whose results relate well to those of the FAO-PM  $ET_o$  equations may also be used. Adopting fixed grass parameters for aerodynamic and surface resistance in FAO-PM  $ET_o$  equation provides for the crop coefficients to be crop specific parameters that express consistently the relation between the aerodynamic and surface resistances of the considered crop with those of the grass reference crop (Pereira et al. 1999). This is particularly challenging for vines and fruit trees due to their canopy architecture and incomplete ground cover.

Accurate standard, transferable, and updated  $K_c$  values obtained from the current literature review require that

related  $\text{ET}_{c}$  data collection, models and related model calibrations, as well as experimental set-ups were exempt of biases caused by experimental flaws (Allen et al. 2011). Following the methodology adopted in studies focused on vegetable and field crops (Pereira et al. 2021a, b), the selected references were checked to ensure that sufficient descriptions of  $\text{ET}_{c}$  measurement practices, crop management, and related production environment were provided. They were also checked to detect possible computational flaws and shortcomings in data handling, as well as in model calibration and validation. In addition, the possible influence of advection was considered (e.g., Wang et al. 2019) since related K<sub>c</sub>/K<sub>cb</sub> values are then of local value only, thus not transferable. Nonetheless, for several crops, the collected information was scarce.

Few studies reports on tabulated standard  $K_c/K_{cb}$  of trees and vine crops. The first is FAO56 guidelines (Allen et al. 1998), whose  $K_c/K_{ch}$  values continue to be the main reference for trees and vine crops. Later, Allen and Pereira (2009) suggested the A&P approach to determine  $K_c/K_{ch}$  from the fraction of ground cover and height and tabulated the related values. Jensen and Allen (2016) tabulated again  $K_c/K_{cb}$  for woody perennials. The A&P approach was tested for more crops and the resulting  $K_c/K_{cb}$  were reported to support further use of the A&P approach (Pereira et al. 2020b, 2021c). Finally,  $K_c/K_{cb}$  updated values were tabulated by Rallo et al. (2021). Excellent  $K_{cb}$  and  $K_c$  results were predicted from the field observed fraction of ground cover and height (Allen and Pereira 2009; Pereira et al. 2020b, 2021c). The A&P approach is particularly interesting for woody and incomplete cover crops, e.g., fruit trees and vines.

The K<sub>c</sub>-ET<sub>o</sub> method is the most common in practice but not in research. The selected literature reports numerous applications of the  $K_c$ -ET<sub>o</sub> method using the soil-water balance (SWB) based on a variety of soil water content (SWC) sensors, which accuracy was reviewed by Evett et al. (2012a) and computation procedures, including a diversity of calibrated models, were recently reviewed (Pereira et al. 2020a). Diverse field measuring approaches of actual ET<sub>c</sub> or T<sub>c</sub> (ET<sub>c act</sub> and T<sub>c act</sub>) are reported such as weighing, drainage, and water-table lysimeters (WL, DL, and WTL), as reviewed by Allen et al. (1991) and Evett et al. (2012c, 2016), the eddy covariance systems (EC, Cammalleri et al. 2013a), the Bowen ratio energy balance systems (BREB, Hu et al. 2014), sap-flow (SF, Fernández et al. 2008), and remote sensing vegetation indices (RS-VI, Pôças et al. 2020). Allen et al. (2011) and Evett et al. (2012a) reviewed these methods for accuracy in ET<sub>c act</sub> measurements, and various authors also compared diverse methods for accuracy (Sánchez et al. 2019). Methods not requiring  $K_c$  nor  $ET_o$  are also often used such as remote sensing surface energy balance algorithms (RS-SEB, Karimi and Bastiaanssen 2015), the Penman-Monteith combination equation (PM-eq, Monteith 1965), that uses actual aerodynamic and canopy resistances, the two-source Shuttleworth–Wallace method (SW, Shuttleworth and Wallace (1985), that also relies on those resistances, or the Priestley–Taylor equation (PT, Priestley and Taylor (1972), which uses specific coefficients different of  $K_c$ . These methods may provide for  $K_c$  when  $ET_o$  is reported in addition to  $ET_{c \text{ act}}$ .

Recent advances in sensors, communications and information technologies did allow the implementation of tools to support irrigation and water management decisions, e.g., the "internet of things" (García et al. 2020; Raj et al. 2021; Abu et al. 2022). Tools focusing on irrigation may refer to water saving practices (Pereira et al. 2009; Jovanovic et al. 2020), to modeling growth and yield (Villalobos et al. 2006; Rahmati et al. 2018) or, most often, to SWB models (Pereira et al. 2020a). However, only few report computer software models (e.g., Rosa et al. 2012a, b; Šimůnek et al. 2016). The use of all those tools to support irrigation management requires precise knowledge of crop water requirements. The various methods need to be known for their accuracy requirements while Tables summarizing the information provided in literature need to be completed with indication of field methods used to derive  $K_c/K_{ch}$ .

The objective of this paper, in line with the previous review and addressing particularly Mediterranean and warm temperate fruit and leaf tree and vine crops, consists of reviewing updated single and basal crop coefficient values ( $K_c$  and  $K_{cb}$ ) obtained under near-pristine eustress conditions and use the available K<sub>c</sub> and K<sub>cb</sub> data for tabulating standard, transferable K<sub>c</sub> and K<sub>cb</sub> values. The current review is expected to identify the main results of recent research on standard K<sub>c</sub> and K<sub>ch</sub> values, assessing the methodologies then used and their range of variation. The selected base data and collected values are, therefore, summarized and tabulated to support readers' information on tabulated K<sub>c</sub> and K<sub>cb</sub> values. Section "Materials and methods" focus on requirements for accuracy of the ET methods reported on transferability requirements of standard K<sub>c</sub> and K<sub>ch</sub> values, and on the methodologies used to select and tabulate the standard crop coefficient values. Section "Table and wine grapes" and following consist of presenting and discussing the literature review relative to the derivation of K<sub>c act</sub> and K<sub>cb act</sub> of wine and table grapes, olive, citrus, avocado, loquat, persimmon, and tea, followed by the tabulation of the respective standard K<sub>c</sub> and K<sub>cb</sub> values. Conclusions and recommendations consist of the last Section.

#### Materials and methods

#### The FAO56 evapotranspiration method. Crop coefficients and requirements for transferability

Adopting the FAO56 method, crop evapotranspiration,  $\text{ET}_{c}$  (mm d<sup>-1</sup>) is estimated by multiplying the grass reference  $\text{ET}_{o}$  (mm d<sup>-1</sup>), by a crop coefficient, K<sub>c</sub> (dimensionless):

$$ET_{c} = ET_{o}K_{c}$$
(1)

 $ET_o$  is defined as the evapotranspiration of a grass reference crop which is a hypothetical crop with height of 0.12 m, a surface resistance of 70 s m<sup>-1</sup>, and an albedo of 0.23, closely resembling an extensive surface of green grass of uniform height, actively growing, adequately watered, and well covering the ground (Allen et al. 1998). The daily  $ET_o$ is computed with the PM-ET<sub>o</sub> equation (Eq. 2), obtained by parameterizing the Penman–Monteith combination equation for that grass crop with fixed and well-defined aerodynamic and surface resistance terms (Allen et al. 1998; Pereira et al. 1999). Daily grass reference evapotranspiration is then obtained with the following equation:

$$ET_{o} = \frac{0.408\Delta(R_{n} - G) + \gamma \frac{900}{T + 273}u_{2}(e_{s} - e_{a})}{\Delta + \gamma(1 + 0.34u_{2})},$$
 (2)

where  $\Delta$  is the slope of the saturation vapor pressure–temperature curve at mean air temperature (kPa °C<sup>-1</sup>), (R<sub>n</sub>–G) is the available energy at the vegetated surface (MJ m<sup>-2</sup> d<sup>-1</sup>),  $\gamma$  is the psychrometric constant (kPa °C<sup>-1</sup>), T is mean daily air temperature (°C), u<sub>2</sub> is mean daily wind speed (m s<sup>-1</sup>) at 2 m height and (e<sub>s</sub>–e<sub>a</sub>) is the vapor pressure deficit (VPD) of the atmosphere (kPa). The PM-ET<sub>o</sub> equation considers only vertical fluxes of heat and vapor. Thus, ET<sub>o</sub> incorporates most of the weather and related energy effects and then represents the evaporative demand of the atmosphere. Since K<sub>c</sub> is the ratio between ET<sub>c</sub> and ET<sub>o</sub> (Eq. 1), its variations should mainly be attributed to the specific crop characteristics and only for a limited extent to the climate, which enables the transfer of standard K<sub>c</sub> values between locations and climates when local and/or regional advection is excluded.

Apart from the FAO-PM-ET<sub>o</sub> equation, other alternative equations have been tested to calculate  $ET_{0}$ , either with full or limited weather data sets. Processes with full data sets have the tendency to overlook the conceptual framework (Pereira et al. 2015). For reduced data sets, the Hargreaves-Samani equation (Hargreaves and Samani 1985) and the FAO PM temperature (FAO-PMT) method have been widely used; consolidated methodologies are discussed and described by (Paredes et al. 2020), as well as the use of reanalysis weather data and of geostationary satellite products (Paredes et al. 2021). However, the use of alternative approaches requires the scrutiny of input data and ET<sub>o</sub> results since processes are not linear. Therefore, for scientific research studies intending to derive standard transferable crop coefficients, the FAO-PM-ET<sub>o</sub> Eq. (2)should be used.

The crop coefficient represents an integration of the effects of three primary characteristics that distinguish any crop from the reference one: crop height, that affects roughness and aerodynamic resistance  $(r_a)$ ; bulk crop-soil

surface resistance ( $r_s$ ), which relates to leaf area, the fraction of ground covered by the vegetation ( $f_c$ ), leaf age and condition, degree of stomatal control, and soil surface wetness; and albedo of the crop–soil surface influencing the net radiation, that is determined by the fraction of ground covered by vegetation, and soil surface wetness (Allen et al. 1998).

Two K<sub>c</sub> approaches are considered (Allen et al. 1998): one consists of a time-averaged single K<sub>c</sub>, which includes multi-day effects of evaporation from the soil in addition to plant transpiration, whereas the second refers to the dual K<sub>c</sub>, sum of the basal crop coefficient (K<sub>cb</sub>) and the soil evaporation coefficient (K<sub>e</sub>). These coefficients represent, respectively, the ratios of crop transpiration (T<sub>c</sub>), or soil evaporation (E<sub>s</sub>), to ET<sub>o</sub>. Therefore, K<sub>c</sub> = K<sub>cb</sub> + K<sub>e</sub> with K<sub>cb</sub> = T<sub>c</sub>/ET<sub>o</sub> and K<sub>e</sub> = E<sub>s</sub>/ET<sub>o</sub>.

Various authors have developed models or procedures for partitioning ET into  $T_c$  and  $E_s$ . However, the FAO56 approach (Allen et al. 1998, 2005) has been successfully used and implemented in various SWB models such as SIMDualKc (Rosa et al. 2012a), whose applications to vineyards (Fandiño et al. 2012; Silva et al. 2021; Darouich et al. 2022b), olive (Paço et al. 2014, 2019; Puig-Sirera et al. 2021; Ramos et al. 2023), and citrus (Rosa 2018; Peddinti and Kambhammettu 2019; Darouich et al. 2022a; Ramos et al. 2023) are reported herein.

For transferability purposes, FAO56 adopted the concept of standard  $K_c$  and potential  $ET_c$  (Allen et al. 1998; Pereira et al. 2015), which refer to well-watered and pristine/eustress cropping conditions and are distinct of actual field conditions, often under-optimal due to insufficient (or non-uniform) irrigation, crop density, salinity, agronomic practices and soil management. The tabulated  $K_c$ , therefore, must refer exclusively to the standard  $K_c$ . For tree and vine crops, the standard  $K_c$  refers to adopting crop-specific eustress practices, i.e., limited stress practices that do not, or minimally, impose reduction of the maximal yield. Under water and salt stress conditions,  $ET_c$  gives place to the actual crop ET ( $ET_{c act}$ ), with  $K_c$  replaced by the actual  $K_{c act}$  or, using the dual approach, by  $K_s K_{cb} + K_e$ :

$$ET_{c \text{ act}} = K_s ET_c = K_s K_c ET_o = (K_s K_{cb} + K_e) ET_o, \quad (3)$$

where  $K_s$  (0–1.0) is the stress coefficient.  $K_s$  depends upon the sufficiency of available soil water to maintain the crop ET rate, i.e.,  $K_s = 1.0$  for pristine conditions for maximal yield. This concept eases a consistent estimation and transferability of measured standard  $K_c$  and avoids the need to define multiple  $K_c$  values for the same crop depending upon the various water and crop management practices adopted by the growers that cause  $K_s < 1.0$  and  $K_c$  act values to vary widely, contrarily to the standard  $K_c$ . Plot level use of crop coefficient-based simulations can be backed up by soil and plant water status measurements to detect water stress conditions (e.g., leaf or stem water potential) and to support the use of models.

The estimation of  $K_{c act}$ , assuming any value up to the standard  $K_c$ , may be performed using the A&P approach (Allen and Pereira 2009; Pereira et al. 2020b, 2021c).  $K_{cb}_{act}$  is then computed from the fraction of ground cover and crop height ( $f_c$  and h) while  $K_e$  is computed from the wetted fraction of exposed soil,  $1-f_c$  (FAO56, Allen et al. 1998). The A&P approach shall be used with observed  $f_c$  and h and the parameters proposed in Pereira et al. (2020b, 2021c). It is advisable to compare  $K_{c act} = K_{cb act+} + K_e$  with the standard  $K_c$  for computation control. Field and remote sensing methods for measuring  $f_c$  and h are referred by those authors.

Evapotranspiration relies on the amount of energy available at the surface, resulting from the energy balance of that surface:

$$\lambda ET = (R_n - G) - H, \tag{4}$$

where  $\lambda ET$  is latent heat flux, or the energy available to the evaporation process, R<sub>n</sub> is net radiation at the crop surface, G is soil heat flux density and H is sensible heat flux, with all terms expressed in MJ m<sup>-2</sup> day<sup>-1</sup>. The energy balance imposes physical limits to the evaporation process resulting that the upper limits to  $K_c$  are approximately 1.2 in sub-humid regions and 1.2-1.4 in arid regions (Allen et al. 2011). Higher values might result from errors in ET measurement, in weather data for ET<sub>o</sub> calculation, in data processing procedure, or may be due to advective energy. Awareness of such upper limits of  $K_c$  is extremely important; conditions where measurements were acquired or those from where  $K_{c}$ 's are meant to be applied must be considered, namely in terms of advection: If the  $\lambda$ ET term of the surface energy balance equation (Eq. 4) results in a value higher than  $R_n$ -G, the surface is receiving sensible heat downwards, instead of just losing it by convection to the atmosphere. Therefore, a larger amount of energy will be available for the process of evapotranspiration. However, there is an upper boundary to ET<sub>c</sub>, imposed by limitations in aerodynamic transfer and equilibrium forces over a vegetated surface (Allen et al. 2011). Then, limits apply and, in general,  $K_c \leq 1.2$  except in the presence of advection. Advection conditions can limit transferability of crop coefficients, either because they were determined under advection conditions or they are to be applied in such conditions.

Advection can result from the small dimension of the stand under consideration, not providing adequate conditions for the development of a boundary layer in equilibrium with the surface, or by favoring a "clothesline effect", where stand vegetation is more exposed to atmosphere drive than the surrounding vegetation (Allen et al. 2011). Advection can also result from inadequate field measurement conditions, e.g., when lysimeters are not correctly set,

causing local and micro-scale advection, or a "clothesline effect"; or when fetch conditions in EC and BREB systems are not observed, or data quality selection criteria against wind direction/fetch are not applied (Hu et al. 2014). Under advection, H decreases to very small values, given the downward advective H flux and, therefore,  $\lambda ET \ge (R_n - G)$ . Hence, it is expected that under advection conditions, and over small stands of vegetation,  $ET_c$  would reach a much larger value (Allen et al. 2011), which is not the case for large stands, where limits for K<sub>c</sub> near 1.2 apply.

Advection effects on  $\text{ET}_{c}$  of woody crops are rarely reported in literature. However, since trees and vines do not attain full crop development due to pruning and training and are partial cover crops, in the absence of advection,  $K_{c}$  values should not surpass 1.2 (Rallo et al. 2021), but under advective conditions much larger transpiration and larger soil evaporation values may be observed (Kool et al. 2018; Wang et al. 2019); nevertheless, too much large  $K_{c}$  values are reported in literature without signaling the occurrence of advection. For application in small and isolated areas of vegetation,  $K_{c}$  can exceed the limits for grass reference (1.2–1.4), while for large areas, or small areas surrounded by vegetation with similar roughness and soil water status,  $K_{c}$  values must stick to values equal or smaller than those limits (Allen et al. 2011).

The concepts of standard K<sub>c</sub> and potential crop ET and related terminology are progressively being accepted by the user communities (Pereira et al. 2015). However, the standard  $K_c$  and  $K_{cb}$  values for tree and vine crops vary with the fraction of ground cover and height (Allen and Pereira 2009; Jensen and Allen 2016) due to crop age and crop management, particularly crop training. The present review has shown that satisfactorily accurate reported K<sub>c</sub> and K<sub>cb</sub> values for the same crop show dissimilarity among locations, which is due to differences in cultivar and rootstock, plant density, orchard management and pruning, training, as well as soil properties, irrigation method and strategy, soil-crop management practices and (Minacapilli et al. 2009; Cammalleri et al. 2013a; Marsal et al. 2014; Rallo et al. 2021). It is, however, possible to derive local, actual crop coefficients from  $f_c$  and h of tree and vine crops (Pereira et al. 2020b, 2021c) when appropriate parameters are used. K<sub>c</sub> variability due to weather is less important than causes referred above. Since most papers did not provide weather data on the experiment, the correction of K<sub>c</sub> values for climate as proposed in FAO56 was not applied to literature reported K<sub>c</sub>.

# Accuracy of ET estimation and transferability of derived standard $K_c$ and $K_{cb}$

Literature reporting field derived crop coefficients has shown diverse objectives and used quite different methodologies with variable accuracy, often aiming to just obtain  $K_c$  values for local use, which are not transferable. Results are

frequently published without sufficient information relative to the methods and instrumentation used, or about the crop itself, the cropping practices and training, which causes difficulties to transferability. When the published material shown serious limitations to transferability, it was not used. Main limitations refer to:

- (1) Adopting other than the standard FAO or ASCE PM-ET<sub>o</sub> equation. Because  $K_c$  is defined as the ratio  $ET_c/$  $ET_o$ , if  $ET_o$  equation changes  $K_c$  also changes and the resulting  $K_{c act}$  is not usable to derive a standard  $K_c$ .
- (2) Using a  $K_c$  curve different from the standard segmented FAO  $K_c$  curve. Using a curve as a function of time, or a function of LAI, or else, there is no clear definition of the  $K_c$  (and  $K_{cb}$ ) values for the initial, mid-season and end-season stages, respectively,  $K_{c \text{ ini}}$ ,  $K_{c \text{ mid}}$ , and  $K_{c \text{ end}}$ . Then, only approximate estimations of  $K_{c \text{ ini}}$ ,  $K_{c \text{ mid}}$ , and  $K_{c \text{ end}}$  could be made from the reported graphical data or, often more difficult, from tabulated information.
- (3) Using non-standard cultivation conditions. In case of using mulch for controlling  $E_s$ , or active ground cover for fighting erosion result management-specific  $K_c$  values. When reported  $K_c$  values were insufficient to properly recognize the standard  $K_c$  values, papers could not be used.
- (4) Adopting deficit irrigation practices. Then, deviating from the desirable eustress conditions, the reported K<sub>c act</sub> had only local value.
- (5) Reporting insufficient data and information on the experiment. Then, it was not possible to assume that field survey practices were adequate, or that data handling were properly performed. To avoid using poor data, papers were discarded or used with much caution.
- (6) Using K<sub>c</sub> values transferred from other studies. Without field testing, papers were discarded, except a few review papers.

Field data acquisition processes must respect welldefined requirements. Field data sets used to derive  $K_c$ or  $K_{cb}$  were obtained using various field techniques. The requirements for data quality acquisition by these methods are extensively described in Allen et al. (2011), reviewed by Pereira et al. (2021a, b) and Rallo et al. (2021), and summarized hereafter.

Techniques that recur to soil water balance methods calculate  $ET_c$  as the remaining term as commented (Evett et al. 2012a, 2012b; Pereira et al. 2020a). The main sources of error arise from the quantification of deep percolation and/ or capillary rise. Other difficulties may arise from the different patterns of soil water extraction by the roots, namely for heterogeneous stands, as sampling processes may not represent adequately the stand. Techniques must consider: (i) a comprehensive characterization of soil hydraulic properties, (ii) representativeness of data in spatial and temporal terms, (iii) appropriate sensors calibration, (iv) uniform spatial wetting by irrigation, (v) consideration of deep percolation and capillary rise, (vi) root water extraction patterns, and (vii) sampling criteria. Accuracy of computation procedures depends upon the calibration of parameters and the adequacy of selected algorithms (Pereira et al. 2020a).

Weighing, drainage, and water-table lysimeters (WL, DL, and WTL) are often used for  $K_c$  derivation but their accuracy depends upon various issues (Allen et al. 1991; López-Urrea et al. 2006; Evett et al. 2016). Causes of inaccuracy include: (i) differences in cropping conditions inside and outside of the lysimeter relative to vigor and growth of vegetation; (ii) poor setting of the lysimeter, with dissimilar surrounding vegetation causing local advection or clothesline effects; (iii) insufficient fetch to establish the equilibrium boundary layer of air (EBL); (iv) lack of consideration of the area effectively used by the crop for ET, which may often occur with trees and vines; (v) large rim favoring heat transfer into the lysimeter.

The BREB method relies on the surface energy balance equation (Eq. 4) and requires measurements of air temperature and vapor pressure gradients at an appropriate level above the evaporating surface (Hu et al. 2014). The accuracy of the method relies strongly on representativeness of R<sub>n</sub> and G measurements and on an adequate fetch for the establishment of the EBL. Main requirements for BREB data quality include: (i) large enough fetch; (ii) adequate positioning of sensors above the canopy to avoid the roughness sublayer; (iii) multiple R<sub>n</sub> and G measurement points for heterogeneous or sparse crops. The EC method implies the knowledge of vertical wind speed and fluctuations around the mean of air temperature and humidity in vertical fluxes of sensible and latent heat, sampling statistically turbulent eddies (Cammalleri et al. 2013a). For accuracy, requirements include: (i) large enough fetch and adequate elevation of sensors; (ii) application of the required corrections; (iii) recognition of advection situations and taking of corrective actions, and (iv) correcting data for lack of closure of the energy balance equation, when needed.

The transpiration component in  $ET_c$  is generally obtained by sap flow measurement systems that use heat as a tracer to measure the flux in the xylem of plants. These methods generally follow well the transpiration dynamics but require calibration for accurate results (Fernández et al. 2008; Siqueira et al. 2020). Sap flow measurements require: (i) a sensor calibration at each new application, (ii) because measurements are plant-based processes, scaling from plant to stand level is required, then also dealing with measurement representativeness, and (iii) an accurate estimate of conductive xylem area.

Remote sensing is increasingly used to calculate  $ET_c$ , namely using surface energy balance models (Pôças et al.

2014, 2020; Karimi and Bastiaanssen 2015; Sánchez et al. 2019), currently largely used for  $K_c$  and ET calculation. Vegetation indices derived from satellite information or using UAV, require ground data for validation and are related to actual crop coefficients (Garrido-Rubio et al. 2020; Pôças et al. 2020). Inaccuracies in measuring crop ET and in computing ET<sub>o</sub> often result in high  $K_c$  values, commonly indicating that the corresponding energy use would largely exceed the energy available at the surface for evaporation (Allen et al. 2011) as referred early.

#### Methods adopted to select the papers

The review focused on articles published after the FAO56 guidelines (Allen et al. 1998), until March 2023. The search first targeted the articles that quoted FAO56 or that referred crop coefficients. Several search engines were used (e.g., Schooler google, Elsevier, Springer, Wiley, Csiro publishing, Scielo, Scopus) as well as different combination of keywords (crop coefficients, orchards, and names and scientific names of plants). Various languages were used for the search (English, Portuguese, Spanish, French, Italian and German). Because Insufficiencies and inaccuracies referred in the previous sections limit the transferability of reported K<sub>c</sub> values, to update the tabulated K<sub>c</sub>, it was necessary to operate a careful literature selection. Limitations relative to accuracy of data acquisition, the K<sub>c</sub> curves or crop conditions obliged a careful review of published material as referred before, to check when the proposed  $K_{\rm c}$  or  $K_{\rm cb}$  were limited to local interest and/or represented non-standard experimental conditions, thus contrasting to K<sub>c</sub> resulting from near-pristine eustress cropping practices. Thus, studies were selected when:

- Adopted the FAO-PM-ET<sub>o</sub> equation (Allen et al. 1998) or the ASCE-ET<sub>o</sub> equation (Allen et al. 2005) or other ET<sub>o</sub> equations if their ratios to FAO-PM-ET<sub>o</sub> could be approximated.
- Presented data referred to two or more experimental seasons, or studies having various treatments, so that it was possible to understand if the results were or not occasional. However, a few cases referring only one season were considered for Neglected and Underutilized Species (NUS) crops.
- Descriptions of experiments are sufficient to consider their accuracy and that crops were at conditions close to non-stress or just eustress.
- Adopted the FAO  $K_c$  curve, or a  $K_c$ -time curve that allowed to identify  $K_c$  or  $K_{cb}$  for the mid-season and, preferably, also for the initial and end season.
- Papers describing field studies using BREB or EC systems, which reported upon the upwind fetch conditions and the energy balance closure.

- Studies using SWB methods describing all the terms of the balance, not just focusing the upper soil depth, and providing for an adequate description of sensors used and location, frequency of observations, and the model calibration and validation, were selected.
- Studies using lysimeters were accepted when adequate setting and management were referred, namely avoiding "oasis" and "cloth-line" effects, and correction of the evaporative surface when the tree/vine canopy exceeded the lysimeter surface ("bloom effect").
- Studies using remote sensing were considered when adequate ground observations for model or vegetation index calibration/validation was taken into consideration.
- Studies reporting acceptable  $K_c$  values ( $K_c$  up to 1.30 and  $K_{cb} < K_c$ ) unless convincing explanations were given.

The assumed criteria made it possible to select a good number of papers, covering numerous species, developed in a variety of countries and regions, and in quite reasonable quality conditions. Users are invited to read the papers relative to the crops of interest and judge by themselves about the adequateness of the reported research.

# Selection and tabulation of updated standard $\rm K_{c}$ and $\rm K_{cb}$ values

Standard values were established considering the ranges of  $K_c$  and  $K_{cb}$  values collected in the selected literature and the tabulated values since 1998. This work developed in the following steps:

First step: grouping the various studies relative to every crop considering:

- (i) The density of plants and spacing (DPS);
- (ii) The training and/or trellis systems used (TTS);
- (iii) The fraction of ground cover  $(f_c)$ , or fraction of the intercepted PAR  $(f_{IPAR})$ ; and
- (iv) The crop height (h).

Second step: building a provisional table for every crop. For all the groups of studies/papers, the ranges of  $K_c/K_{cb\ ini}$ ,  $K_c/K_{cb\ ini}$  and  $K_c/K_{cb\ end}$  were defined and included as columns of  $K_c/K_{cb}$  observed values in a provisional table relative to every crop. The ranges of previously tabulated  $K_c/K_{cb}$  values in FAO56 (Allen et al. 1998), Allen and Pereira (2009), Jensen and Allen (2016), and Rallo et al. (2021) were also included as columns in that provisional table.

Third step: draft definition of the standard values for  $K_c/K_{cb ini}$ ,  $K_c/K_{cb mid}$  and  $K_c/K_{cb end}$  for all crops through assessing the various ranges inscribed in each line of the provisional tables relative to sets of DPS, TT,  $f_c$  or  $f_{IPAR}$ , and h.

Fourth step: Definition of the standard values for  $K_{cb \text{ ini}}$ ,  $K_{cb \text{ mid}}$ , and  $K_{cb \text{ end}}$  for all crops through the computation of the A&P approach (Allen and Pereira 2009; Pereira et al. 2020b) for every set of  $f_c$  and h using the parameters  $M_L$ , which is a multiplier on  $f_c$  describing the effect of canopy density on shading and on maximum relative ET per fraction of ground shaded [1.0–2.0], and  $F_r$ , which is is an adjustment factor relative to crop stomatal control [0.0–1.0].  $M_L$  and  $F_r$  are available in Pereira et al. (2021c) for most crops, or may be obtained by adjusting the parameter  $F_r$  for not previously validated values comparatively with similar crops.

Fifth step: Once defined the  $K_{cb}$  values, definition of the standard  $K_c$  by summing estimated values of  $K_e$  for each stage and the defined standard  $K_{cb ini}$ ,  $K_{cb mid}$  and  $K_{cb end}$ . The estimated values of  $K_e$  were obtained from observing the differences ( $K_c$ - $K_{cb}$ ) in the selected papers and in the previously published Tables quoted above with consideration of changes in  $K_c$  due to rain and assuming a reduced soil evaporation due to using drip or micro-sprinkling under the canopies and/or for larger plant density. Young plantations are assigned with larger  $K_e$  values.  $K_e$  was assumed smaller for the mid-season, particularly for deciduous crops, and was also assumed smaller for the evergreen crops.

Sixth step: consolidating the draft standard  $K_c$  and  $K_{cb}$  through comparing all values (1) for various plant densities and ground cover fractions of the same crop; (2) for various crops of the same group, for instance within citrus; (3) for various training and trellis systems, e.g., among the multiple cases of grapes; and (4) between  $K_c$  and  $K_{cb}$ .

The Tables presenting the updated standard  $K_{cb ini}$ ,  $K_{cb mid}$ , and  $K_{cb end}$  and standard  $K_{c ini}$ ,  $K_{c mid}$ , and  $K_{c end}$  show their values in the last two columns, while the first ones are those indicating plant density and training or trellis systems,  $f_c$ and h as well as the values assumed for  $M_L$  and  $F_r$  relative to the initial, mid- and end-season stages, which may be useful for further uses of the A&P approach. The ranges of observed and previously tabulated  $K_c/K_{cb ini}$ ,  $K_c/K_{cb mid}$  and  $K_c/K_{cb end}$  are also included for information to users.

#### **Table and wine grapes**

Table and wine grapes are widely grown worldwide, even in less suitable environments, as they are the most popular woody Mediterranean crop. Domesticated after thousands of years, these plants have been cultivated for a long time using specific pruning and training systems that adapt to the climate of the site environment, the soil, the availability of water, the rootstock and the use of fruit (table grapes or wine). Furthermore, these variables also have impact on the timing of full bearing or maturity. Related knowledge is enormous, namely in relation to pruning and training as well as on water and irrigation requirements, including responses to the timing and severity of water deficits. Therefore, it has been possible to collect a variety of articles referring to evapotranspiration and crop water requirements aimed at irrigation scheduling. The collected information from the selected articles refer to the characteristics of the vineyards (Table 1) and to the observed crop coefficients (Table 2).

The former studies for K<sub>c</sub> tabulation in FAO56 (Allen et al. 1998) and by Rallo et al. (2021), and reporting for Tables relative to the use of the A&P approach (Allen and Pereira 2009; Pereira et al. 2020a, 2021c) have evidenced that abiotic factors-the fraction of ground cover by the crop vegetation  $(f_c)$ , which defines the amount of shadowed soil and the fraction  $(1-f_c)$  from where soil water evaporates, the average crop height (h), the plants spacing or density in terms of plants per unit surface, the crop stress due to water or associate salinity, plant age, and training or trellis system-play a main role in determining crop evapotranspiration and transpiration. This is true, not only for grapes but also to other crops. Biotic impacts from the cultivar and rootstock are also to be considered as both influence the vigor of the crop. In addition, the destination of the grapes determines the dates of harvest and the K<sub>c</sub> by the end of the crop season. The determination of the end season K<sub>c</sub> results difficult when not appropriately defined, particularly because post-harvest irrigation may occur to provide for producing and store carbohydrates, less dry woody tissues, less incidence of winter injury, and to promote for an even bud break and shoot growth.

Collected values for characterizing the crop (Table 1) include these items, as well as the irrigation method and the irrigation strategy relative to water stress. A few of these factors are referred again in the Table 2, where  $K_c$  and  $K_{cb}$  are presented, which consist of the three values required to describe the traditional  $K_c$  and  $K_{cb}$  FAO curves.

Table 1 shows that selected studied vineyards cover a large, worldwide distribution of locations and cultivars for both table and wine grapes. This large coverage contributes to the desired perception of the reviewed case studies, hence providing for higher quality of the review. All reported actual K<sub>c</sub> and K<sub>cb</sub> were derived from field surveys of ET<sub>c act</sub>, which used a large panoply of measurement methods with verifiable accuracy. ET<sub>o</sub> has been always computed with the FAO-PM-ET<sub>o</sub> equation or similar, while ET<sub>c act</sub> has been observed with WL and DL lysimeters, or computed with SWB from soil profiles or DL observations, in some cases using the SIMDualKc model for data handling, BREB and EC measurements of energy balance, or the SR approach and observations to use the A&P approach. In addition, there are various cases relative to obtaining T<sub>c act</sub> from SF measurements.

All vineyards but one were micro-irrigated adopting a full irrigation strategy. Drip was largely the main irrigated method and just two cases used micro-sprinkling. Various types of drippers were used. These conditions prefigure good control of water application depths and low soil evaporation. The sole non-irrigated vineyard is located in the sub-alpine slopes of Alessandria, in Italy, where precipitation is enough to satisfy crop water requirements. It could be assumed that the selected papers report on vineyards that have not been under water stress except for short periods due to deficient irrigation scheduling, thus corresponding to the conditions defined for standard crop coefficients. As per Table 2, most cases refer to bare soil (BS) and only a few to active ground cover (AGC), generally during and immediately after the rainy season, which require a specific solution to identify ET from the crop and from the AGC, and soil evaporation (Rosa et al. 2012a, b).

There is a great variability of spacing and planting densities, that relate with the trellis system used, and a great variety of training and trellis systems, which, generally, are differentiated into the two groups of table grapes and wine grapes. Reported information on pruning was very scarce and, therefore, is not referred herein; however, some studies reported that pruning was performed annually during dormancy, in a few cases also a slight summer pruning, depending upon the vigour of the plants. The diverse training and trellis systems determine crop height and the fraction of ground cover, with f<sub>IPAR</sub> assumed as an estimate of  $f_c$ . Collected data confirms that  $f_c$  and h are generally larger for table grapes than for wine grapes. However, there is a very large variability of f<sub>c</sub> data for both table and wine vineyards. That variability also relates with age, with young plants (<5 years) having smaller  $f_c$ . But the variability of f<sub>c</sub> also refers to crop conditions and age that favor ground shadow, e.g., the cases studied by López-Urrea et al. (2012) and Picón-Toro et al. (2012) that show a correspondence between  $f_c$  and  $K_{c \text{ mid}}$  or  $K_{cb \text{ mid}}$ .

The trellis systems for table grapes vineyards are dominantly overhead trellis, "Y" or "T" trellis, cross-arm trellis and high vertical shoot positioning (VSP), thus resulting in  $h \ge 2.0$  m. For wine grapes, overhead systems (e.g., pergola) are rare and a variety of trellis systems are used such as VSP, single and double Guyot, single and bilateral cordon, Y-trellis bilateral cordon, Guyot, Lyre trellis, GDC trellis, and QCT (Quadrilateral cordon trained). Detailed descriptions of trellis systems and their relations to cultivars and vineyards mechanization were given by Fidelibus (2014), and an analysis of relationships between trellis systems, shot positioning, and light interception is available in Louarn et al. (2008). Wider analysis referring to trellis systems, canopy architecture, water use, and  $K_c$  values is provided by Williams and Fidelibus (2016) and Williams et al. (2022).

Actual  $K_c$  and  $K_{cb}$  values obtained from field ET observations and the corresponding  $ET_o$  values are presented in Table 2 for all reported cultivars and rootstocks together with factors that mainly influenced them:  $f_c$ , h, and trellis systems.

| Table 1 Characteristi                  | ics of selected vineyard                   | ds                                                          |                                                         |                                   |                                  |                             |             |               |                             |
|----------------------------------------|--------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------|-----------------------------------|----------------------------------|-----------------------------|-------------|---------------|-----------------------------|
| Author                                 | Cultivar (rootstock)                       | Location and main<br>climate                                | ET <sub>c act</sub> method (ET <sub>o</sub> equation)   | Irrigation method<br>and strategy | Plants/ha (spac-<br>ing, m)      | Training system             | Age (years) | Height (h, m) | $f_{ m c}$ or $f_{ m IPAR}$ |
| Table grapes (Vitis v                  | vinifera L.)                               |                                                             |                                                         |                                   |                                  |                             |             |               |                             |
| Williams and Ayars (2005)              | Thompson Seedless<br>(clone 2A)            | Kearney, California,<br>USA<br>Med., warm                   | WL, Kc f. shadow<br>(CIMIS-PM-ET <sub>o</sub> )         | Drip & Fl                         | 1325 (3.5×2.15)                  | Cross-arm (0.6 m)           | Mature      | 2.0           | 0.53                        |
| Teixeira et al.<br>(2007)              | Superior Seedless (n/r)                    | Petrolina, Brazil<br>Semiarid                               | BREB (FAO-PM-<br>ET <sub>o</sub> )                      | Micro-spr. & FI                   | 714 (3.5×4.0)                    | Overhead horiz.<br>trellis  | 3-4         | 1.8           | n/r                         |
| Netzer et al. (2009)                   | Superior Seedless (1103 Paulsen)           | Southern Israel<br>Semiarid                                 | DL (CIMIS-PM-<br>ET <sub>o</sub> )                      | Drip & FI                         | 1429 (3.5×2.0)                   | Y-shaped open-<br>gable     | 2–8         | 2.0           | 0.8                         |
| Villagra et al. (2011, 2014)           | Thompson Seedless<br>(Harmony)             | Valparaiso, Chile<br>Med., semiarid                         | EC (FAO-PM-ET <sub>0</sub> )                            | Drip & n/r                        | 1633 (3.5×1.75)                  | Overhead trellis            | 89          | n/r           | 0.97                        |
| Moratiel and<br>Martínez-Cob<br>(2012) | Red Globe (n/r)                            | Zaragoza, Spain<br>Med., semiarid                           | SR, A&P (FAO-<br>PM-ET <sub>0</sub> )                   | Drip & FI                         | 1429 (3.5×2.0)                   | Y-shaped gable              | 8-9         | 2.20          | 0.00                        |
| Er-Raki et al. (2013)                  | Perlete (n/r)<br>Superior (n/r)            | Costa de Her-<br>mosillo, Sonora,<br>Mexico<br>Arid and hot | EC & NDVI (FAO-<br>PM-ET <sub>0</sub> )                 | Drip & FI                         | 2630 (3.8×1.0)<br>1460 (3.8×1.8) | Y-shaped gable              | Mature      | 2.25          | 0.62<br>0.60                |
| Suvočarev et al.<br>(2013)             | Crimson & Autumn<br>Royal (110<br>Ritcher) | Caspe, Zaragoza,<br>Spain<br>Med., semiarid                 | SF (FAO-PM-ET <sub>0</sub> )                            | Drip & FI                         | 1143 (3.5×2.5)                   | Overhead                    | n/r         | n/r           | 0.85                        |
| Vanino et al. (2015)                   | Italia, Victoria, Red<br>Globe (n/r)       | Apulia region, Italy<br>Med, semiarid                       | RS approach (FAO-<br>PM-ET <sub>o</sub> )               | Drip & FI                         | 1890 (2.3×2.3)                   | Overhead "ten-<br>done"     | n/r         | 2.0           | n/r                         |
| Parry et al. (2019)                    | Thompson Seedless<br>(n/r)                 | Kearney, CA, USA<br>Med., warm                              | WL, SR, EC (FAO-<br>PM-ET <sub>o</sub> )                | Drip & FI                         | 1325 (3.5×2.15)                  | T trellis                   | 25–26       | 2.0           | 0.51                        |
| Williams et al. (2022)                 | Thompson Seedless (n/r)                    | Kearney (KAREC),<br>Fresno, CA, USA                         | K <sub>c</sub> from A&P WL<br>(FAO-PM-ET <sub>o</sub> ) | Drip & Fl                         | 1325 (3.5×2.15)                  | Single wire at top (2.13 m) | n/r         | 2.0           | 0.51                        |
|                                        |                                            | Med., warm                                                  |                                                         |                                   |                                  | Cross-arm (0.6 m)           | n/r         | 2.0           | 0.55                        |
|                                        |                                            |                                                             |                                                         |                                   |                                  | Cross-arm (1.2 m)           | n/r         | 2.0           | 0.76                        |
|                                        |                                            | Napa Valley, CA,<br>USA Med., warm                          | K <sub>c</sub> from A&P<br>(FAO-PM-ET <sub>o</sub> )    | Drip & FI                         | 2564 (2.1×1.8)                   | VSP                         | n/r         | 2.0           | 0.44                        |
|                                        |                                            | Paso Robles, CA,<br>USA Med., warm                          | 1                                                       |                                   | 1792 (3.1×1.8)                   | VSP                         | n/r         | 2.0           | 0.27                        |
|                                        |                                            | Livermore Valley,<br>CA, US Med.,<br>warm                   |                                                         |                                   | 2986 (1.8×1.8)                   | VSP                         | n/r         | 2.0           | 0.52                        |
|                                        |                                            | Salinas Valley, CA,<br>USA<br>Med., warm                    |                                                         |                                   | 2240 (2.4×1.83                   | VSP                         | n/r         | 2.0           | 0.36                        |

| Table 1 (continued)                               |                                     |                                                              |                                                            |                                   |                             |                         |             |               |                               |
|---------------------------------------------------|-------------------------------------|--------------------------------------------------------------|------------------------------------------------------------|-----------------------------------|-----------------------------|-------------------------|-------------|---------------|-------------------------------|
| Author                                            | Cultivar (rootstock)                | Location and main<br>climate                                 | ET <sub>c act</sub> method (ET <sub>o</sub> equation)      | Irrigation method<br>and strategy | Plants/ha (spac-<br>ing, m) | Training system         | Age (years) | Height (h, m) | $f_{\rm c}$ or $f_{\rm IPAR}$ |
| Wine grapes (Vitis vi                             | inifera L.)                         |                                                              |                                                            |                                   |                             |                         |             |               |                               |
| Teixeira et al.<br>(2007)                         | Petite Syrah (n/r)                  | Lagoa Grande, Per-<br>nambuco, Brazil<br>Tropical, Semi-arid | BREB (FAO-PM-<br>ET <sub>o</sub> )                         | Drip & FI                         | 2381 (3.5×1.2)              | Bilateral Cordon        | 12–13       | 1.6           | n/r                           |
| Intrigliolo et al.<br>(2009)                      | Riesling (101–14)                   | Geneva, NY, USA<br>Humid                                     | SF (FAO-PM-ET <sub>o</sub> )                               | Drip & FI                         | 1738 (2.7×2.1)              | VSP                     | 5           | n/r           | 0.3                           |
| Campos et al.<br>(2010)                           | Tempranillo &<br>other<br>(n/r)     | Albacete, Spain<br>Med., temp                                | EC, RS-VI (FAO-<br>PM-ET <sub>o</sub>                      | Drip & FI                         | 2222 (3.0×1.5)              | VSP                     | ٢           | n/r           | 0.30                          |
| Carrasco-Benavides et al. (2012)                  | Merlot (n/r)                        | Talca Valley, Chile<br>Med., semiarid                        | EC (FAO-PM-ET <sub>o</sub> )                               | Drip & FI                         | 2667 (2.5×1.5)              | VSP                     | 8–9         | n/r           | 0.28-0.31                     |
| Fandiño et al.<br>(2012)                          | Albariño (n/r)                      | Pontevedra, Spain<br>Med. oceanic                            | SWB-TDR, SIM-<br>DualKc (FAO-<br>PM-ET <sub>0</sub> )      | Drip & FI                         | 2222 (3.0×1.5)              | Guyot (VSP)             | mature      | 2.0           | 0.53                          |
| López-Urrea et al.                                | Tempranillo (110<br>Bichter)        | Albacete, Spain<br>Med semiarid                              | WL (FAO-PM-ET <sub>o</sub> )                               | Drip & FI                         | 2222 $(3.0 \times 1.5)$     | VSP                     | ∞ ∞         | 1.50          | 0.45                          |
| (7107)                                            |                                     |                                                              |                                                            |                                   |                             |                         | ب<br>10     |               | 0.33<br>0.40                  |
| Dicón Toro et al                                  | Tempronillo (110                    | Radaioz Snain                                                | WI (EAO DM ET.)                                            | Drin & El                         | 3333 (7 5 ~ 1 7)            | Bilataral cordon        | 21 2        | <u>v</u>      | 96.0                          |
| (2012) (2012)                                     | Richter)                            | Med., hot. semiarid                                          |                                                            | TT & dura                         | (7.1 < () (                 |                         | n v         | 1.5           | 0.48                          |
|                                                   |                                     |                                                              |                                                            |                                   |                             |                         | 0 6         |               | 0.15                          |
|                                                   |                                     |                                                              |                                                            |                                   |                             |                         | ~ 0         |               | 0.40                          |
|                                                   |                                     |                                                              |                                                            |                                   |                             |                         | ×           |               | 0.50                          |
|                                                   |                                     |                                                              |                                                            |                                   |                             |                         | 6           |               | 0.60                          |
| Poblete-Echeverría<br>and Ortega-Farias<br>(2013) | Merlot (101–14<br>Mgt)              | Talca Valley,<br>Maule, Chile<br>Med., semiarid              | SF, EC (FAO-PM-<br>ET <sub>o</sub> )                       | Drip & FI                         | 2667 (2.5×1.5)              | VSP                     | 89          | n/r           | 0.30                          |
| Zhao et al. (2015,<br>2018)                       | Merlot (n/r)                        | Shiyanghe, Gansu,<br>China<br>Arid                           | SWB-grav, EC SF,<br>SW model (FAO-<br>PM-ET <sub>0</sub> ) | Furrow & n/r                      | 3704 (2.7×1.0)              | Wire vertical trellis   | 14–15       | n/r           | 0.30                          |
| Montoro et al.<br>(2016)                          | Tempranillo (110<br>Richter)        | Albacete, Spain<br>Med, semiarid                             | WL (FAO-PM-ET <sub>o</sub> )                               | Drip & FI                         | 2222 (3.0×1.5)              | VSP                     | 12<br>14    | 1.50          | 0.65<br>0.50                  |
| Marras et al. (2016)                              | Vermentino (n/r)                    | Sardinia, Italy<br>Med                                       | EC (FAO-PM-ET <sub>o</sub> )                               | Drip & FI                         | 5952 (2.1×0.8)              | Guyot                   | 15          | 2.0           | 0.50                          |
| Munitz et al. (2019)                              | Cabernet Sauvignon<br>(110 Richter) | Central Israel<br>Med, semiarid                              | DL (FAO-PM-ET <sub>o</sub> )                               | Drip & FI                         | 2222 (3.0×1.5)              | VSP                     | 5-10        | n/r           | n/r                           |
| Silva et al. (2021)                               | Loureiro (n/r)                      | Ponte de Lima,<br>Portugal<br>Med. Atlantic                  | SWB-FDR, SIM-<br>DualKc (FAO-<br>PM-ET <sub>0</sub> )      | Drip & FI                         | 1666 (3.0×2.0)              | Single upward<br>cordon | 18–19       | 2.4           | 0.40                          |
|                                                   |                                     |                                                              |                                                            |                                   |                             |                         |             |               |                               |

### Irrigation Science

| Table 1 (continued)        |                                                                    |                                                             |                                                         |                                   |                                      |                                                |                          |               |                              |
|----------------------------|--------------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------|-----------------------------------|--------------------------------------|------------------------------------------------|--------------------------|---------------|------------------------------|
| Author                     | Cultivar (rootstock)                                               | Location and main<br>climate                                | ET <sub>c act</sub> method (ET <sub>o</sub> equation)   | Irrigation method<br>and strategy | Plants/ha (spac-<br>ing, m)          | Training system                                | Age (years)              | Height (h, m) | $f_{ m c}$ or $f_{ m IPAR}$  |
| Fandiño (2021)             | Albariño (110-Rich-<br>ter)                                        | O Rosal, Ponteve-<br>dra, Galice, Spain<br>Med. oceanic     | SWB-TDR, SIM-<br>DualKc (FAO-<br>PM-ET <sub>0</sub> )   | Drip & FI                         | 1667 (3×2)                           | Lyra vertical                                  | 10–12                    | 2.1           | 0.25                         |
| Darouich et al.<br>(2022b) | Barbera (n/r)                                                      | Alessandria, Italy<br>Med. Sub-alpine                       | SWB-FDR, SIM-<br>DualKc (FAO-<br>PM-ET.)                | Rainfed & n/r                     | 3636 (2.75×1.0)                      | VSP                                            | 28–31                    | 1.85<br>1.78  | 0.37<br>0.28                 |
|                            | Touriga Nacional & other (n/r)                                     | Samora Correia,<br>Portugal<br>Med., sub-humid              | 5                                                       | Drip & DI summer                  | 3571 (2.8×1.0)                       | VSP                                            | 10-12                    | 1.70          | 0.36                         |
| Williams et al.<br>(2022)  | Cabernet Sauvignon<br>(110R)                                       | Napa Valley, CA,<br>USA<br>Med, warm                        | K <sub>c</sub> from A&P<br>(FAO-PM-ET <sub>o</sub> )    | Drip & Fl                         | 2401 (2.74×1.52)                     | Lyre trellis<br>VSP trellis<br>VSP trellis     | n/r<br>n/r<br>n/r        | 2.0           | 0.57<br>0.32<br>0.52         |
|                            | Cabernet Sauvignon<br>(5C)                                         | Napa Valley, CA,<br>USA<br>Med, warm                        |                                                         | Drip & FI                         | 2155 (3.05×1.52)                     | Lyre trellis<br>GDC trellis<br>'Y' trellis     | n/r<br>n/r<br>n/r        | 2.0           | 0.49<br>0.61<br>0.68         |
|                            | Cabernet Sauvignon<br>(n/r)<br>Sauvignon blanc<br>(n/r)            | Dunningan Hills<br>(Phillips), Yolo,<br>CA<br>Med, warm     |                                                         | Drip & FI                         | 1493 (3.66 × 1.83)                   | Lyre trellis<br>QCT (sprawl<br>canopy)         | n/r<br>n/r               | 2.0           | 0.40<br>0.51                 |
|                            | Chardonnay (n/r)<br>Chardonnay (n/r)<br>Syrah (n/r)<br>Syrah (n/r) | Kearney (KAREC),<br>Fresno, CA<br>Med, warm                 | K <sub>o</sub> from A&PWL<br>(FAO-PM-ET <sub>o</sub> )  | Drip & FI                         | 1493 (3.66×1.83)<br>1631 (3.35×1.83) | GDC<br>Lyre trellis<br>QCT<br>Bilateral cordon | n/r<br>n/r<br>n/r<br>n/r | 2.0           | 0.44<br>0.41<br>0.51<br>0.46 |
|                            | Cabernet Sauvignon<br>(n/r)                                        | Edna Valley, San<br>Luis Obispo, CA,<br>USA<br>Oceanic warm | K <sub>c</sub> from A&P<br>(FAO-PM-ET <sub>o</sub> )    | Drip & FI                         | 1792 (3.05×1.83)                     | VSP<br>QCT                                     | n/r<br>n/r               | 2.0           | 0.32<br>0.53                 |
|                            | Chardonnay (n/r)                                                   | Temecula Valey,<br>CA<br>Med warm                           | K <sub>c</sub> from A&P<br>(FAO-PM-ET <sub>o</sub> )    | Drip & FI                         | 1493 (3.66x 0.83)                    | дст                                            | n/r                      | 2.0           | 0.51                         |
|                            | Syrah (n/r)                                                        | Fresno, CA<br>Med warm                                      | K <sub>c</sub> from A&P<br>(FAO-PM-ET <sub>o</sub> )    | Drip & FI                         | 1631 (3.35×1.83)                     | Bilateral cordon                               | n/r                      | 2.0           | 0.48                         |
| Morgani et al.<br>(2022)   | Malbec                                                             | Mendoza, Argentina<br>Med warm                              | K <sub>c</sub> from shadow<br>(FAO-PM-ET <sub>o</sub> ) | Drip & FI                         | 2,666 (2.5×1.5)                      | VSP                                            | 6–7                      | n/r           | n/r                          |
| Rojo et al. (2023)         | Cabernet Sauvignon<br>(110R)                                       | Pencahue, Maule<br>Central Valley,                          | EC combined<br>w/ SR (REB)                              | Drip, FI in wet year              | 4348 (2.5×1.0)                       | VSP                                            | 8                        | 2.0           | 0.47                         |
|                            | Cabernet Sauvignon<br>(1103P)                                      | Chile<br>Med warm                                           | (ASCE-PM-ET <sub>o</sub> )                              |                                   | 2,666 (2.5×1.5)                      | High-wire cordon,<br>HWC                       | 8                        | 2.3           | 0.64                         |

| Author                                                | Cultivar (rootstock)                                                | Location and main<br>climate                        | ET <sub>c act</sub> method (ET <sub>o</sub> equation) | Irrigation method<br>and strategy | Plants/ha (spac-<br>ing, m) | Training system | Age (years) | Height (h, m) $f_c$ or | $f_{\mathrm{IPAR}}$ |
|-------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------|-------------------------------------------------------|-----------------------------------|-----------------------------|-----------------|-------------|------------------------|---------------------|
| Juice grapes (Vitis l:<br>Conceição et al.<br>(2017a) | abrusca L.)<br>BRS Carmem &Isa-<br>bel Precoce (IAC<br>572 and 766) | Votuporanga,<br>São Paulo, Brazil<br>Tropical humid | K <sub>c</sub> from A&P<br>(FAO-PM-ET <sub>o</sub> )  | Micro-spr. & n/r                  | 4545 (2×1.1)                | VSP             | 3           | 2.0 0.30               |                     |
| Abbreviations and s:                                  | ymbols are defined in li                                            | ist of symbols heading                              |                                                       |                                   |                             |                 |             |                        |                     |

Table 1 (continued)

Tabulated observed  $K_{c mid}$  and  $K_{cb mid}$  show to vary greatly among cultivars and for the same cultivar, as well as with the trellis system. Finding the most appropriate standard  $K_c$  and  $K_{cb}$  values would be nearly impossible without following the conclusions of Williams et al. (2022) that the prime factor influencing  $K_c$  values is training and trellis system disregarding if vineyards are of table or wine grapes. It resulted then a good organization of study results and the Table 3 was then built, first a draft working approach as referred in Section"Selection and tabulation of updated standard  $K_c$  and  $K_{cb}$  values", then simplified as shown herein. Plant density will vary within a given training system and, therefore, their ranges of values in Table 3 shall be considered as indicative to users.

Table 3 shows initial, mid-, and end-season  $K_c$  and  $K_{ch}$ of table and wine grapes grouped according to the degree of ground cover (DGC), training and trellis system (TTS), and plant density and spacing (PDS). DGC varies from very low when plants are young (< 5 years), to high in case of overhead trellis in table grapes, or to very high in case of well covering Y-trellis, the Geneva Double Curtain double wire system, and the overhead trellis system. The diverse degree of ground cover corresponds to diverse TTS, which are influenced by the pruning intensity, and to various plant density and spacing. The described groups are also characterized by ranges of the fraction of ground cover and height, f<sub>o</sub> and h, which may help to decide which group is more appropriate for the case under study. Moreover, f<sub>c</sub> and h may be utilized to compute K<sub>cb</sub> for the three stages with the A&P approach (Allen and Pereira 2009; Pereira et al. 2020a) with help of the proposed parameters M<sub>L</sub> and F<sub>r</sub>, also tabulated.

The proposed standard  $K_{cb}$  and  $K_c$  are given in the last two columns of the Table 3. The ranges of  $K_{cb}$  and  $K_c$ obtained from field measurements and proposed in the selected papers and the ranges reported in previous Tables, namely FAO56, are also tabled as they were used for selecting the values of the proposed standard coefficients. Readers are advised to interpolate the proposed  $K_{cb}$  and  $K_c$  using the data they have available.

It is evidenced by Table 3 that standard  $K_{cb}$  and  $K_c$  for vineyards mainly increase with ground cover and plant density, thus depending upon training and trellis systems as they favor or not ground shading, thus the light intercepted by the canopy. Soil evaporation, contrarily, is governed by the TTS that provide for larger or limited solar radiation at the soil surface, thus for larger or reduced energy for soil water evaporation.

| Table 2 Field derived crop coe      | fficients of table grapes and wine g             | rapes vineyards         |                                      |            |                |         |                                |                      |                    |                                 |                     |                     |
|-------------------------------------|--------------------------------------------------|-------------------------|--------------------------------------|------------|----------------|---------|--------------------------------|----------------------|--------------------|---------------------------------|---------------------|---------------------|
| Author                              | Cultivar (rootstock)                             | Training system         | $f_{\rm c} \mbox{ or } f_{\rm IPAR}$ | Height (m) | Ground cover   | Age     | K <sub>c</sub> /K <sub>c</sub> | b derived            | d from 1           | field ob:                       | ervation            | s                   |
|                                     |                                                  |                         |                                      |            |                | (years) | $K_{c\text{ini}}$              | K <sub>c mid</sub> 1 | K <sub>c end</sub> | $\mathbf{K}_{\mathrm{cb\ ini}}$ | K <sub>cb mid</sub> | X <sub>cb end</sub> |
| Table grapes (Vitis vinifera)       |                                                  |                         |                                      |            |                |         |                                |                      |                    |                                 |                     |                     |
| Williams and Ayars (2005)           | Thompson Seedless (clone 2A)                     | Cross-arm 0.6 m         | 0.53                                 | 2          | n/r            | Mature  | 0.15                           | 1.00 1               | n/r                | n/r                             | ı/r                 | ı/r                 |
| Teixeira et al. (2007)              | Superior Seedless (n/r)                          | Overhead horiz. Trellis | n/r                                  | 1.8        | AGC            | 3-4     | 0.70                           | 0.95 (               | 0.75               | 0.50                            | 0.80                | ).65                |
| Netzer et al. (2009)                | Superior Seedless (1103<br>Paulsen)              | Y-shaped                | 0.80                                 | 2.0        | n/r            | 2-8     | 0.30                           | 1.20                 | n/r                | n/r                             | ı/r                 | ٦/r                 |
| Villagra et al. (2011, 2014)        | Thompson Seedless (Harmony)                      | Overhead trellis        | 0.97                                 | n/r        | n/r            | 8–9     | 0.20                           | 1.10 (               | 0.80               | n/r                             | ı/r                 | ı/r                 |
| Moratiel and Martínez-Cob<br>(2012) | Italia, Victoria, RedGlobe (n/r)                 | Overhead system         | n/r                                  | 2.0        | BS             | n/r     | 0.40                           | 1.00                 | n/r                | n/r                             | ı/r                 | ٦/r                 |
| Er-Raki et al. (2013)               | Perlete (n/r)                                    | Y-shaped gable          | 0.62                                 | 2.25       | BS             | Mature  | 0.20                           | 0.55 (               | 0.25               | n/r                             | a/r                 | ı/r                 |
|                                     | Superior (n/r)                                   | Y-shaped gable          | 0.60                                 | 2.25       | BS             |         | 0.10                           | 0.60                 | 0.30               | n/r                             | ı/r                 | ı/r                 |
| Suvočarev et al. (2013)             | Red Globe (n/r)                                  | Y-shaped gable          | 0.00                                 | 2.2        | netting<br>BPM | 88      | n/r                            | 0.79 (               | 0.98               | 0.10                            | 1.05                | ).80<br>).50        |
| Vanino et al. (2015)                | Crimson & Autumn Royal<br>seedless (110 Ritcher) | Overhead system         | 0.85                                 | n/r        | BS             | n/r     | n/r                            | n/r 1                | n/r                | n/r                             | 0.65                | ٦/r                 |
| Parry et al. (2019)                 | Thompson Seedless (n/r)                          | T trellis               | 0.51                                 | 2.0        | BS             | 25-26   | n/r                            | 0.86 1               | n/r                | n/r                             | ı∕r                 | ı/r                 |
| Williams et al. (2022)              | Thompson Seedless (n/r)                          | Single wire top         | 0.51                                 | 2.0        | BS             | n/r     | n/r                            | 0.87                 | n/r                | n/r                             | 0.82                | ı∕r                 |
|                                     |                                                  | Cross-arm 0.6 m         | 0.55                                 |            |                |         |                                | 0.93                 |                    |                                 | ).88                |                     |
|                                     |                                                  | Cross-arm 1.2 m         | 0.76                                 |            |                |         |                                | 1.30                 |                    |                                 | 1.11                |                     |
|                                     |                                                  | VSP                     | 0.44                                 | 2.0        | BS             | n/r     | n/r                            | 0.74 1               | n/r                | n/r                             | .69                 | ı/r                 |
|                                     |                                                  | VSP                     | 0.27                                 | 2.0        | BS             | n/r     | n/r                            | 0.46 1               | n/r                | n/r                             | 0.41                | ı/r                 |
|                                     |                                                  | VSP                     | 0.52                                 | 2.0        | BS             | n/r     | n/r                            | 0.87                 | n/r                | n/r                             | 0.82                | ı∕r                 |
|                                     |                                                  | VSP                     | 0.36                                 | 2.0        | BS             | n/r     | n/r                            | 0.61 1               | n/r                | n/r                             | 0.56                | ı/r                 |
| Wine grapes (a)                     |                                                  |                         |                                      |            |                |         |                                |                      |                    |                                 |                     |                     |
| T eixeira et al. (2007)             | Petite Syrah (n/r)                               | Vertically BC           | n/r                                  | 1.6        | BS             | 12–13   | 0.65                           | 0.80 (               | 0.65               | 0.55                            | 0.70                | 09.0                |
| Intrigliolo et al. (2009)           | Riesling (101–14)                                | VSP                     | 0.30                                 | n/r        | BS             | 2       | n/r                            | 0.55 1               | n/r                | n/r                             | 0.50                | ٦/r                 |
| Campos et al. (2010)                | Tempranillo & other (n/r)                        | VSP                     | 0.30                                 | n/r        | BS             | 7       | 0.30                           | 0.50 1               | n/r                | 0.15                            | 0.45                | ı/r                 |
| Carrasco-Benavides et al. (2012)    | Merlot (n/r)                                     | VSP                     | 0.28-0.31                            | n/r        | BS             | 89      | 0.41                           | 0.55 1               | n/r                | n/r                             | ı/r                 | ı/r                 |
| Fandiño et al. (2012)               | Albariño (n/r)                                   | Guyot (VSP)             | 0.53                                 | 2.0        | AGC            | mature  | n/r                            | n/r 1                | n/r                | 0.09                            | 0.60                | ).46                |
|                                     |                                                  |                         |                                      |            |                |         |                                |                      |                    | 0.60                            | .98                 | .91                 |
| López-Urrea et al. (2012)           | Tempranillo (110 Richter)                        | VSP                     | 0.45                                 | 1.50       | BS             | 8       | 0.37                           | 0.75                 | n/r                | 0.22                            | 0.69                | ı/r                 |
|                                     |                                                  |                         | 0.33                                 |            |                | 6       | 0.35                           | 0.51                 |                    | 0.18                            | 0.46                |                     |
|                                     |                                                  |                         | 0.40                                 |            |                | 10      | 0.32                           | 0.72                 |                    | 0.22                            | 0.67                |                     |

| Table 2 (continued)                             |                                     |                       |                               |            |              |         |               |                      |         |           |          |        |
|-------------------------------------------------|-------------------------------------|-----------------------|-------------------------------|------------|--------------|---------|---------------|----------------------|---------|-----------|----------|--------|
| Author                                          | Cultivar (rootstock)                | Training system       | $f_{\rm c}$ or $f_{\rm IPAR}$ | Height (m) | Ground cover | Age     | $K_c/K_{cb}$  | derived              | from fi | eld obs   | ervation |        |
|                                                 |                                     |                       |                               |            |              | (years) | $K_{c ini}$ ] | K <sub>c mid</sub> K | c end K | tch ini F | cb mid H | cb end |
| Picón-Toro et al. (2012)                        | Tempranillo (110 Richter)           | BC                    | 0.28                          | 1.5        | BS           | 5       | 0.20          | 0.95 0               | .35 0   | .15 0     | .60 r    | /r     |
|                                                 |                                     |                       | 0.48                          |            |              | 6       | 0.20          | 0 06.0               | .20 0   | .15 0     | .85 r    | /r     |
|                                                 |                                     |                       | 0.45                          |            |              | Ζ       | 0.20          | 1.20 0               | .20 0   | .15 0     | 1 06.    | /r     |
|                                                 |                                     |                       | 0.50                          |            |              | 8       | 0.15          | 1.00 0               | .20 0   | .10 0     | .95 I    | /r     |
|                                                 |                                     |                       | 0.60                          |            |              | 6       | 0.30          | 1.10 0               | .20 0   | .15 1     | .05 I    | /r     |
| Poblete-Echeverría and Ortega-<br>Farias (2013) | Merlot (101-14 Mgt)                 | VSP                   | 0.30                          | n/r        | n/r          | 8-9     | 0.37          | 0.62 0               | .56 0   | 24 0      | .53 (    | .43    |
| Zhao et al. (2015, 2018)                        | Merlot (n/r)                        | Wire vertical trellis | 0.30                          | n/r        | n/r          | 14–15   | n/r           | ı∕r n                | /r 0    | .15 0     | .53 *    | 0.10   |
| Montoro et al. (2016)                           | Tempranillo (110 Richter)           | VSP                   | 0.65                          | 1.50       | BS           | 12–14   | n/r           | a/r n                | /r n    | /r 1      | .00      | /r     |
|                                                 |                                     |                       | 0.50                          |            |              |         |               |                      |         | 0         | .75      |        |
| Marras et al. (2016)                            | Vermentino (n/r)                    | Guyot                 | 0.50                          | 2.0        | n/r          | 15      | n/r           | 0.80 0               | .50 n   | /r n      | /r I     | /r     |
| Munitz et al. (2019)                            | Cabernet Sauvignon (110<br>Richter) | VSP                   | n/r                           | n/r        | n/r          | 5-10    | 0.20          | 0.75 0               | .30 0   | .16 0     | .62 (    | .25    |
| Silva et al. (2021)                             | Loureiro (n/r)                      | Single upward cordon  | 0.40                          | 2.4        | AGC          | 18–19   | n/r           | 0.61 0               | .57 0   | 27 0      | .42 (    | .41    |
| Fandiño (2021)                                  | Albariño (110-Richter)              | Lyra vertical         | 0.25                          | 2.1        | AGC          | 10-12   | 1.17          | 0.74 0               | .58 0   | .33 0     | .64      | .48    |
| Darouich et al. (2022b)                         | Barbera (n/r)                       | VSP                   | 0.37                          | 1.85       | Tilled       | 28-31   |               | a/r n                | /r 0    | 20 0      | .47 (    | .34    |
|                                                 |                                     |                       | 0.28                          | 1.78       | Mowed AGC    |         |               |                      | 0       | .35 0     | .47 (    | .40    |
|                                                 | Touriga & other (n/r)               | VSP                   | 0.36                          | 1.70       | AGC, spring  | 10-12   | n/r           | ı∕r n                | /r 0    | .17 0     | .47 (    | .39    |
| Williams et al. (2022)                          | Cabernet Sauvignon (110R)           | Lyre                  | 0.57                          | 2          | BS           | n/r     | n/r           | n 96.0               | /r n    | /r 0      | .91 I    | /r     |
|                                                 |                                     | VSP                   | 0.32                          |            |              |         | •             | 0.54                 |         | 0         | .49      |        |
|                                                 |                                     | VSP                   | 0.52                          |            |              |         | •             | ).89                 |         | 0         | .84      |        |
|                                                 | Cabernet Sauvignon (5C)             | Lyre                  | 0.49                          | 2          | BS           | n/r     | n/r           | 0.83 n               | /r n    | /r C      | .78 I    | /r     |
|                                                 |                                     | GDC                   | 0.61                          |            |              |         |               | 1.03                 |         | 0         | 98.      |        |
|                                                 |                                     | 'Y' trellis           | 0.68                          |            |              |         |               | 1.16                 |         | 1         | .11      |        |
|                                                 | Cabernet Sauvignon (n/r)            | Lyre                  | 0.40                          | 2          | BS           | n/r     | n/r (         | 0.68 n               | /r n    | /r 0      | .63 I    | /r     |
|                                                 | Sauvignon blanc (n/r)               | QCT                   | 0.51                          | 2          | BS           | n/r     | n/r           | 0.87 n               | /r n    | /r C      | .82 I    | /r     |
|                                                 | Chardonnay (n/r)                    | GDC                   | 0.44                          | 2          | BS           | n/r     | n/r (         | 0.74 n               | /r n    | /r C      | 1 69.    | /r     |
|                                                 |                                     | Lyre trellis          | 0.41                          |            |              |         | •             | 0.71                 |         | 0         | .66      |        |
|                                                 | Syrah (n/r)                         | BC                    | 0.46                          | 2          | BS           | n/r     | n/r (         | n 87.0               | /r n    | /r 0      | .73 I    | /r     |
|                                                 |                                     | QCT                   | 0.51                          |            |              |         | •             | ).86                 |         | 0         | .81      |        |
|                                                 | Cabernet Sauvignon (n/r)            | VSP                   | 0.32                          | 2          | BS           | n/r     | n/r (         | 0.54 n               | /r n    | /r C      | .49 I    | /r     |
|                                                 |                                     | QCT                   | 0.53                          |            |              |         | •             | 06.0                 |         | 0         | .85      |        |
|                                                 | Chardonnay (n/r)                    | QCT                   | 0.51                          | 2          | BS           | n/r     | n/r (         | 0.86 n               | /r n    | /r 0      | .81 I    | /r     |
|                                                 | Syrah (n/r)                         | BC                    | 0.48                          | 2          | BS           | n/r     | n/r (         | 0.80 n               | /r n    | /r C      | .75 I    | /r     |

| Table 2 (continued)              |                                    |                 |                                      |            |                 |         |                                |               |                              |                 |                 |                 |
|----------------------------------|------------------------------------|-----------------|--------------------------------------|------------|-----------------|---------|--------------------------------|---------------|------------------------------|-----------------|-----------------|-----------------|
| Author                           | Cultivar (rootstock)               | Training system | $f_{\rm c} \mbox{ or } f_{\rm IPAR}$ | Height (m) | Ground cover    | Age     | K <sub>c</sub> /K <sub>c</sub> | b derive      | d from                       | field of        | servatio        | suo             |
|                                  |                                    |                 |                                      |            |                 | (years) | ${\rm K}_{ m c  ini}$          | $K_{c \ mid}$ | $\mathbf{K}_{c \text{ end}}$ | $K_{cb \; ini}$ | $K_{cb \; mid}$ | $K_{cb \; end}$ |
| Morgani et al. (2022)            | Malbec (own rooted)                | VSP             | n/r                                  | n/r        | n/r             | n/r     | 0.10                           | 0.72          | n/r                          | n/r             | n/r             | n/r             |
| Rojo et al. (2023)               | Cabernet Sauvignon (110R)          | VSP             | 0.47                                 | 2          | BS              | 8       | 0.30                           | 0.50          | 0.35                         | n/r             | n/r             | n/r             |
|                                  | Cabernet Sauvignon (1103P)         | HWC             | 0.64                                 | 2.3        | BS              | 8       | 0.30                           | 0.65          | 0.45                         | n/r             | n/r             | n/r             |
| Juice grapes (Vitis labrusca L.) |                                    |                 |                                      |            |                 |         |                                |               |                              |                 |                 |                 |
| Conceição et al. (2017a)         | BRS Carmem                         | VSP             | 0.30                                 | 2.0        | AGC and netting | 3       | 0.60                           | 0.74          | n/r                          | n/r             | n/r             | n/r             |
|                                  | Isabel Precoce (IAC 572 and 766)   |                 |                                      |            |                 |         | 0.63                           | 0.81          |                              |                 |                 |                 |
| Abbreviations and symbols are d  | lefined in list of symbols heading |                 |                                      |            |                 |         |                                |               |                              |                 |                 |                 |

### **Olive orchards**

Olive trees are, after centuries, main references of the Mediterranean landscapes, either isolated or in small groups, or in orchards. Due to their physiological characteristics, olives are resistant to dryness and droughts and other abiotic stresses (Fernández 2014) but then decreasing growth and yield. Climate change is affecting olives water requirements and, then, the landscape (Tanasijevic et al. 2014). Traditional orchards are rainfed, have wide tree spacing, and are vasetrained. They continue to be used but are declining and being replaced by irrigated orchards with increasing plant density, such as the modern super high density hedgerow system. Plant density increased from 225–250 trees ha<sup>-1</sup> to almost 2000 trees ha<sup>-1</sup>. Unlike vineyards, f<sub>c</sub> and h show a relatively little variability, however with exceptions.

The selected orchards (Table 4) are mainly located in the Mediterranean region, with only one from a Chilean location with Mediterranean climate, the Talca Valley. Cultivars are often changing from traditional ones (e.g., 'Picual', 'Cobrançosa') to cultivars adapted to high density systems like 'Arbequina'. Training systems and plant density affect tree maturity, with intensive orchards trained in vase, reaching full bearing by 7–8 years, while high-density systems, trained as hedges, reach full bearing 4–5 years after planting. In these latter systems, the mechanical harvesters limit plant height and therefore pruning is mandatory at least once a year.

All reported  $ET_o$  computations refer to the FAO-PM- $ET_o$ . Field ET studies were performed mostly using EC systems and SWB with various sensors and the model SIMDualKc; SF systems were used for measuring transpiration. Drip irrigation was used in most cases but always adopting controlled or regulated deficit irrigation (Table 4). The eustress concept used for vineyards does not apply to olives due to their resistance and resilience to droughts and water stress, which calls to adopt limited water use and costs by currently adopting deficit irrigation, mainly during the pit hardening stage.

The crop coefficients show some variability, both  $K_c$  and  $K_{cb}$  (Table 5). The  $K_c$  curves present a mid-season value lower than the  $K_{c ini}$  and  $K_{c end}$  which is the consequence of the Mediterranean rainfall regime, with rain by the initial stage, by the early spring, and by the final stage, at mid-autumn, with a dry summer mid-season. The  $K_{cb}$  curves are different because transpiration is much higher in mid-summer under irrigation than during the initial and end stages. The Med climate does not change much inter-annually, but global change is making the dry summer season longer. Without irrigation both  $K_c$  and  $K_{cb}$  curves tend to flat down due to impacts of water stress. Soil evaporation is important during the non-growing period, mostly the winter, when precipitation occurs; it is negligible during the mid-season

| <b>Table 3</b> Initial, mid-, and end-season standard single and basal crop coefficient grapes with indication of ranges of observed $K_c$ and $K_{cb}$ , and of former tabulatic | ts for vineya<br>ons of their s | rds as rela<br>tandard va | ted with the<br>lues | trainii     | ig trell    | is system, fra        | ction of grou  | nd cover and                | l height for ta   | ble an       | d wine      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|---------------------------|----------------------|-------------|-------------|-----------------------|----------------|-----------------------------|-------------------|--------------|-------------|
| Degree of ground cover, training, and plant density                                                                                                                               | fc                              | ų                         | Crop stage           | $M_{\rm L}$ | $F_{\rm r}$ | Ranges of o<br>values | bserved        | Ranges of p<br>tabulated va | reviously<br>lues | Propo        | sed         |
|                                                                                                                                                                                   |                                 |                           |                      |             |             | $K_{\rm cb}$          | K <sub>c</sub> | $K_{ m cb}$                 | $K_{ m c}$        | $K_{\rm cb}$ | $K_{\rm c}$ |
| Table grapes (Vitis vinifera)                                                                                                                                                     |                                 |                           |                      |             |             |                       |                |                             |                   |              |             |
| Low (Young, <5 years), diverse trellis and trainings                                                                                                                              | < 0.40                          | <1.5                      | Ini                  | 1.1         | 1.00        | 0.50                  | 0.70           | 0.20                        | 0.30              | 0.20         | 0.35        |
|                                                                                                                                                                                   |                                 |                           | Mid                  | 1.3         | 1.00        | 0.80                  | 0.95           | 0.55-0.60                   | 0.60 - 0.65       | 0.55         | 0.65        |
|                                                                                                                                                                                   |                                 |                           | End                  | 1.3         | 1.00        | 0.65                  | 0.75           | 0.45-0.50                   | 0.50 - 0.60       | 0.45         | 0.55        |
| Medium (T-trellis, Y-trellis, and VSP) (1200–1700 pl/ha)                                                                                                                          | 0.40 - 0.60                     | 1.5 - 2.2                 | Ini                  | 1.5         | 0.90        | I                     | I              | 0.15                        | 0.30              | 0.25         | 0.35        |
|                                                                                                                                                                                   |                                 |                           | Mid                  | 1.5         | 0.95        | 0.82 - 0.88           | 0.86 - 0.93    | 0.75-0.90                   | 0.85 - 0.95       | 0.85         | 0.95        |
|                                                                                                                                                                                   |                                 |                           | End                  | 1.5         | 0.70        | I                     | I              | 0.40 - 0.70                 | 0.45 - 0.75       | 0.60         | 0.70        |
| High (Y-trellis and overhead system) (1200–1700 pl/ha)                                                                                                                            | 0.60 - 0.95                     | 2.0-2.5                   | Ini                  | 1.5         | 0.90        | 0.10 - 0.50           | 0.20 - 0.70    | 0.20                        | 0.30              | 0.35         | 0.45        |
|                                                                                                                                                                                   |                                 |                           | Mid                  | 1.5         | 0.95        | 0.65 - 1.11           | 0.79 - 1.30    | 0.65 - 1.05                 | 0.70 - 1.10       | 1.05         | 1.10        |
|                                                                                                                                                                                   |                                 |                           | End                  | 1.5         | 0.70        | 0.50-0.80             | 0.75-0.98      | 0.50-0.80                   | 0.55-0.85         | 0.75         | 0.80        |
| Wine grapes (Vitis vinifera)                                                                                                                                                      |                                 |                           |                      |             |             |                       |                |                             |                   |              |             |
| Very low (Young <5 years, diverse trellis, and trainings), 2000–3300pl/ha                                                                                                         | < 0.15                          | <1.5                      | Ini                  | 1.1         | 1.00        | I                     | 0.60 - 0.63    | I                           | I                 | 0.10         | 0.30        |
|                                                                                                                                                                                   |                                 |                           | Mid                  | 1.1         | 1.00        | 0.50                  | 0.55-0.81      | I                           | Ι                 | 0.20         | 0.35        |
|                                                                                                                                                                                   |                                 |                           | End                  | 1.1         | 1.00        | I                     | I              | I                           | I                 | 0.15         | 0.30        |
| Low (diverse trellis and trainings), 2000–3300 pl/ha                                                                                                                              | 0.15 - 0.35                     | 1.5 - 2.0                 | Ini                  | 1.5         | 0.95        | 0.03 - 0.35           | 0.20-0.63      | 0.25                        | 0.30              | 0.20         | 0.35        |
|                                                                                                                                                                                   |                                 |                           | Mid                  | 1.5         | 0.90        | 0.41 - 0.60           | 0.46-0.95      | 0.40-0.45                   | 0.45 - 0.50       | 0.45         | 0.60        |
|                                                                                                                                                                                   |                                 |                           | End                  | 1.5         | 0.70        | 0.05-0.43             | 0.35-0.56      | 0.30-0.35                   | 0.40 - 0.45       | 0.25         | 0.40        |
| Medium (VSP, single & double Guyot, single & bilateral cordon, GDC, Lyre,                                                                                                         | 0.35-0.50                       | 1.5 - 2.0                 | Ini                  | 1.5         | 0.85        | 0.10-0.27             | 0.15 - 0.37    | 0.15 - 0.20                 | 0.30 -            | 0.25         | 0.40        |
| Y-trellis) 2000–3300 pl/ha                                                                                                                                                        |                                 |                           | Mid                  | 1.5         | 0.90        | 0.42 - 0.95           | 0.50 - 1.20    | 0.45 - 0.70                 | 0.50 - 0.75       | 0.70         | 0.80        |
|                                                                                                                                                                                   |                                 |                           | End                  | 1.5         | 0.75        | 0.34-0.41             | 0.20-0.57      | 0.35-0.50                   | 0.40 - 0.55       | 0.45         | 0.55        |
| High (VSP, GDC, Lyre, Y-trellis, T-trellis, Pergola, QCT) 2000-4300 pl/ha                                                                                                         | 0.50-0.65                       | 1.5-2.5                   | Ini                  | 1.5         | 0.90        | 0.09-0.55             | 0.20-0.65      | I                           | I                 | 0.30         | 0.40        |
|                                                                                                                                                                                   |                                 |                           | Mid                  | 1.5         | 0.90        | 0.60 - 1.05           | 0.65 - 1.10    | 0.45 - 0.65                 | 0.50 - 0.70       | 0.85         | 0.95        |
|                                                                                                                                                                                   |                                 |                           | End                  | 1.5         | 0.70        | 0.25-0.91             | 0.20-0.65      | 0.35-0.50                   | 0.40 - 0.55       | 0.55         | 0.65        |
| Very high (Y-trellis, GDC, and overhead system) 2000-4300 pl/ha                                                                                                                   | >0.60                           | 1.8–2.5                   | Ini                  | 1.7         | 0.95        | I                     | I              | 0.20                        | 0.30              | 0.35         | 0.45        |
|                                                                                                                                                                                   |                                 |                           | Mid                  | 1.5         | 0.90        | 0.98-1.11             | 1.03 - 1.16    | 0.70                        | 0.75              | 0.95         | 1.05        |
|                                                                                                                                                                                   |                                 |                           | End                  | 1.5         | 0.60        | I                     | I              | 0.55                        | 0.60              | 09.0         | 0.70        |

Abbreviations and symbols are defined in list of symbols heading

| Table 4 Characteri              | stics of the selected oliv                | e orchards (0)                    | lea europea L.)                          |                                                             |                                   |                                    |                     |                         |                   |                             |
|---------------------------------|-------------------------------------------|-----------------------------------|------------------------------------------|-------------------------------------------------------------|-----------------------------------|------------------------------------|---------------------|-------------------------|-------------------|-----------------------------|
| Author                          | System cultivar                           |                                   | Location and main<br>climate             | ET <sub>c act</sub> method (ET <sub>o</sub> equation)       | Irrigation method<br>and strategy | Trees/ha (Spac-<br>ing, m)         | Training<br>system  | Age (years)             | Height (m)        | $f_{ m c}$ or $f_{ m IPAR}$ |
| Villalobos et al.<br>(2000)     | Traditional<br>Picual                     |                                   | Cordoba, Spain<br>Med. arid              | EC and PM eq (FAO-<br>PM-ET <sub>o</sub> )                  | Drip and FI                       | 278 (6×6)                          | n/r                 | mature                  | 4.0               | A: 0.4<br>B: 0.3            |
| Cammalleri et al.<br>(2013b)    | Traditional<br>Nocellare del Belice       |                                   | Castelvetrano, Sic-<br>ily, Italy<br>Med | EC, SF, Scintil (FAO-<br>PM-ET <sub>o</sub> )               | Drip and DI                       | 250 (8×5)                          | n/r                 | mature                  | 3.7               | 0.35                        |
| Fernández et al.<br>(2006)      | Traditional<br>Manzanilla de Seville      |                                   | Seville, Spain<br>Med                    | SF, SWB (FAO-PM-<br>ET <sub>o</sub> )                       | Drip and RDI<br>SDI, PRD          | 286 (7×5)                          | Spheric open<br>top | 35                      | n/r               | 0.34                        |
| Er-Raki et al.<br>(2010)        | Traditional<br>n/r                        |                                   | Marrakech,<br>Morocco<br>Med. dry        | EC, SWB, (FAO-PM-<br>ET <sub>o</sub> )                      | Basin and RDI                     | 225 (n/r)                          | n/r                 | 240                     | 6.0               | 0.60                        |
| Torres-Ruiz et al. (2012)       | Traditional<br>Manzanilla de Seville      |                                   | Seville, Spain<br>Med                    | SWB, Orgaz software<br>(FAO-PM-ET <sub>0</sub> )            | Drip and n/r                      | 286 (7×5)                          | Vase                | >40                     | n/r               | 0.34                        |
| Villalobos et al.<br>2013       | Traditional<br>Arbequina                  |                                   | Cordoba<br>Med                           | SF (FAO-PM-ET <sub>o</sub> )                                | Drip and FI                       | 408 (7×3.5)                        | Free form           | 11                      | 3.5               | 0.49                        |
| Conceição et al.<br>(2017b)     | Traditional<br>Arbequina                  |                                   | Ferreira do<br>Alentejo, Portugal<br>Med | SWB-neutron, SF,<br>A&P, DI (FAO-PM-<br>ET <sub>0</sub> )   | Drip and DI                       | 300 (7×4.8)                        | Vase                | mature                  | 3.2–3.5           | 0.22                        |
| Puig-Sirera et al.<br>(2021)    | Traditional<br>Nocellare del Belice       |                                   | Castelvetrano, Sic-<br>ily, Italy<br>Med | SF, SIMDualKc<br>(FAO-PM)                                   | Drip and DI                       | 250 (8×5)                          | Vase                | 10                      | 3.5               | 0.35                        |
| Siakou et al.<br>(2021)         | Traditional                               | Koroneiki                         | Nicosia, Cyprus<br>Med                   | SWB, Dielect (FAO-<br>PM-ET <sub>o</sub> )                  | Spaghetti drip<br>and DI          | 278 (6×6)                          | Vase                | 17                      | 2.5               | 0.38                        |
| Ramos et al.<br>(2023)          | Traditional<br>Traditional<br>Traditional | Arbequina<br>Cobrançosa<br>Picual | Aljustrel, Portugal<br>Med               | SWB-TDR SIM-<br>DualKc (FAO-PM-<br>ET <sub>0</sub> )        | Drip and DI                       | 319 (n/r)<br>297 (n/r)<br>297(n/r) | Vase                | 11–12<br>12–13<br>11–12 | 4.1<br>3.0<br>3.9 | 0.26<br>0.23<br>0.27        |
| Testi et al. (2004)             | Intensive, young<br>Arbequina             |                                   | Cordoba, Spain<br>Med. dry               | EC (FAO-PM-ET <sub>0</sub> )                                | Drip and DI                       | $408(7 \times 3.5)$                | n/r                 | 1–3                     | 1.4–2.9           | 0.05 - 0.25                 |
| Martínez-Cob and<br>Faci (2010) | Intensive<br>Arbequina                    |                                   | Zaragoza, Spain<br>Med                   | EC, SWB (FAO-PM-<br>ET <sub>o</sub> )                       | Drip and DI                       | 556 (6×3)                          | Hedgeprune          | 7                       | 3.5               | 0.33                        |
| López-Olivari<br>et al. (2016)  | Superintensive<br>Arbequina               |                                   | Talca Valley,<br>Maule, Chile<br>Med     | SWB-TDR, SF, EC<br>(FAO-PM-ET <sub>o</sub> )                | Drip and RDI                      | 1333 (5×1.5)                       | n/r                 | 9                       | 3.2               | 0.29 - 0.31                 |
| Paço et al. (2014)              | Super high-density<br>Arbequina           |                                   | Viana do Alentejo,<br>Portugal<br>Med    | METRIC, EC, SF,<br>SIMDualKc (FAO-<br>PM-ET <sub>o</sub> )  | Drip and RDI                      | 1975<br>(3.75×1.35)                | Hedgerow            | 4-6                     | 3.5               | 0.35                        |
| Paço et al. (2019)              | Super high-density<br>Arbequina           |                                   | Viana do Alentejo,<br>Portugal<br>Med    | SWB-TDR, EC, SF,<br>SIMDualKc (FAO-<br>PM-ET <sub>o</sub> ) | Drip and RDI                      | 1975<br>(3.75×1.35)                | Hedgerow            | 5-7                     | 3-4<br>4          | 0.38                        |

🖄 Springer

Abbreviations and symbols are defined in list of symbols heading

if rain is very low and irrigation is under canopy as for drip and micro-sprinkling; intermediate conditions occur by the initial and final periods depending upon the distribution of rainfall. AGC and mulch are rarely practiced but natural AGC occurs during spring, with AGC converting into residual mulch during the summer.

The proposed standard  $K_{cb}$  values in Table 6 were defined in agreement with the observed ranges, often slightly larger than these. But the  $K_c$  values are smaller than the observed ranges and the ranges previously tabulated because when irrigation is under the canopies and practiced with good quality equipment and efficiently there are no reasons for high soil evaporation or operational losses. This is particularly true in the hedgerow olive orchards since differences between ranges observed for  $K_{cb}$  and  $K_c$  are high, likely indicating non negligible soil evaporation losses. As for vineyards, the plant densities referred in Table 6 are guidelines for users.

### **Citrus orchards**

Various tree species are included among the citrus trees: clementine, grapefruit, lemon, lime, mandarin, and orange. Studies relative to orange are by far the most common, followed by clementine and mandarin. Studies were carried mostly in the Mediterranean region but those for lime (*Citrus latifolia* Tan.) were developed in Brazil, where this crop is very popular; those for orange, following its wide dissemination, in addition to the Med basin, come from North and South America, South Africa and Iran (Table 7). This wide origin of the selected studies proposes various perspectives that favor the analysis aimed at finding the appropriate standard  $K_c$  and  $K_{cb}$  for all the crops. Moreover, cultivars referred for each crop are also diverse.

As for the grapes and olives, the appropriateness and accuracy of computation of ET<sub>o</sub> and crop evapotranspiration were analyzed (Table 7). In most cases, the FAO-PM ET<sub>o</sub> was adopted with only 2 cases of using the Penman equation and the class A pan were observed. A diverse panoply of field ET measurement was reported. The most common approach was SWB based on diverse soil water sensors, followed by the sap-flow measurement of transpiration and the EC measurement of ET, often combined. Weighing lysimeters and the surface renewal method were also used. Drip and micro-sprinkler irrigating under canopy were generally adopted. Full irrigation, sometimes in excess, was the main strategy. Information reported in literature was however insufficient to understand if, likely, eustress was considered. In general, it could be considered that conditions existed to favor water saving and high yields.

A variety of plant densities and spacing are reported but it was not possible to relate them to training, with many papers not reporting about training. The most common is vase but some hedgerow, yet with relatively low plant spacing, were also referred. Generally, plant heights varied from about 2.5 to 4.0 m but much larger and uncommon heights near 6 m were reported for orange in Florida. Tree height was lower for mandarin (<2.8 m) and clementine (<4.1 m). The fraction  $f_c$  followed a similar trend, smaller for mandarin, lime, lemon and clementine, largest for orange (up to 0.90). Differences in architecture and sizes, as well as physiological but not referred herein, justify that  $K_c$  and  $K_{cb}$  were not given in a single group of citrus.

Generally, results in Table 8 show well the dependence of  $K_{c \text{ mid}}$  and  $K_{cb \text{ mid}}$  on crop age, height, and  $f_c$  as it is the case of studies by Castel (2000) for clementines, Alves et al. (2007) for lime trees, Maestre-Valero et al. (2017) for mandarin, and Consoli et al. (2006) for orange. Since citrus are evergreen trees, they also show a K<sub>c</sub> curve where higher values are for  $K_{c ini}$  and  $K_{c end}$  for climates like Mediterranean, with very small precipitation in summer and the rainfall season initiating by the fall and ending by the spring. In other climates, this may not happen. Because citrus are evergreen and for some species or cultivars show differences in crop stages, some growers and advisers adopt a constant K<sub>c</sub>, which lead to flat down the period between spring and winter, i.e., when irrigation is required. Several citrus studies report K<sub>c</sub>/K<sub>cb</sub> values on a monthly time scale, so the growth stages of the plants were defined according to the tree's annual cycle (3 vegetative growth peaks corresponding to spring, summer and autumn). Therefore, the initial stage corresponds to flower initiation (December-January in the Northern Hemisphere, June-July in the Southern Hemisphere), the mid-season stage is a very long period corresponding to fruit growth extending from March to November (Northern Hemisphere) or from September to May (Southern Hemisphere). The end-season occurs after maturation and harvesting, i.e., in November (Northern Hemisphere) or May (Southern Hemisphere). However, these stages depend on the species and cultivar. It is, therefore, advisable to define well the initial, crop development, flowering and fruiting mid-season, and maturation and harvesting. Then the  $K_c$  and  $K_{cb}$  curves are expected to be as referred above, however distinct among species and, less, cultivars (Table 8).

The definition of the standard  $K_c$  and  $K_{cb}$  (Table 9) followed the same methodology used and shown for grapes and olives. Initially, all citrus trees were considered together but, due to differences among the various species, three groups were considered. Thus, clementine, lime and mandarin trees consist of the first group of species, which is characterized by the smaller tree height, fraction of ground cover and  $K_c/$ 

| (Olea europea L.)  |
|--------------------|
| olive orchards     |
| coefficients of    |
| Field derived crop |
| Table 5            |

| Author                          | System and cultivar                  | Training system     | $f_c$ or $f_{ m IPAR}$ | Height (m) | Ground cover         | Age (years) | $K_{\rm c}/K_{\rm cb}$ | derived         | from fie         | eld obser      | vations          |                  |
|---------------------------------|--------------------------------------|---------------------|------------------------|------------|----------------------|-------------|------------------------|-----------------|------------------|----------------|------------------|------------------|
|                                 |                                      |                     |                        |            |                      |             | $K_{ m c \ ini}$       | $K_{ m c\ mid}$ | $K_{ m c \ end}$ | $K_{ m cbini}$ | $K_{ m cb\ mid}$ | $K_{ m cb\ end}$ |
| Villalobos et al. (2000)        | Traditional                          | n/r                 | 0.40                   | 4.0        | BS w/AGC in spring   | Mature      | 0.95                   | 09.0            | 0.95             | 0.25           | 0.45             | 0.25             |
|                                 | Picual                               |                     | 0.30                   |            |                      |             | 06.0                   | 0.55            | 0.90             | 0.20           | 0.35             | 0.20             |
| Cammalleri et al. (2013a, b)    | Traditional<br>Nocellare del Belice  | n/r                 | 0.35                   | 3.7        | AGC                  | Mature      | 0.40                   | 0.35            | 0.50             | n/r            | 0.30             | 0.35             |
| Fernández et al. (2006)         | Traditional<br>Manzanilla de Seville | Vase                | 0.35                   | n/r        | BS                   | 35          | 0.76                   | 0.63            | 0.77             | n/r            | n/r              | n/r              |
| Er-Raki et al. (2010)           | Traditional<br>n/r                   | n/r                 | 0.60                   | 6.0        | BS = 75% $AGC = 25%$ | 240         | 0.65                   | 0.45            | 0.65             | n/r            | n/r              | n/r              |
| Torres-Ruiz et al. (2012)       | Traditional<br>Manzanilla de Seville | Vase                | 0.34                   |            | BS                   | >40         | 0.76                   | 0.63            | 0.77             | n/r            | n/r              | n/r              |
| Villalobos et al. 2013          | Traditional<br>Arbequina             | Free form           | 0.49                   | 3.5        | n/r                  | 11          | n/r                    | n/r             | n/r              | 0.35           | 0.35             | 0.45             |
| Conceição et al. (2017b)        | Traditional<br>Arbequina             | Vase                | 0.22                   | 3.2–3.5    | BS and AGC           | Mature      | n/r                    | n/r             | n/r              | 0.22           | 0.52             | 0.10             |
| Puig-Sirera et al. (2021)       | Traditional<br>Nocellare del Belice  | Vase                | 0.35                   | 3.5        | n/r                  | 10          | 0.92                   | 0.55            | 0.96             | 0.30           | 0.42             | 0.37             |
| Siakou et al. (2021)            | Traditional<br>Koroneiki             | Vase                | 0.38                   | 2.5        | n/r                  | 17          | 0.70                   | 0.37            | 0.84             | n/r            | n/r              | n/r              |
| Ramos et al. (2023)             | Trad., Arbequina                     | Vase                | 0.26                   | 4.1        | BS w/AGC in spring   | 11-12       | 0.95                   | 0.44            | 0.93             | 0.32           | 0.35             | 0.33             |
|                                 | Trad., Cobrançosa                    |                     | 0.23                   | 3.0        |                      | 12–13       | 0.91                   | 0.44            | 0.93             | 0.32           | 0.35             | 0.33             |
|                                 | Trad., Picual                        |                     | 0.27                   | 3.9        |                      | 11–12       | 0.89                   | 0.44            | 0.87             | 0.33           | 0.36             | 0.34             |
| Testi et al. (2004)             | Intensive, young<br>Arbequina        | n/r                 | 0.05                   | 1.4<br>2.0 | BS                   | 1 0         | 0.20                   | 0.20            | 0.35             | n/r            | n/r              | n/r              |
|                                 |                                      |                     | 0.25                   | 2.9        |                      | I M         | 0.40                   | 0.40            | n/r              |                |                  |                  |
| Martínez-Cob and Faci (2010)    | Intensive<br>Arbequina               | Hedge-prune         | 0.33                   | 3.5        | BS                   | ٢           | 0.65                   | 0.48            | 06.0             | n/r            | n/r              | n/r              |
| López-Olivari et al. (2016)     | Superintensive<br>Arbequina          | Triangular hedgerow | 0.29<br>0.31           | 3.2<br>3.2 | n/r                  | Mature      | n/r                    | 0.50<br>0.48    | n/r              | n/r            | 0.31<br>0.32     | n/r              |
| Paço et al. (2014)              | Super-high-density<br>Arbequina      | Hedgerow            | 0.35                   | 3.5        | BS w/AGC in spring   | 4–6         | 0.82                   | 0.60            | 0.95             | 0.36           | 0.41             | 0.34             |
| Paço et al. (2019)              | Super-high-density<br>Arbequina      | Hedgerow            | 0.38                   | 3-4        | BS w/AGC in spring   | 5-7         | 0.87                   | 0.71            | 0.84             | 0.30           | 0.48             | 0.30             |
| Abbreviations and symbols are d | lefined in list of symbols           | heading             |                        |            |                      |             |                        |                 |                  |                |                  |                  |

|                                                            | . 0       | Ч         | Crop stages | $M_{\mathrm{L}}$ | $F_{ m r}$ | Ranges of o  | bserved values | Ranges of pi<br>tabulated va | eviously<br>lues | Propos<br>values | pa          |
|------------------------------------------------------------|-----------|-----------|-------------|------------------|------------|--------------|----------------|------------------------------|------------------|------------------|-------------|
|                                                            |           |           |             |                  |            | $K_{\rm cb}$ | Kc             | $K_{ m cb}$                  | K <sub>c</sub>   | $K_{\rm cb}$     | $K_{\rm c}$ |
| Young (<7 years traditional, <4 years intensive) 0.        | 0.15-0.30 | 1.5-2.0   | Ini         | 1.0              | 1.00       | 0.20         | 0.20 - 0.90    | 0.20-0.30                    | 0.30-0.40        | 0.20             | 0.40        |
|                                                            |           |           | Mid         | 1.0              | 1.00       | 0.35         | 0.20 - 0.55    | 0.20 - 0.35                  | 0.25 - 0.40      | 0.30             | 0.35        |
|                                                            |           |           | End         | 1.0              | 1.00       | 0.20         | 0.35 - 0.90    | 0.15 - 0.30                  | 0.25 - 0.60      | 0.20             | 0.40        |
| Fraditional, low, non-irrigated, vase (100–200 pl/ha) 0    | 0.15-0.30 | 2.5-3.5   | Ini         | 1.5              | 09.0       | I            | I              | I                            | I                | 0.25             | 0.45        |
|                                                            |           |           | Mid         | 1.7              | 09.0       | I            | I              | I                            | I                | 0.30             | 0.45        |
|                                                            |           |           | End         | 1.5              | 0.60       | I            | I              | I                            | I                | 0.30             | 0.45        |
| Fraditional, non-irrigated, medium (200–300 pl/ha) 0       | 0.20-0.40 | 3.0-4.5   | Ini         | 1.5              | 09.0       | I            | I              | I                            | I                | 0.30             | 0.50        |
|                                                            |           |           | Mid         | 1.5              | 09.0       | I            | I              | I                            | I                | 0.35             | 0.50        |
|                                                            |           |           | End         | 1.5              | 0.60       | I            | I              | I                            | I                | 0.35             | 0.50        |
| intensive, hedge prune (300-800 pl/ha) 0                   | .30-0.40  | 3.0 - 3.5 | Ini         | 1.5              | 09.0       | 0.22 - 0.30  | 0.40 - 0.95    | 0.50 - 0.55                  | 0.60-0.65        | 0.40             | 0.50        |
|                                                            |           |           | Mid         | 1.7              | 0.65       | 0.30-0.52    | 0.35 - 0.63    | 0.40 - 0.65                  | 0.45-0.70        | 0.50             | 0.60        |
|                                                            |           |           | End         | 1.7              | 09.0       | 0.10 - 0.37  | 0.50 - 0.95    | 0.35 - 0.65                  | 0.55-0.75        | 0.45             | 0.60        |
| Super-Intensive, low-density, hedgerow (800–1500 pl/ha) 0  | .35-0.45  | 3.0 - 3.5 | Ini         | 1.7              | 0.60       | I            | I              | I                            | I                | 0.45             | 0.55        |
|                                                            |           |           | Mid         | 1.9              | 0.65       | 0.31 - 0.32  | 0.48 - 0.50    | 0.35 - 0.40                  | 0.40-0.45        | 0.60             | 0.65        |
|                                                            |           |           | End         | 1.9              | 0.60       | I            | I              | 0.30 - 0.35                  | 0.70-0.75        | 0.55             | 0.65        |
| Super-intensive high-density, hedgerow (1500–2000 pl/ha) 0 | .45-0.55  | 3.0 - 4.0 | Ini         | 1.7              | 0.60       | 0.30 - 0.36  | 0.82 - 0.87    | I                            | I                | 0.50             | 0.60        |
|                                                            |           |           | Mid         | 1.9              | 0.65       | 0.41 - 0.48  | 0.60 - 0.71    | 0.45 - 0.50                  | 0.50-0.55        | 0.65             | 0.70        |
|                                                            |           |           | End         | 1.9              | 09.0       | 0.30-0.34    | 0.84 - 0.95    | 0.40 - 0.45                  | 0.75-0.80        | 0.60             | 0.70        |

Irrigation Science

| Table 7 Characterist              | ics of the selected stud                                           | ies on citrus orchards                                |                                                           |                                             |                          |                 |             |            |                             |
|-----------------------------------|--------------------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------|---------------------------------------------|--------------------------|-----------------|-------------|------------|-----------------------------|
| Author                            | Cultivar (rootstock)                                               | Location and main<br>climate                          | Field method for $ET_{c act} (ET_{o} eq.)$                | Irrigation<br>method and<br>strategy        | Trees/ha (spacing,<br>m) | Training system | Age (years) | Height (m) | $f_{ m c}$ or $f_{ m IPAR}$ |
| Clementine (Citrus c              | clementina Hort.)                                                  |                                                       |                                                           |                                             |                          |                 |             |            |                             |
| Castel (2000)                     | Clementina de<br>Nules (Citrange<br>carrizo)                       | Valencia, Spain<br>Med. Semi-arid                     | WL (FAO-PM-ET <sub>o</sub> )                              | Drip and FI                                 | 433 (6×3.85)             | n/r             | 6-14        | 1.7–2.3    | 0.09-0.38                   |
| Rana et al. (2005)                | n/r                                                                | Apulia, Italy<br>Med. sub-humid                       | SF, EC (FAO-PM-<br>ET <sub>0</sub> )                      | Drip and FI                                 | 400 (5×5)                | n/r             | 10          | 4.08       | 0.70                        |
| Darouich et al.<br>(2022a)        | Common (Citrus<br>aurantium)                                       | Akkar plain, SW<br>Syria<br>Med.sub-humid             | SWB-neutron, SIM-<br>DualKc (FAO-<br>PM-ET <sub>0</sub> ) | Drip, Bubbler,<br>Micro-spr<br>Basin and FI | 400 (5×5)                | Vase            | 10–14       | 2.5-3.0    | 0.46–0.50                   |
|                                   |                                                                    |                                                       |                                                           | Drip and FI                                 |                          |                 | 18-20       | 3.8-4.0    | 0.75 - 0.77                 |
| Abou Ali et al.<br>(2023)         | Esbal (Citrus mac-<br>rophylla)                                    | S. Massa, Morocco<br>Med. Semi-arid                   | EC, SWB-TDR<br>(FAO-PM-ET <sub>o</sub> )                  | Drip and FI                                 | 1000 (n/r)               | n/r             | 12–13       | n/r        | 0.70                        |
| Ramos et al. (2023)               | Oronules (n/r)                                                     | Aljustrel, Portugal<br>Med., dry                      | SWB-TDR<br>SIMDualKc (FAO-<br>PM-ET <sub>0</sub> )        | Drip and FI                                 | 675 (n/r)                | Vase            | 5-6         | 2.7        | 0.28                        |
| Lemon (Citrus limon               | 1 L.)                                                              |                                                       |                                                           |                                             |                          |                 |             |            |                             |
| Rosa (2018)                       | Burm. f. cv Eureka<br>( <i>Citrus×auran-</i><br><i>tium</i> , vig) | Torres Vedras,<br>Portugal<br>Med., subhumid          | SWB-FDR, SIMDu-<br>alKc (FAO-PM-<br>ET <sub>o</sub> )     | Drip and FI                                 | 500 (5×4)                | n/r             | 21          | 3.5        | 0.75                        |
| Lime (Citrus latifolic            | a Tan.)                                                            |                                                       |                                                           |                                             |                          |                 |             |            |                             |
| Alves et al. (2007)               | Tahiti (Swingle<br>citrumelo)                                      | Piracicaba, São<br>Paulo, Brazil<br>subtropical humid | WL, K <sub>e</sub> model<br>(FAO-PM-ET <sub>o</sub> )     | Drip and FI                                 | 357 (7×4)                | n/r             | 0 ω 4       | n/r        | 0.13<br>0.25<br>0.37        |
| Barboza Júnior et al.<br>(2008)   | Tahiti (Swingle<br>citrumelo)                                      | Piracicaba, Brazil<br>subtropical humid               | WL (FAO-PM-ET <sub>o</sub> )                              | Drip and FI                                 | 357 (7×4)                | n/r             | 7           | 4.0        | 0.70                        |
| Mandarine (Citrus r               | eticulata Blanco)                                                  |                                                       |                                                           |                                             |                          |                 |             |            |                             |
| Maestre-Valero et al. (2017)      | Hernandina (Cit-<br>range carrizo)                                 | Valencia, Spain<br>Med. Semi-arid                     | EC (FAO-PM-ET <sub>o</sub> )                              | Drip<br>FI                                  | 556 (6×3)                | n/r             | Mature      | 2.8        | 0.66                        |
| Segovia-Card ozo<br>et al. (2022) | Tardivo di Ciaculli<br>(n/r)                                       | Palermo, Italy<br>Med., dry                           | SF, SWB-FDR<br>(FAO-PM-ET <sub>o</sub> )                  | Micro-spr,<br>SSDrip and FI                 | 400 (5×5)                | n/r             | 30          | 2.5        | 0.40                        |
| Ippolito et al. (2023)            | Tardivo di Ciaculli<br>(n/r)                                       | Palermo, Italy<br>Med., dry                           | EC, SWB-FDR,<br>Kc-VI<br>(FAO-PM-ET <sub>0</sub> )        | Drip<br>Mild DI                             | $400(5 \times 5)$        | n/r             | Mature      | 2.5        | 0.50                        |
| Ramos et al. (2023)               | Setubalense (n/r)                                                  | Aljustrel, Portugal<br>Med., dry                      | SWB-TDR<br>SIMDualKc<br>(FAO-PM-ET <sub>o</sub> )         | Drip and FI                                 | 529                      | Vase            | 5-6         | 2.8        | 0.29                        |

| Table 7 (continued)                 |                                   |                                        |                                                               |                                      |                          |                 |             |              |                             |
|-------------------------------------|-----------------------------------|----------------------------------------|---------------------------------------------------------------|--------------------------------------|--------------------------|-----------------|-------------|--------------|-----------------------------|
| Author                              | Cultivar (rootstock)              | Location and main<br>climate           | Field method for<br>ET <sub>c act</sub> (ET <sub>o</sub> eq.) | Irrigation<br>method and<br>strategy | Trees/ha (spacing,<br>m) | Training system | Age (years) | Height (m)   | $f_{ m c}$ or $f_{ m IPAR}$ |
| <b>Orange</b> (Citrus sinen         | sis L.)                           |                                        |                                                               |                                      |                          |                 |             |              |                             |
| Consoli et al. (2006)               | Navel (n/r)                       | Lindsay, CA, USA                       | Surf. renewal                                                 | Micro-spr                            | $335(6.1 \times 4.9)$    | n/r             | 2           | 1.0          | 0.10                        |
|                                     |                                   | Med., sub-humid                        | (ASCE-PM-ET <sub>o</sub> )                                    | n/r                                  | 335 (6.1×4.9)            |                 | 4           | 2.3          | 0.20                        |
|                                     |                                   |                                        |                                                               |                                      | 299 (6.1×5.5)            |                 | 15          | 4.5          | 0.47                        |
|                                     |                                   |                                        |                                                               |                                      | 283 $(6.1 \times 5.8)$   |                 | 34–36       | 4.5          | 0.70                        |
| Morgan et al. (2006)                | Hamlin (Carrizo<br>citrange)      | Florida, USA<br>Subtropical humid      | SWB-capacit<br>(Penman-ET <sub>o</sub> )                      | Micro-spr<br>FI                      | 529 (6.1×3.1)            | Hedgerow        | 14          | 5.9          | 0.59                        |
| Snyder and<br>O'Connell (2007)      | Navel (Troyer<br>citrange)        | Lindsay, CA, USA<br>Med. Sub-humid     | Surf. renewal<br>(ASCE-PM-ET <sub>o</sub> )                   | Micro-spr<br>FI                      | 283 (6.1×5.8)            | Like hedgerow   | 33–37       | 4.5          | 0.70                        |
| García-Petillo and<br>Castel (2007) | Valencia (Poncirus<br>trifoliata) | South Uruguay<br>Temperate humid       | SWB-neutron<br>(ClassA panET <sub>o</sub> )                   | Drip<br>FI                           | 417 (6×4)                | n/r             | 16-19       | 3.0          | 0.30-0.50                   |
| Jia et al. (2007)                   | Parson Brown (n/r)                | Central Florida Sub-<br>tropical humid | EC (ASCE-PM-<br>ET <sub>o</sub> )                             | Micro-spr<br>n/r                     | 340 (7.7×3.8)            | n/r             | 15          | 5-6          | n/r                         |
|                                     | Hamlin (Swingle<br>citrumelo)     | North Florida<br>Subtropical humid     | EC (ASCE-PM-<br>ET <sub>0</sub> )                             | Micro-spr<br>n/r                     | 498 (6.7×3.0)            | n/r             | 16          | 4.5-5.5      | n/r                         |
| Er-Raki et al. (2009)               | n/r                               | Marrakech, Moroc<br>Semi-arid          | EC (FAO-PM-ET <sub>0</sub> )                                  | Drip and FI<br>Basin and FI          | $667 (5 \times 3)$       | n/r             | 13<br>15    | 3.15<br>3.30 | 0.70                        |
| Consoli and Papa<br>(2013)          | Tarocco Ippolito<br>(n/r)         | Sicily, Italy<br>Med. semi-arid        | EC, SF, PMeq<br>(FAO-PM-ET <sub>o</sub> )                     | Drip and FI                          | 455 (5.5×4.0)            | n/r             | mature      | 3.75         | n/r                         |
| Villalobos et al. (2013)            | Lane late (n/r)                   | Seville, Spain<br>Med. semi-arid       | SF (FAO-PM-ET <sub>o</sub> )                                  | Drip and FI                          | 477 (7×3)                | n/r             | 11          | n/r          | 0.42                        |
|                                     |                                   | Valencia, Spain<br>Med. Semi-arid      | SF (FAO-PM-ET <sub>0</sub> )                                  | Drip and FI                          | 417 (6×4)                | n/r             | 10          | 2.3          | 0.33                        |
| Consoli and Vanella<br>(2014)       | Tarocco Ippolito<br>(n/r)         | Sicily, Italy<br>Med. semi-arid        | EC, RS-VI, SWB-<br>TDR (FAO-PM-<br>ET <sub>0</sub> )          | Drip<br>FI                           | 455 (5.5×4.0)            | n/r             | 20          | 3.7          | 0.50                        |

#### Irrigation Science

| (continued) |
|-------------|
| Table 7     |

🙆 Springer

| Author                                | Cultivar (rootstock)                               | Location and main<br>climate                       | Field method for<br>ET <sub>c act</sub> (ET <sub>o</sub> eq.) | Irrigation<br>method and<br>strategy | Trees/ha (spacing,<br>m) | Training system | Age (years) | Height (m)                | $f_{ m c}$ or $f_{ m IPAR}$ |
|---------------------------------------|----------------------------------------------------|----------------------------------------------------|---------------------------------------------------------------|--------------------------------------|--------------------------|-----------------|-------------|---------------------------|-----------------------------|
| Taylor et al. (2014)                  | 'Delta' Valencia<br>('Swingle' cit-<br>rumelo)     | Groblersdal,<br>Limpopo, RSA<br>Summer rainfall    | SF, OPEC, SR,<br>SWB-capacit<br>(FAO-PM ET <sub>o</sub> )     | Drip<br>FI                           | 661 (2.75×5.5)           | n/r             | 11–12       | 5 to 3.5 after<br>harvest | 0.60                        |
|                                       | 'Bahaininha' Navel<br>(Carrizo' citrange)          | Groblersdal, Lim-<br>popo, RSA<br>Summer rainfall  | SF, SWB-TDR<br>(FAO-PM ET <sub>0</sub> )                      | Drip<br>FI                           | 833 (2×6)                | n/r             | 6-7         | 2.5                       | n/r                         |
|                                       | 'Rustenburg' Navel<br>('Troyer' citrange)          | Citrusdal, Western<br>Cape, RSA<br>Winter rainfall | SF, EC, SWB-<br>capacit (FAO-PM<br>ET <sub>o</sub> )          | Drip<br>FI                           | 666 (2.5×6)              | n/r             | 15          | 3.3                       | 0.88                        |
|                                       | 'Midknight' Valen-<br>cia ('Swingle'<br>Citrumelo) | Malelane, Mpuma-<br>langa, RSA<br>Summer rainfall  | SF, OPEC, SWB-<br>capacit (FAO-PM<br>ET <sub>o</sub> )        | Drip<br>FI                           | 571 (2.5×7)              | n/r             | 16–18       | 4                         | 0.54                        |
| Taylor et al. (2015)                  | Delta Valencia<br>(Swingle cit-<br>rumelo)         | Limpopo, S. Africa<br>Summer rainfall              | SF, A&P app (FAO-<br>PM-ET <sub>o</sub> )                     | Drip<br>FI                           | 661 (5.5×2.75)           | n/r             | 11          | 4.1                       | 0.60                        |
|                                       | Bahianinha Navel<br>(Carrizo citrange)             | Limpopo, S. Africa<br>Summer rainfall              | SF, A&P app<br>(FAO-PM-ET <sub>o</sub> )                      | Drip<br>FI                           | 833 (6×2)                | Near hedgerow   | 6           | 2.3                       | 0.63                        |
| Taylor et al. (2015, 2017)            | Rustenburg Navel<br>(Troyer citrange)              | Western Cape, RSA<br>Winter rainfall               | SF, A&P app (FAO-<br>PM-ET <sub>o</sub> )                     | Drip<br>FI                           | 800 (5×2.5)              | n/r             | 14          | 3.3                       | 0.88                        |
| Peddinti and Kamb-<br>hammettu (2019) | n/r                                                | Vidabha, central<br>India<br>Tropical              | EC, SF, SWB-ML,<br>SIMDualKc<br>(FAO-PM-ET <sub>0</sub> )     | Flood, Drip<br>DI                    | 400 (5×5)                | n/r             | ×           | 2.5-3.0                   | 0.70                        |
| Saitta et al. (2020)                  | Tarocco Sciara,<br>(Carrizo citrange)              | Lentini, Sicily, Italy<br>Med                      | SF, EC (FAO-PM<br>ET <sub>o</sub>                             | Drip<br>FI                           | 417 (4×6)                | n/r             | 8-9         | 3.5                       | n/r                         |
| Jamshidi et al.<br>(2020)             | Washington Navel<br>(n/r)                          | Fars, South Iran<br>Semi-arid                      | SWB-neutron, ML (HS-ET <sub>o</sub> )                         | Drip<br>FI                           | 400 (5×5)                | n/r             | 12          | 2.8                       | 0.75–0.80                   |
| Jafari et al. (2021)                  | Tarocco Ippolito<br>(n/r)                          | Fars, Southern Iran<br>Semi-arid                   | SWB-neutron, ML (FAO-PM-ET <sub>o</sub> )                     | Drip<br>FI                           | 333 (6×5)                | n/r             | 25          | 3.0                       | 0.85                        |
| Ramos et al. (2023)                   | Fukumoto (n/r)                                     | Aljustrel, Portugal<br>Med., dry                   | SWB-TDR<br>SIMDualKc<br>(FAO-PM-ET <sub>o</sub> )             | Drip and FI                          | 404 (n/r)                | Vase            | 5-6         | 2.4                       | 0.29                        |

Abbreviations and symbols are defined in list of symbols heading

| Table 8 Field-du                | erived crop coefficient                        | s of citrus o | rchards                       |            |                  |             |                              |                  |                 |                 |                  |                  |                  |
|---------------------------------|------------------------------------------------|---------------|-------------------------------|------------|------------------|-------------|------------------------------|------------------|-----------------|-----------------|------------------|------------------|------------------|
| Author                          | Cultivar (rootstock)                           | Training      | $f_{ m c}~{ m or}f_{ m IPAR}$ | Height (m) | Ground           | Age (years) | $K_{\rm c}/K_{\rm cb}$ deriv | ed from field    | l observations  |                 |                  |                  |                  |
|                                 |                                                | system        |                               |            | cover            |             | Conditions                   | $K_{ m c \ ini}$ | $K_{ m c\ mid}$ | $K_{ m c\ end}$ | $K_{ m cb\ ini}$ | $K_{ m cb\ mid}$ | $K_{ m cb\ end}$ |
| Clementine ( <i>Ci</i>          | trus clementina Hort.)                         |               |                               |            |                  |             |                              |                  |                 |                 |                  |                  |                  |
| Castel (2000)                   | Clementina de                                  | n/r           | 0.09                          | 1.7 to 2.3 | AGC              | 9           |                              | 0.33             | 0.30            | 0.38            | n/r              | n/r              | n/r              |
|                                 | Nules (Citrange                                |               | 0.15                          |            |                  | 7           |                              | 0.53             | 0.40            | 0.45            |                  |                  |                  |
|                                 | carrizo)                                       |               | 0.18                          |            |                  | 8           |                              | 0.35             | 0.50            | 0.55            |                  |                  |                  |
|                                 |                                                |               | 0.21                          |            |                  | 6           |                              | 0.38             | 0.45            | 0.66            |                  |                  |                  |
|                                 |                                                |               | 0.25                          |            |                  | 10          |                              | 0.42             | 0.45            | 09.0            |                  |                  |                  |
|                                 |                                                |               | 0.27                          |            |                  | 11          |                              | 0.65             | 0.50            | 0.62            |                  |                  |                  |
|                                 |                                                |               | 0.28                          |            |                  | 12          |                              | 0.75             | 0.50            | 09.0            |                  |                  |                  |
|                                 |                                                |               | 0.30                          |            |                  | 13          |                              | 0.60             | 0.45            | 0.60            |                  |                  |                  |
|                                 |                                                |               | 0.38                          |            |                  | 14          |                              | 0.55             | 0.55            | 0.64            |                  |                  |                  |
| Rana et al.<br>(2005)           | n/r                                            | n/r           | 0.70                          | 4.08       | AGC<br>15-30%    | 10          |                              | 0.80             | 0.70            | 0.80            | n/r              | n/r              | n/r              |
| Darouich et al.                 | Common (C.                                     | Vase          | 0.46 - 0.50                   | 2.5-3.0    | partly           | 10–14       | Drip                         | 1.14             | 0.76            | 1.15            | 0.54             | 0.54             | 0.54             |
| (2022a)                         | aurantium)                                     |               |                               |            | AGC              |             | Bubbler                      | 1.14             | 1.06            | 1.15            |                  |                  |                  |
|                                 |                                                |               |                               |            |                  |             | Mini-spr                     | 1.14             | 1.12            | 1.15            |                  |                  |                  |
|                                 |                                                |               |                               |            |                  |             | Basin                        | 1.14             | 1.12            | 1.15            |                  |                  |                  |
|                                 |                                                |               | 0.75 - 0.77                   | 3.8-4.0    |                  | 18-20       | Drip                         | 0.92             | 0.78            | 0.91            | 0.64             | 0.64             | 0.64             |
| Abou Ali et al.<br>(2023)       | Esbal (C. macro-<br>phylla)                    | n/r           | 0.70                          | n/r        | n/r              | 12–13       |                              | 0.64             | 0.58            | n/r             | n/r              | n/r              | n/r              |
| Ramos et al.<br>(2023)          | Oronules (n/r)                                 | Vase          | 0.28                          | 2.7        | AGC fall-<br>spr | 5-6         |                              | 0.95             | 0.50            | 0.93            | 0.40             | 0.40             | 0.40             |
| Lemon (Citrus 1                 | limon L.)                                      |               |                               |            |                  |             |                              |                  |                 |                 |                  |                  |                  |
| Rosa (2018)                     | Burm. f. cv eureka<br>(C. × aurantium,<br>vig) | n/r           | 0.75                          | 3.5        | AGC              | 21          |                              | n/r              | n/r             | n/r             | 0.40             | 0.67             | 0.67             |
| Lime (Citrus la                 | <i>tifolia</i> Tan.)                           |               |                               |            |                  |             |                              |                  |                 |                 |                  |                  |                  |
| Alves et al.                    | Tahiti (Swingle                                | n/r           | 0.13                          | n/r        | BS               | 2           |                              | n/r              | 0.73            | 0.67            | n/r              | 0.54             | n/r              |
| (2007)                          | citrumelo)                                     |               | 0.25                          |            |                  | 3           |                              | 0.48             | 0.84            | 0.94            | n/r              | 0.61             | 0.38             |
|                                 |                                                |               | 0.37                          |            |                  | 4           |                              | 0.65             | 1.09            | n/r             | 0.40             | 0.91             | n/r              |
| Barboza Júnior<br>et al. (2008) | Tahiti (Swingle<br>citrumelo)                  | n/r           | 0.70                          | 4.0        | BS               | 7           | $K_{\rm c avg} = 0.98$       | n/r              | 1.08            | n/r             | n/r              | n/r              | n/r              |
| Mandarine (Cii                  | trus reticulata Blanco,                        | _             |                               |            |                  |             |                              |                  |                 |                 |                  |                  |                  |
| Maestre-Valero                  | Hernandina (Cit-                               | n/r           | 0.66                          | 2.8        | BS               | Mature      | Season 1                     | n/r              | 0.65            | 1.15            | n/r              | 0.50             | 0.55             |
| et al. (2017)                   | range carrizo)                                 |               |                               |            |                  |             | Season 2                     | 1.07             | 0.96            | 0.82            | 0.60             | 0.55             | 0.60             |
|                                 |                                                |               |                               |            |                  |             | Season 3                     | 1.14             | 10.0            | n/r             | co.u             | cc.u             | n/r              |

Table 8 (continued)

|                                        | ,                                 |                  |                               |            |                 |             |                                      |                   |                 |                  |                  |                  |
|----------------------------------------|-----------------------------------|------------------|-------------------------------|------------|-----------------|-------------|--------------------------------------|-------------------|-----------------|------------------|------------------|------------------|
| Author                                 | Cultivar (rootstock)              | Training         | $f_{\rm c}$ or $f_{\rm IPAR}$ | Height (m) | Ground          | Age (years) | $K_c/K_{cb}$ derived from f          | field observation | ns              |                  |                  |                  |
|                                        |                                   | system           |                               |            | cover           |             | Conditions <i>K</i> <sub>c ini</sub> | $K_{ m c\ mid}$   | $K_{ m c\ end}$ | $K_{ m cb\ ini}$ | $K_{ m cb\ mid}$ | $K_{ m cb\ end}$ |
| Segovia-<br>Cardozo et al.<br>(2022)   | Tardivo di Ciaculli<br>(n/r)      | n/r              | 0.40                          | 2.5        | AGC Aut-<br>Spr | 30          | 0.95                                 | 0.43              | 0.95            | n/r              | 0.39             | 06.0             |
| Ippolito et al.<br>(2023)              | Tardivo di Ciaculli<br>(n/r)      | n/r              | 0.50                          | 2.5        | AGC             | Mature      | n/r                                  | 0.55              | 0.75            | n/r              | n/r              | n/r              |
| Ramos et al.<br>(2023)                 | Setubalense (n/r)                 | Vase             | 0.29                          | 2.8        | AGC Aut-<br>Spr | 5-6         | 0.94                                 | 0.50              | 0.93            | 0.40             | 0.40             | 0.40             |
| Orange (Citrus.                        | sinensis L.)                      |                  |                               |            |                 |             |                                      |                   |                 |                  |                  |                  |
| Consoli et al.                         | Navel (n/r)                       | n/r              | 0.10                          | 1.0        | BS              | 2           | n/r                                  | 0.45              | n/r             | n/r              | n/r              | n/r              |
| (2006)                                 |                                   |                  | 0.20                          | 2.3        |                 | 4           | n/r                                  | 0.57              | n/r             | n/r              | n/r              | n/r              |
|                                        |                                   |                  | 0.47                          | 4.5        |                 | 15          | n/r                                  | 0.77              | n/r             | n/r              | n/r              | n/r              |
|                                        |                                   |                  | 0.70                          | 4.5        |                 | 34–36       | n/r                                  | 0.93              | n/r             | n/r              | n/r              | n/r              |
| Morgan et al. (2006)                   | Hamlin (Carrizo<br>citrange)      | Hedgerow         | 0.59                          | 5.9        | BS              | 14          | 0.70                                 | 1.05              | 0.70            | n/r              | n/r              | n/r              |
| Snyder and<br>O'Connell<br>(2007)      | Navel (Troyer<br>citrange)        | Hedgerow<br>like | 0.70                          | 4.5        | BS              | 33–37       | 1.15                                 | 0.96              | 1.15            | n/r              | n/r              | n/r              |
| García-Petillo<br>and Castel<br>(2007) | Valencia (Poncirus<br>trifoliata) | n/r              | 0.3–0.5                       | 3.0        | BS              | 16–19       | 0.87                                 | 0.71              | 0.83            | n/r              | n/r              | n/r              |
| Jia et al. (2007)                      | Parson Brown (n/r)                | Hedgerow         | n/r                           | 5-6        | BS              | 15          | 0.73                                 | 0.93              | 1.07            | n/r              | n/r              | n/r              |
|                                        | Hamlin (Swingle<br>citrumelo)     | Hedgerow         | n/r                           | 4.5-5.5    | AGC             | 16          | 0.67                                 | 0.77              | 0.65            | n/r              | n/r              | n/r              |
| Er-Raki et al.                         | n/r                               | n/r              | 0.70                          | 3.15       | BS              | 13          | 0.45                                 | 0.60              | 0.50            | 0.35             | 0.55             | 0.45             |
| (2009)                                 |                                   |                  | 0.30                          | 3.30       |                 | 15          | 0.58                                 | 0.55              | 0.60            | 0.30             | 0.50             | 0.40             |
| Consoli and<br>Papa (2013)             | Tarocco Ippolito<br>(n/r)         | n/r              | n/r                           | 3.75       | AGC, 15%        | Mature      | 0.80<br>0.85                         | 0.70<br>0.75      | 0.75<br>0.80    | n/r              | n/r              | n/r              |
| Villalobos et al.                      | Lane Late (n/r)                   | n/r              | 0.42                          | n/r        | n/r             | 11          | n/r                                  | n/r               | n/r             | n/r              | 0.35             | 0.58             |
| (2013)                                 |                                   |                  | 0.33                          | 2.3        |                 | 10          | n/r                                  | n/r               | n/r             | n/r              | 0.30             | 0.35             |
| Consoli and<br>Vanella<br>(2014)       | Tarocco Ippolito<br>(n/r)         | n/r              | 0.50                          | 3.7        | n/r             | 20          | n/r                                  | 0.71              | n/r             | n/r              | n/r              | n/r              |

| Table 8 (continu                         | ued)                                           |                        |                               |            |                 |             |                     |                 |                  |                 |                  |                  |                  |
|------------------------------------------|------------------------------------------------|------------------------|-------------------------------|------------|-----------------|-------------|---------------------|-----------------|------------------|-----------------|------------------|------------------|------------------|
| Author                                   | Cultivar (rootstock)                           | Training               | $f_{\rm c}$ or $f_{\rm IPAR}$ | Height (m) | Ground          | Age (years) | $K_c/K_{cb}$ derive | d from field    | observations     |                 |                  |                  |                  |
|                                          |                                                | system                 |                               |            | cover           |             | Conditions          | $K_{ m c  ini}$ | $K_{ m c \ mid}$ | $K_{ m c\ end}$ | $K_{ m cb\ ini}$ | $K_{ m cb\ mid}$ | $K_{ m cb\ end}$ |
| Taylor et al.<br>(2014)                  | 'Delta' Valencia<br>(Swingle cit-<br>rumelo)   | n/r                    | n/r                           | 0.48       | 0.42            | 11–13       |                     | n/r             | n/r              | n/r             | n/r              | 0.48             | 0.42             |
|                                          | 'Bahaininha'<br>Navel (Carrizo'<br>citrange)   | n/r                    | n/r                           | 0.37       | 0.35            | 8-10        |                     | n/r             | n/r              | n/r             | n/r              | 0.37             | 0.35             |
|                                          | 'Rustenburg'<br>Navel ('Troyer'<br>citrange)   | n/r                    | n/r                           | 0.57       | 0.93            | n/r         |                     | n/r             | n/r              | n/r             | n/r              | 0.57             | 0.93             |
|                                          | Midknight Valen-<br>cia (Swingle<br>Citrumelo) | n/r                    | n/r                           | 0.46       | 0.61            | n/r         |                     | n/r             | n/r              | n/r             | n/r              | 0.46             | 0.61             |
| Taylor et al.<br>(2015)                  | Delta Valencia<br>(Swingle cit-<br>rumelo)     |                        | 09.0                          | 4.1        | BS              | 11          |                     | n/r             | n/r              | n/r             | 0.40             | 0.41             | 0.42             |
|                                          | Bahianinha Navel<br>(Carrizo citrange)         | Incomplete<br>hedgerow | 0.63                          | 2.3        | BS              | 9           |                     | n/r             | n/r              | n/r             | 0.34             | 0.37             | 0.38             |
| Taylor et al. (2015, 2017)               | Rustenburg Navel<br>(Troyer citrange)          |                        | 0.88                          | 3.3        | BS              | 14          |                     | n/r             | n/r              | n/r             | 0.50             | 0.35             | 0.80             |
| Peddinti and<br>Kambham-<br>mettu (2019) | n/r                                            | n/r                    | 0.70                          | 2.5-3.0    | BS              | ×           |                     | 0.80            | 0.65             | 0.80            | 0.60             | 0.45             | 0.55             |
| Saitta et al.<br>(2020)                  | Tarocco Sciara,<br>(Carrizo citrange)          | n/r                    | n/r                           | 3.5        | n/r             | 8–9         |                     | n/r             | 0.60             | n/r             | n/r              | n/r              | n/r              |
| Jamshidi et al.<br>(2020)                | Washington Navel<br>(n/r)                      | n/r                    | 0.75-0.80                     | 2.8        | BS              | 12          |                     | 0.71            | 0.89             | 0.82            | 0.60             | 0.74             | 0.71             |
| Jafari et al.<br>(2021)                  | Tarocco Ippolito<br>(n/r)                      | n/r                    | 0.85                          | 3.0        | BS              | 25          |                     | 0.68            | 0.87             | 0.81            | 0.59             | 0.72             | 0.72             |
| Ramos et al. (2023)                      | Fukumoto (n/r)                                 | Vase                   | 0.29                          | 2.4        | AGC Aut-<br>Spr | 5-6         |                     | 0.97            | 0.50             | 0.92            | 0.41             | 0.41             | 0.41             |
| Abbreviations an                         | nd symbols are defined                         | d in list of syn       | abols headin                  | 60         |                 |             |                     |                 |                  |                 |                  |                  |                  |

 $K_{cb}$  for each degree of ground cover, training, and plant density. Orange, grapefruit, and tangelo, in contrast, have trees with higher h,  $f_c$  and  $K_c/K_{cb}$  values. Lemon trees are in an intermediate position. Nevertheless, the generally required interpolation may be difficult.

# Warm temperate plantations: avocado, loquat, persimmon, and tea crops

These crops are not grouped but listed in the same Table. They have great differences: on the one hand, they are evergreen but persimmon that is deciduous; on the other hand, all are trees explored for fruits but tea, which is a shrub explored for the leaves. Thus, tabulated subjects are discussed in isolation or comparatively.

Selected studies on avocado orchards are from Florida, South Africa and Chile, which are among the main producers (Table 10). Only recently, they start to be grown in southern Europe, which may be a consequence of global warming as suggested in a review by Cárceles Rodríguez et al. (2023). Differently, loquat and persimmon have long been cultivated in southern Europe and the selected studies are from the north and east of the Mediterranean region. The selected tea studies are from two main production areas, southern China, and mountainous India, but tea has a quite large distribution, which is also related to the qualities of tea produced.

The FAO-PM-ET<sub>o</sub> was adopted for most studies on the various crops (Table 10). Field ET measurements with a SWB approach, followed by EC systems, were the main methods used for avocado ET estimation. For persimmon, EC systems were the main methods to measure ET. Differently, for loquat a test of  $K_c$  fitting was employed.

The planting density reported for avocado (Table 10) ranged 148–370 pl ha<sup>-1</sup> and the training systems reported were hedge pruned or, more often, hedgerow. However, these systems are very different of those used for olive trees since crop heights are quite high, of up to 7.9 m. These hedge systems aim to improve harvesting efficiency, which occurs throughout the year, using Harvest Assist platforms. A large range of heights results in a wide range of f<sub>c</sub> values, from 0.40 to 0.80. Persimmon and loquat have training in vase while tea is trained at a low hedgerow, with h < 0.90 m, to favor hand harvesting of leaves.

Crop coefficients of avocado are reported with two types of  $K_c$  curves (Table 11): where the summer mid-season is dry in opposition to the initial stage and the final stage, the  $K_c$  curve has  $K_{c \text{ mid}}$  smaller than  $K_{c \text{ ini}}$  and  $K_{c \text{ end}}$  because mid-season soil evaporation is about negligible; if there is rain in the mid-summer, it is likely that soil evaporation is high by then resulting a  $K_{c \text{ mid}}$  higher than  $K_{c \text{ ini}}$  and  $K_{c \text{ end}}$ . The difference among these  $K_c$  may be small, then resulting a uniform season  $K_c$ .  $K_{cb}$  is reported to follow a typical segmented crop coefficient curve with  $K_{c \text{ mid}}$  higher than  $K_{c \text{ ini}}$  and  $K_{c \text{ end}}$  assuming that transpiration is larger during the mid-season stage; however, differences among these  $K_{cb}$ values may be small as it often happens to citrus trees. However, for the New Zealand case (Kaneko et al. 2022), with observations in three different locations,  $K_{cb \text{ end}} > K_{cb \text{ mid}}$  is reported but without explanations.

There is limited information about loquat (Table 11) but it is likely, as reported by Hueso and Cuevas (2010), that  $K_{c mid}$ and  $K_{cb mid}$  be larger than initial and end-season values. On the one hand, flowering occurs by the end of winter and fruit maturation is also anticipated to the spring, thus the crop mid-season is likely when rainfall occurs, resulting that transpiration adds to non-negligeable soil evaporation due to rains occurring by then, thus with  $K_c$  resulting from the sum of  $K_{cb mid}$  with a non-negligible  $K_e$  value. On the other hand, leaves are tough and leathery in texture, and densely velvety-hairy below that favor stomatal control during the late season.

Despite data are limited, reports show that Persimmon has  $K_c$  and  $K_{cb}$  curves with the mid-season values larger than the initial and end season values, as it is common for deciduous trees.

Reported tea results for  $K_c$  and  $K_{cb}$  (Table 11) show flat  $K_c$  and  $K_{cb}$  curves since the climate where plantations develop is generally humid, with only short dry spells, which does not favor ET values very different of those of the grass reference, therefore close or equal to 1.0.

The proposed initial, mid-season, and end-season standard single and basal crop coefficients for avocado, loquat, persimmon, and tea plantations (Table 12) are generally in agreement with the ranges of values observed and compatible with those previously tabulated for avocado and tea. However, hedgerow was not yet considered previously for avocado while presently it is likely the most popular where harvesting mechanization is in use; nevertheless, training in vase is continued. K<sub>c</sub> for loquat and for persimmon were never tabulated. Proposed values for these crops agree with previous discussions. As previously pointed out the tabulated values of the ranges of plant densities are indicative.

#### **Conclusions and recommendations**

The review of crop coefficients for table and vine grape vineyards, olive, citrus, avocado, loquat, persimmon, and tea plantations permitted a good collection of well-performed

| <b>Table 9</b> Initial, mid-, and end-season standard sing ranges of observed $K_c$ and $K_{cb}$ , and of former tabula | le and basal croj<br>tions of their sta | o coefficient<br>ndard values | ts for citrus orch<br>s | ards as r  | elated wit | h the training | system, fraction | of ground cov                 | er and height, v | vith indic        | ation of    |
|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------------------------------|-------------------------|------------|------------|----------------|------------------|-------------------------------|------------------|-------------------|-------------|
| Degree of ground cover, training and plant density                                                                      | $f_{\rm c}$                             | <i>h</i> (m)                  | Crop stages             | $M_{ m L}$ | $F_{ m r}$ | Ranges of ol   | served values    | Ranges of pre<br>lated values | eviously tabu-   | Propose<br>values | pg          |
|                                                                                                                         |                                         |                               |                         |            |            | $K_{\rm cb}$   | K <sub>c</sub>   | $K_{ m cb}$                   | Kc               | $K_{\mathrm{cb}}$ | $K_{\rm c}$ |
| Clementine (Citrus clementina), Mandarin (C. ren                                                                        | iculata), Lime (0                       | 7. aurantifol                 | lia)                    |            |            |                |                  |                               |                  |                   |             |
| Young (< 5 years), vase                                                                                                 | 0.10 - 0.20                             | <1.5                          | Ini                     | 1.8        | 1.00       | I              | 0.33 - 0.53      | Ι                             | I                | 0.35              | 0.50        |
|                                                                                                                         |                                         |                               | Mid                     | 1.8        | 1.00       | 0.54           | 0.30 - 0.73      | 0.35 - 0.40                   | 0.40 - 0.45      | 0.35              | 0.50        |
|                                                                                                                         |                                         |                               | End                     | 1.8        | 1.00       | I              | 0.38 - 0.67      | 0.35 - 0.40                   | 0.60-0.65        | 0.35              | 0.55        |
| Low, vase (<400 pl/ha)                                                                                                  | 0.20 - 0.35                             | 1.5-2.5                       | Ini                     | 1.8        | 0.65       | 0.40           | 0.38 - 0.95      | 0.45                          | 0.50 - 0.55      | 0.40              | 0.55        |
|                                                                                                                         |                                         |                               | Mid                     | 1.8        | 0.75       | 0.40 - 0.61    | 0.45-0.84        | 0.35-0.45                     | 0.40 - 0.50      | 0.50              | 0.60        |
|                                                                                                                         |                                         |                               | End                     | 1.8        | 0.75       | 0.38 - 0.40    | 0.60 - 0.94      | 0.35 - 0.50                   | 0.50-0.65        | 0.50              | 0.60        |
| Medium, vase (400–550 pl/ha)                                                                                            | 0.35 - 0.60                             | 2.5 - 3.0                     | Ini                     | 1.8        | 0.65       | 0.40 - 0.54    | 0.55 - 1.14      | 0.60 - 0.70                   | 0.65 - 0.80      | 09.0              | 0.70        |
|                                                                                                                         |                                         |                               | Mid                     | 1.8        | 0.70       | 0.39-0.91      | 0.43 - 1.12      | 0.50 - 0.70                   | 0.55-0.75        | 0.65              | 0.75        |
|                                                                                                                         |                                         |                               | End                     | 1.8        | 0.70       | 0.54 - 0.90    | 0.64 - 1.15      | 0.50-0.70                     | 0.65-0.75        | 0.65              | 0.75        |
| High, vase (>550 pl/ha)                                                                                                 | > 0.60                                  | 3.0 - 4.0                     | Ini                     | 2.0        | 0.65       | 0.60 - 0.65    | 0.92 - 1.14      | 0.65 - 0.85                   | 0.70-0.95        | 0.70              | 0.80        |
|                                                                                                                         |                                         |                               | Mid                     | 2.0        | 0.70       | 0.50 - 0.64    | 0.46 - 1.08      | 0.55-0.95                     | 0.60 - 1.00      | 0.75              | 0.85        |
|                                                                                                                         |                                         |                               | End                     | 2.0        | 0.70       | 0.55 - 0.64    | 0.82 - 1.15      | 0.55-0.95                     | 0.70 - 1.05      | 0.75              | 0.85        |
| Lemon (C. limon)                                                                                                        |                                         |                               |                         |            |            |                |                  |                               |                  |                   |             |
| Young (<5 years), vase                                                                                                  | 0.10 - 0.20                             | < 1.5                         | Ini                     | 1.5        | 1.00       | I              | I                | I                             | I                | 0.35              | 0.50        |
|                                                                                                                         |                                         |                               | Mid                     | 1.6        | 1.00       | I              | I                | Ι                             | Ι                | 0.35              | 0.40        |
|                                                                                                                         |                                         |                               | End                     | 1.6        | 1.00       | I              | I                | I                             | Ι                | 0.35              | 0.55        |
| Low density, vase (< 200 pl/ha)                                                                                         | 0.20 - 0.50                             | 1.5–2.5                       | Ini                     | 1.5        | 0.651      | I              | I                | 0.45-0.70                     | 0.50 - 0.80      | 0.40              | 0.55        |
|                                                                                                                         |                                         |                               | Mid                     | 1.7        | 0.75       | I              | Ι                | 0.40 - 0.70                   | 0.45-0.75        | 0.55              | 09.0        |
|                                                                                                                         |                                         |                               | End                     | 1.7        | 0.75       | I              | I                | 0.45-0.70                     | 0.50-0.75        | 0.55              | 0.65        |
| Medium density, vase (200–400 pl/ha)                                                                                    | 0.50 - 0.70                             | 2.5-3.0                       | Ini                     | 2.0        | 0.65       | I              | I                | 0.60-0.85                     | 0.65-0.95        | 0.65              | 0.75        |
|                                                                                                                         |                                         |                               | Mid                     | 2.0        | 0.70       | I              | Ι                | 0.55-0.85                     | 0.60 - 0.90      | 0.70              | 0.75        |
|                                                                                                                         |                                         |                               | End                     | 2.0        | 0.70       | I              | Ι                | 0.60-0.85                     | 0.65 - 0.90      | 0.70              | 0.80        |
| High density, vase (> 400pl/ha)                                                                                         | > 0.70                                  | 3.0-4.0                       | Ini                     | 2.0        | 0.60       | 0.40           | I                | I                             | I                | 0.70              | 0.75        |
|                                                                                                                         |                                         |                               | Mid                     | 2.0        | 0.65       | 0.67           | I                | I                             | I                | 0.75              | 0.80        |
|                                                                                                                         |                                         |                               | End                     | 2.0        | 0.65       | 0.67           | Ι                | I                             | Ι                | 0.75              | 0.80        |
| <b>Orange</b> (C. sinensis), <b>Grapefruit</b> (C. paradisi), <b>Ta</b>                                                 | ngelo (C. tangelo                       |                               |                         |            |            |                |                  |                               |                  |                   |             |
| Young ( $< 5$ years), vase                                                                                              | 0.10 - 0.20                             | <2.0                          | Ini                     | 1.5        | 1.00       | I              | I                | I                             | I                | 0.35              | 0.50        |
|                                                                                                                         |                                         |                               | Mid                     | 1.6        | 1.00       | I              | 0.45-0.57        | 0.35 - 0.40                   | 0.40 - 0.45      | 0.35              | 0.45        |
|                                                                                                                         |                                         |                               | End                     | 1.6        | 1.00       | I              | I                | 0.35 - 0.40                   | 0.60-0.65        | 0.35              | 0.50        |
| Low, vase (<400 pl/ha)                                                                                                  | 0.20 - 0.40                             | 2.0-3.0                       | Ini                     | 1.6        | 0.60       | 0.30-0.41      | 0.58-0.97        | 0.45-0.70                     | 0.50-0.80        | 0.40              | 0.55        |
|                                                                                                                         |                                         |                               | Mid                     | 1.6        | 0.80       | 0.30 - 0.50    | 0.50-0.85        | 0.40-0.70                     | 0.45-0.75        | 0.50              | 0.60        |
|                                                                                                                         |                                         |                               | End                     | 1.6        | 0.75       | 0.35-0.41      | 0.60-0.92        | 0.45-0.70                     | 0.50-0.75        | 0.45              | 0.60        |

# Irrigation Science

| continued    |
|--------------|
| . <b>U</b> . |
| 6            |
| Ð            |
| -            |
| 0            |
| ц            |
|              |

| â | Springer |  |
|---|----------|--|
| 2 | opringer |  |

| Medium, vase (400–600 pl/ha)       0.40–0.70       3.0–4.0       Ini       1         Mid       1       Mid       1       End       1         High, vase (600–950 pl/ha)       >0.70       >4.0       Ini       2 | 1.5        |      |             |             | lated values | •             | values      |             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------|-------------|-------------|--------------|---------------|-------------|-------------|
| Medium, vase (400–600 pl/ha) 0.40–0.70 3.0–4.0 Ini 1<br>Mid 1<br>End 1<br>High, vase (600–950 pl/ha) > 0.70 > 4.0 Ini 2<br>Mid 2                                                                                 | 1.5<br>1.5 |      | $K_{ m cb}$ | $K_{ m c}$  | $K_{ m cb}$  | $K_{\rm c}$   | $K_{ m cb}$ | $K_{\rm c}$ |
| Mid 1<br>End 1<br>High, vase (600–950 pl/ha) >0.70 >4.0 Ini 2<br>Mid 2                                                                                                                                           | 1.5        | 09.0 | 0.35 - 0.60 | 0.45-0.87   | 0.60-0.85    | 0.65-0.95     | 0.60        | 0.70        |
| End 1<br>High, vase (600–950 pl/ha) >0.70 >4.0 Ini 2<br>Mid 2                                                                                                                                                    |            | 0.65 | 0.35-0.55   | 0.60 - 0.93 | 0.55-0.95    | 0.55 - 1.00   | 0.65        | 0.70        |
| High, vase (600–950 pl/ha) >0.70 >4.0 Ini 2<br>Mid 2                                                                                                                                                             | 1.5        | 09.0 | 0.42-0.58   | 0.50 - 0.83 | 0.50-0.95    | 0.65 - 0.1.05 | 09.0        | 0.70        |
| Mid 2                                                                                                                                                                                                            | 2.0        | 0.50 | 0.35 - 0.60 | 0.68 - 0.71 | I            | I             | 0.65        | 0.70        |
| -                                                                                                                                                                                                                | 2.0        | 09.0 | 0.64 - 0.74 | 0.87 - 0.89 | I            | I             | 0.75        | 0.80        |
| End 2                                                                                                                                                                                                            | 2.0        | 0.50 | 0.37-0.72   | 0.81 - 0.82 | I            | I             | 0.70        | 0.75        |
| Hedgerow (industry) (> 1250 pl/ha) >0.60 >4.0 Ini 2                                                                                                                                                              | 2.0        | 0.60 | 0.34        | 0.67 - 1.15 | I            | I             | 0.65        | 0.80        |
| Mid 2                                                                                                                                                                                                            | 2.0        | 0.65 | 0.37        | 0.77-1.05   | I            | I             | 0.70        | 0.85        |
| End 2                                                                                                                                                                                                            | 2.0        | 0.65 | 0.38        | 0.65 - 1.15 | I            | I             | 0.70        | 0.85        |

field studies and data handling that elucidated about water use practices and requirements for those crops. The selected papers allow to conclude that good knowledge exist about the referred crops and their exploitation, the evapotranspiration and water use process, while water management practices require to be improved in such a manner that water use be controlled, limited, while yields are increased. However, further studies on crops having limited information available are welcome, e.g., lemon and loquat.

The control and optimization of water use, including water saving, require appropriate choice and use of irrigation equipment and adequate irrigation scheduling targeting the standard  $K_c$  when irrigation equipment allows a good control of quantities applied and water available is enough to satisfy that target application. Numerous papers refer to regulated or controlled deficit irrigation; however, that deficit must be referred to the potential  $ET_c$ , product of the standard  $K_c$ by the grass reference  $ET_0$ . The application of those deficit irrigation practices also imply that farmers, managers and farmer advisers improve their knowledge on these subjects, on using models that may help decision-making, as well as on the use of weather data and information. Estimating  $K_{cb}$  and  $K_c$  from the fraction of ground cover or shading and plant height (A&P approach) provides for quite realistic estimates of crop coefficients for trees and vines as demonstrated by Pereira et al. (2020a, b) and as used with the California remote sensing SIMS framework (Melton et al. 2012; Pereira et al. 2021a, b, c), with parameterization described by the latter. Similar approaches on the use of standard  $K_{c}$ and  $K_{cb}$ , or the A&P approach, apply to studies on irrigation planning as well as on consumptive use assessment at project or watershed level.

When searching for water saving and scheduling irrigations for any kind of controlled deficit irrigation, users may either use the standard  $K_c$  or  $K_{ch}$  decreased by a saving fraction or may schedule irrigations following the actual ET conditions of the orchard. In the latter case, users may estimate the  $K_{c \text{ act}}$  using the A&P approach as referred in the Introduction. Then  $K_{cb act}$  may be computed from the observed actual fraction of ground cover and crop height and  $K_{e}$  may be estimated from the observed actual wetted fraction of exposed soil,  $1-f_c$ . The resulting actual values for  $K_{\rm c}$  or  $K_{\rm cb}$  shall then be compared with the standard  $K_{\rm c}$  or  $K_{\rm cb}$ for computation quality control. It is important to make the best use of related information and effectively achieve high water and financial productivity aiming the sustainability of production and the progressive adaptation to climate change challenges.

Users are advised to read and analyze the quoted papers in addition to the information provided and tabulated in the current review paper. Above all, it is required to develop awareness on water scarcity and water saving, the latter mainly based on the knowledge of standard crop coefficients

| Table 10 Characteris         | stics of selected avocado, loquat,                  | persimmon, and tea p                                                  | lantations                                                              |                                      |                                       |                 |                     |                   |                             |
|------------------------------|-----------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------|---------------------------------------|-----------------|---------------------|-------------------|-----------------------------|
| Author                       | Cultivar (rootstock)                                | Location and main<br>climate                                          | Field method for<br>ET <sub>c act</sub> (ET <sub>o</sub> equa-<br>tion) | Irrigation<br>method and<br>strategy | Trees/ha (spacing,<br>m)              | Training system | Age (years)         | Height (m)        | $f_{ m c}$ or $f_{ m IPAR}$ |
| Avocado (Persea am           | vericana Mill.)                                     |                                                                       |                                                                         |                                      |                                       |                 |                     |                   |                             |
| Gardiazabal et al. (2003)    | Hass (Mexicola)                                     | Valparaíso, Chile<br>Temperate                                        | SWB tens (FAO-<br>PM-ET <sub>o</sub> )                                  | Micro spr<br>Controled DI            | 278 (6×6)                             | n/r             | 8–10                | n/r               | n/r                         |
| Kiggundu et al.<br>(2012)    | Simmonds (Waldin)                                   | Homestead, FL,<br>USA<br>Subtrop. humid                               | SWB, tens (FAO-<br>PM-ET <sub>o</sub> )                                 | Micro spr<br>FI                      | 370 (6×4.5)                           | Hedge pruned    | ε                   | 2                 | n/r                         |
| Mbabazi et al.<br>(2015)     | Simmonds & Beta                                     | Homestead, FL,<br>USA<br>Subtrop. humid                               | SWB, IS-APP<br>(FAO-PM-ET <sub>o</sub> )                                | Micro spr<br>FI                      | n/r                                   | Hedgerow        | Mature              | n/r               | n/r                         |
| Holzapfel et al.<br>(2017)   | Hass (Mexicola)                                     | Peumo Valley,<br>Cachapoal, Chile<br>Sub-humid Med                    | Test K <sub>c</sub> , SWB-<br>neutron (ClassA<br>pan-ET <sub>o</sub> )  | Microjet<br>FI                       | 357 (7×4)                             | n/r             | 6-7                 | 6-7               | 0.70                        |
| Mazhawu et al.<br>(2018)     | Hass (Dusa)                                         | Pietermaritzburg,<br>RSA<br>Subtrop. humid                            | EC (FAO-PM-ET <sub>o</sub> )                                            | Micro-spr<br>FI                      | 357 (7×4)                             | n/r             | 4                   | 3.8               | 0.40-0.50                   |
| Taylor et al. (2021)         | Harvest (Dusa)<br>Hass<br>Hass                      | Howick, South<br>Africa<br>Subtrop. hot, humid                        | EC, SF (FAO-PM-<br>ET <sub>0</sub> )                                    | Micro-spr FI                         | 357 (7×4)                             | Hedgerow        | 1–3<br>4–6<br>11–13 | 1.7<br>3.8<br>7.4 | 0.17<br>0.43<br>0.80        |
|                              | Hass (Dusa, R0.06)                                  | Tzaneen, S. Africa<br>Subtrop. hot, humid                             |                                                                         |                                      | 312 (8×4)                             | Hedgerow        | 5-7                 | 4.0               | 0.60                        |
| Kaneko et al. 2022           | Hass ('Zutano' seedling<br>rootstock)               | Bay of Plenty,<br>Whangarei,Far<br>North<br>N. Zealand Temper-<br>ate | SF, SWB-reflec<br>(FAO-PM-ETo)                                          | Micro-spr<br>FI                      | 148 (9×7.5)<br>204 (7×7)<br>312 (8×4) | Vase            | 10<br>6             | 6.7<br>6.8<br>5.3 | 0.82<br>0.92<br>0.77        |
| Loquat (Eriobotrya,          | japonica Lindl.)                                    |                                                                       |                                                                         |                                      |                                       |                 |                     |                   |                             |
| Hueso and Cuevas<br>(2010)   | Algerie (Provence)                                  | El Ejido, Almería,<br>Spain<br>Semi-arid, Subtrop                     | Test Kc (ClassA<br>pan-ET <sub>o</sub> )                                | Drip<br>FI                           | 400 (5×5)                             | Vase            | Mature              | n/r               | n/r                         |
| Persimmon (Diospy            | ros kaki L.f.)                                      |                                                                       |                                                                         |                                      |                                       |                 |                     |                   |                             |
| Kanety et al. (2014)         | Triumph (n/r)                                       | Hefer plain, Israel<br>Med., subhumid                                 | SF (FAO-PM-ET <sub>0</sub> )                                            | Drip and FI                          | 417 (6×4)                             | n/r             | 9–11                | n/r               | n/r                         |
| Intrigliolo et al.<br>(2018) | Rojo Brillante ( <i>Diospyros</i><br><i>lotus</i> ) | Valencia, Spain<br>Med., subhumid                                     | SF, SWB-capac<br>(FAO-PM-ET <sub>o</sub> )                              | Drip and FI                          | 455 (5.5×4)                           | Vase            | Mature<br>Young     | 2.9               | 0.33                        |
| Ballester et al.             | Rojo Brillante (Diospyros                           | Valencia, Spain                                                       | SF (FAO-PM-ET <sub>o</sub> )                                            | Drip and FI                          | 455 (5.5×4)                           | Vase            | 6                   | 2.9               | 0.33                        |
| (7707)                       | lotus)                                              | Med., subhumid                                                        |                                                                         |                                      | $800(5 \times 2.5)$                   | Vase            | 5                   | 2.7               | 0.15                        |
|                              |                                                     |                                                                       |                                                                         |                                      | 571 (5×3.5)                           | Vase            | 9                   | 2.7               | 0.16                        |
|                              |                                                     |                                                                       |                                                                         |                                      |                                       |                 |                     |                   |                             |

Table 10 (continued)

 $\underline{\textcircled{O}}$  Springer

| Author                       | Cultivar (rootstock) | Location and main<br>climate                    | Field method for<br>ET <sub>c act</sub> (ET <sub>o</sub> equa-<br>tion) | Irrigation<br>method and<br>strategy | Trees/ha (spacing,<br>m) | Training system | Age (years)  | Height (m) $f_c$ or $f_{IPAR}$ |
|------------------------------|----------------------|-------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------|--------------------------|-----------------|--------------|--------------------------------|
| <b>Tea</b> (Camellia sinensi | is L.)               |                                                 |                                                                         |                                      |                          |                 |              |                                |
| Sikka et al. (2009)          | B-6                  | Udhagamandalam<br>Tamil Nadu, India<br>Tropical | WL (FAO-PM-ET <sub>o</sub> )                                            | Rainfed                              | 13,333 (n/r)             | n/r             | 7            | n/r n/r                        |
| Borkar et al. (2010)         | n/r                  | Uttarakhand, India<br>Temperate trop            | SWB-FDR (FAO-<br>PM-ET <sub>o</sub> )                                   | Drip<br>FI                           | n/r                      | n/r             | Mature (n/r) | n/r n/r                        |
| Zheng et al. (2021)          | Baiye1<br>Longjing43 | Shaoxing, China<br>Subtrop. monsoon             | DL, SWB-TDR<br>(FAO-PM-ET <sub>0</sub> )                                | Rainfed                              | 20,200 (1.5×0.33)        | n/r             | 4-5<br>4-5   | 0.77 n/r<br>0.88               |
| Yan et al. (2022)            | Anji White           | Jiangsu, China<br>Subtrop. monsoon              | BREB, SWB-TDR<br>(FAO-PM-ET <sub>o</sub> )                              | Rainfed                              | 16,025 (1.2×0.52)        | n/r             | 3-5          | n/r n/r                        |

Abbreviations and symbols are defined in list of symbols heading

| Avocado ( <i>Persea americana</i> Mill<br>Gardiazabal et al. (2003) Has<br>Kiggundu et al. (2012) Sim  | IT A TI (TOOLSHOCK)           | L       | raining system | $f_{ m c}$ or $f_{ m IPAR}$ | Height (m) | Ground cover | Age (years)     | $K_c/K_{cb}$   | lerived t            | rom tield | l observa         | tions            |
|--------------------------------------------------------------------------------------------------------|-------------------------------|---------|----------------|-----------------------------|------------|--------------|-----------------|----------------|----------------------|-----------|-------------------|------------------|
| Avocado ( <i>Persea americana</i> Mill<br>Gardiazabal et al. (2003) Has.<br>Kiggundu et al. (2012) Sim |                               |         |                |                             |            |              |                 | $K_{\rm cini}$ | K <sub>c mid</sub> K | c end Kc  | b ini $K_{ m cb}$ | mid $K_{ m cbe}$ |
| Gardiazabal et al. (2003) Has:<br>Kiggundu et al. (2012) Sim                                           | L.)                           |         |                |                             |            |              |                 |                |                      |           |                   |                  |
| Kiggundu et al. (2012) Sim                                                                             | ss (Mexicola)                 | u       | /r             | n/r                         | n/r        | n/r          | 8-10            | 0.72           | 0.72 0.              | 72 n/ı    | n/r               | n/r              |
| Mhahari at al (2016) Sim                                                                               | nmonds (cv. Waldin)           | ц       | ledge prune    | n/r                         | 2          | n/r          | 3               | 0.50           | 0.71 0.              | 50 n/1    | n/r               | n/r              |
|                                                                                                        | nmonds & Beta                 | щ       | ledgerow       | n/r                         | n/r        | n/r          | Mature          | 0.60           | .00 00.              | 1/u 0/    | n/r               | n/r              |
| Holzapfel et al. (2017) Has                                                                            | ss (Mexicola)                 | u       | /r             | 0.70                        | 6-7        | n/r          | 62              | 1.00           | .00 1.               | 1/u 00    | n/r               | n/r              |
| Mazhawu et al. (2018) Has:                                                                             | ss (Dusa)                     | u       | /r             | 0.40 - 0.50                 | 3.8        | AGC          | 4               | 0.60           | .15 0.               | 60 n/i    | n/r               | n/r              |
| Taylor et al. (2021) Har                                                                               | vest (1                       | Dusa) F | ledgerow       | 0.17                        | 1.7        | AGC          | 1-3             | 1.00           | .05 n/               | 'r n/1    | · n/r             | n/r              |
| Has                                                                                                    | SS                            | щ       | ledgerow       | 0.43                        | 3.8        | AGC          | 46              | 0.85           | .20 n/               | r 0.2     | 25 0.50           | 0.30             |
| Has                                                                                                    | SS                            | щ       | ledgerow       | 0.80                        | 7.4        | AGC          | 11-13           | 0.75           | .05 n/               | r 0.7     | 0 1.0             | 09.0             |
| Has                                                                                                    | ss (Dusa & R0.06)             | Ц       | ledgerow       | 0.60                        | 4.0        | AGC          | 5-7             | n/r            | n/r n/               | r 0.3     | 5 0.5:            | 0.30             |
| Kaneko et al. 2022 Has                                                                                 | ss ('Zutano')                 | u       | /r             | ≥ 0.77                      | ≥5.3       | AGC mowed    | Fruit load high |                |                      | 0.6       | 0 0.7             | 1.25             |
|                                                                                                        |                               |         |                |                             |            |              | Low             |                |                      |           | 0.6               |                  |
| Loquat (Eriobotrya japonica Lin                                                                        | ndl.)                         |         |                |                             |            |              |                 |                |                      |           |                   |                  |
| Hueso and Cuevas (2010) Alge                                                                           | (erie (Provence)              | -       | ase            | n/r                         | n/r        | n/r          | Mature          | 0.50           | 0.75 0.              | 1/u 0/    | . n/r             | n/r              |
| Persimmon (Diospyros kaki L.f.)                                                                        |                               |         |                |                             |            |              |                 |                |                      |           |                   |                  |
| Kanety et al. (2014) Triu                                                                              | umph $(n/r)$                  | u       | /r             | n/r                         | n/r        | BS           | 9–11            | •              | .95                  |           | 0.6               | - `              |
| Intrigliolo et al. (2018) Rojo                                                                         | o Brillante (Diospyros lotus) | -       | 'ase           | 0.33                        | 2.9        | BS           | Mature          | 0.27           | 0.87 0.              | 50        |                   |                  |
|                                                                                                        |                               |         |                |                             |            |              | Interm          | 0.19           | 0.60                 | 35        |                   |                  |
|                                                                                                        |                               |         |                |                             |            |              | Young           | 0.05           | 0.17 0.              | 10        |                   |                  |
| Ballester et al. (2022) Rojo                                                                           | o Brillante (Diospyros lotus) | -       | ase            | 0.33                        | 2.9        | BS           | 6               |                |                      | 0.1       | 0 0.5             | 0.15             |
|                                                                                                        |                               |         |                | 0.15                        | 2.7        |              | 5               |                |                      | ı/u       | .0.4              | 0.20             |
|                                                                                                        |                               |         |                | 0.16                        | 2.7        |              | 6               |                |                      | 0.1       | 5 0.4             | s n/r            |
| <b>Tea</b> (Camellia sinensis L.)                                                                      |                               |         |                |                             |            |              |                 |                |                      |           |                   |                  |
| Sikka et al. (2009) B-6                                                                                |                               | u       | /r             | n/r                         | n/r        | n/r          | 2               | 0.55           | 1.25 0.              | 40 n/1    | n/r               | n/r              |
| Borkar et al. (2010) n/r                                                                               |                               | u       | /r             | n/r                         | n/r        | n/r          | Mature          | 0.73           | .95 n/               | 'r n/1    | n/r               | n/r              |
| Zheng et al. (2021) Baiy                                                                               | yel                           | u       | /r             | n/r                         | 0.77       | n/r          | 4               | 0.68           | 0.76 0.              | 44 n/ı    | n/r               | n/r              |
|                                                                                                        |                               |         |                |                             |            |              | 5               | 0.56           | 0.84 0.              | 68        |                   |                  |
| Lon                                                                                                    | ıgjing43                      | u       | /r             | n/r                         | 0.88       | n/r          | 4               | 0.73           | 0.88 0.              | 63 n/i    | · n/r             | n/r              |
|                                                                                                        |                               |         |                |                             |            |              | 5               | 0.76           | 0.01                 | 81        |                   |                  |
| Yan et al. (2022) Anji                                                                                 | ji White                      | u       | /r             | n/r                         | n/r        | Bare soil    | 3               | 0.95           | .95 0.               | 95 n/ı    | n/r               | n/r              |
|                                                                                                        |                               |         |                |                             |            |              | 4               | 1.00           | 1.00                 | 00        |                   |                  |
|                                                                                                        |                               |         |                |                             |            |              | 5               | 1.00           | 1.00                 | 00        |                   |                  |

🙆 Springer

| Degree of ground cover, training, and plant density | $f_{\rm c}$ | <i>h</i> (m) | Crop stages | $M_{\mathrm{L}}$ | $F_{\mathrm{r}}$ | Ranges of ob | served values | Ranges of pre<br>lated values | eviously tabu- | Propose<br>values | p           |
|-----------------------------------------------------|-------------|--------------|-------------|------------------|------------------|--------------|---------------|-------------------------------|----------------|-------------------|-------------|
|                                                     |             |              |             |                  |                  | $K_{ m cb}$  | $K_{\rm c}$   | $K_{ m cb}$                   | K <sub>c</sub> | $K_{ m cb}$       | $K_{\rm c}$ |
| Avocado (Persea americana Mill.)                    |             |              |             |                  |                  |              |               |                               |                |                   |             |
| Young (<3 years), vase                              | < 0.20      | < 2.0        | Ini         | 1.5              | 1.00             | 0.50         | I             | I                             | I              | 0.30              | 0.50        |
|                                                     |             |              | Mid         | 1.7              | 1.00             | 0.30         | I             | I                             | I              | 0.35              | 0.50        |
|                                                     |             |              | End         | 1.7              | 1.00             | 0.50         | I             | 0.25                          | 0.40           | 0.35              | 0.50        |
| Low density, vase (< 300 pl/ha)                     | 0.20-0.35   | 2.0 - 3.0    | Ini         | 1.5              | 0.80             | I            | I             | 0.60                          | 0.65           | 0.45              | 09.0        |
|                                                     |             |              | Mid         | 2.0              | 0.80             | I            | I             | 0.50                          | 0.60           | 0.55              | 0.65        |
|                                                     |             |              | End         | 2.0              | 0.75             | I            | I             | I                             | I              | 0.50              | 0.65        |
| Medium to high, vase (300-400 pl/ha)                | 0.35 - 0.60 | 3.0-4.0      | Ini         | 1.5              | 0.65             | 0.25-0.35    | 0.60 - 0.85   | 0.30 - 0.50                   | 0.50 - 0.60    | 0.65              | 0.80        |
|                                                     |             |              | Mid         | 2.0              | 0.70             | 0.50-0.55    | 1.15 - 1.20   | 0.80 - 0.85                   | 0.85 - 0.90    | 0.75              | 0.85        |
|                                                     |             |              | End         | 2.0              | 0.70             | 0.30         | 0.60          | 0.70 - 0.80                   | 0.75 - 0.80    | 0.70              | 0.85        |
| Very high, vase (>400 pl/ha)                        | > 0.60      | > 4.0        | Ini         | 1.5              | 0.60             | 0.70         | 0.75 - 1.00   | 0.30                          | 0.50           | 0.80              | 06.0        |
|                                                     |             |              | Mid         | 2.0              | 0.80             | 1.00         | 1.00 - 1.05   | 0.95                          | 1.00           | 06.0              | 1.00        |
|                                                     |             |              | End         | 2.0              | 0.60             | 0.60         | 1.00          | 0.85                          | 06.0           | 0.80              | 06.0        |
| Hedgerow, medium density (300-400 pl/ha)            | 0.35 - 0.60 | 3.5-4.0      | Ini         | 1.5              | 0.80             | I            | 0.50          | I                             | Ι              | 0.70              | 0.80        |
|                                                     |             |              | Mid         | 2.0              | 0.80             | I            | 0.71          | I                             | I              | 0.75              | 0.85        |
|                                                     |             |              | End         | 2.0              | 0.75             | I            | 0.50          | I                             | I              | 0.70              | 0.80        |
| Hedgerow, high density (>400 pl/ha)                 | 0.60 - 0.85 | > 4.0        | Ini         | 1.5              | 0.75             | I            | 09.0          | I                             | Ι              | 0.85              | 06.0        |
|                                                     |             |              | Mid         | 2.0              | 0.80             | I            | 1.00          | I                             | I              | 0.95              | 1.00        |
|                                                     |             |              | End         | 2.0              | 0.75             | I            | 0.70          | I                             | I              | 0.85              | 0.90        |
| Loquat (Eriobotrya japonica Lindl.)                 |             |              |             |                  |                  |              |               |                               |                |                   |             |
| Young (4 < years), vase                             | < 0.25      | <2.5         | Ini         | 1.1              | 1.00             | I            | I             | I                             | Ι              | 0.30              | 0.50        |
|                                                     |             |              | Mid         | 1.3              | 1.00             | I            | I             | I                             | I              | 0.35              | 0.55        |
|                                                     |             |              | End         | 1.3              | 1.00             | I            | I             | I                             | I              | 0.35              | 0.55        |
| Low to medium, vase (450-600 pl/ha)                 | 0.25-0.50   | 2.5-3.5      | Ini         | 1.5              | 09.0             | I            | 0.50          | I                             | Ι              | 0.40              | 0.55        |
|                                                     |             |              | Mid         | 2.0              | 0.75             | I            | 0.75          | I                             | I              | 0.65              | 0.75        |
|                                                     |             |              | End         | 2.0              | 0.70             | I            | 0.70          | I                             | I              | 0.60              | 0.70        |
| High, vase (>600 pl/ha)                             | > 0.50      | > 3.5        | Ini         | 1.4              | 0.50             | Ι            | I             | Ι                             | I              | 0.50              | 0.60        |
|                                                     |             |              | Mid         | 2.0              | 0.70             | I            | I             | I                             | Ι              | 0.75              | 0.85        |
|                                                     |             |              | End         | 2.0              | 09.0             | I            | I             | I                             | I              | 0.65              | 0.75        |
| Persimmon (Diospyros kaki L.f.)                     |             |              |             |                  |                  |              |               |                               |                |                   |             |
| Young (<5 years)                                    | < 0.15      | < 2.0        | Ini         | 1.5              | 1.00             | ı            | 0.05          | I                             | I              | 0.15              | 0.35        |
|                                                     |             |              | Mid         | 1.6              | 1.00             |              | 0.17          | I                             | I              | 0.25              | 0.40        |
|                                                     |             |              | End         | 1.3              | 1.00             |              | 0.10          | I                             | I              | 0.10              | 0.25        |

🙆 Springer

#### Irrigation Science

| Degree of ground cover, training, and plant density | $f_{\rm c}$ | (m) h   | Crop stages | $M_{ m L}$ | $F_{ m r}$ | Ranges of obs     | erved values | Ranges of pr<br>lated values | eviously tabu- | Propose     | -          |
|-----------------------------------------------------|-------------|---------|-------------|------------|------------|-------------------|--------------|------------------------------|----------------|-------------|------------|
|                                                     |             |         |             |            |            | $K_{\mathrm{cb}}$ | $K_{ m c}$   | $K_{ m cb}$                  | $K_{\rm c}$    | $K_{ m cb}$ | $K_{ m c}$ |
| Low to medium (300-500 pl/ha)                       | 0.15 - 0.40 | 2.0-2.5 | Ini         | 1.5        | 0.65       | 0.10-0.15         | 0.19-0.27    | 1                            | I              | 0.15        | 0.30       |
|                                                     |             |         | Mid         | 2.0        | 0.85       | 0.40 - 0.53       | 0.60 - 0.87  | I                            | I              | 0.55        | 0.65       |
|                                                     |             |         | End         | 2.0        | 0.50       | 0.15-0.20         | 0.35-0.50    | I                            | I              | 0.20        | 0.35       |
| High (500–800 pl/ha)                                | 0.40-0.60   | 2.5-3.0 | Ini         | 1.5        | 0.65       | I                 | I            | I                            | I              | 0.20        | 0.35       |
|                                                     |             |         | Mid         | 2.0        | 0.80       | 0.62              | 0.95         | I                            | I              | 0.80        | 06.0       |
|                                                     |             |         | End         | 2.0        | 0.50       | Ι                 | Ι            | I                            | Ι              | 0.45        | 0.50       |
| <b>Tea</b> ( <i>Camellia sinensis</i> L.)           |             |         |             |            |            |                   |              |                              |                |             |            |
| Young (<2 years), low hedgerow (7000–13500 pl/ha)   | < 0.50      | < 0.70  | Ini         | 1.2        | 1.00       | 0.85              | 0.55         | I                            | I              | 09.0        | 0.80       |
|                                                     |             |         | Mid         | 2.0        | 1.00       | 0.85              | 1.31         | I                            | I              | 0.70        | 06.0       |
|                                                     |             |         | End         | 2.0        | 1.00       | 0.85              | 0.36         | I                            | I              | 0.70        | 0.90       |
| Mature, hedgerow (7000-13500 pl/ha)                 | 0.50 - 0.90 | > 0.70  | Ini         | 2.0        | 1.00       | 0.95 - 1.05       | I            | 0.90                         | 0.95           | 0.95        | 1.05       |
|                                                     |             |         | Mid         | 2.0        | 1.00       | 0.95 - 1.05       | 0.78 - 1.00  | 0.95                         | 1.00           | 0.95        | 1.05       |
|                                                     |             |         | End         | 2.0        | 1.00       | 0.95-1.05         | I            | 06.0                         | 1.00           | 0.95        | 1.05       |
|                                                     |             |         |             |            |            |                   |              |                              |                |             |            |

Acknowledgements The support of the FCT—Fundação para a Ciência e a Tecnologia, I.P., under the project UIDB/04129/2020 of LEAF-Linking Landscape, Environment, Agriculture and Food, Research Unit, and to P. Paredes (DL 57/2016/CP1382/CT0022) are acknowledged, as well as the FAO LoA FAO-ISA-RP- 355071. R. López-Urrea and F. Montoya thank the support from the Education, Culture and Sports Council (JCCM, Spain) (Award numbers SBPLY/21/180501/000070 and SBPLY/21/180501/000152) and the Agencia Estatal de Investigación with FEDER (grant numbers PID2021–123305OB-C31, and PID2020–113498RB-C21), and Next-GenerationEU (TED2021–130405B-I00) co-financing. R. López-Urrea also thanks all the support from his former workplace (Instituto Técnico Agronómico Provincial, ITAP) while this study was being carried out.

Author contributions LSP, PP, FM, RLU designed and contributed to the search and selection of the reviewed articles; LSP wrote the main manuscript text, with the contribution of PP, FM, RLU, and MS, and CMO revised the horticultural issues and tabulation. All authors revised the text and agreed on the submitted version of the manuscript.

**Funding** Open access funding provided by FCTIFCCN (b-on). This article is funding by Fundação para a Ciência e a Tecnologia, UIDB/04129/2020, UIDB/04129/2020, UIDB/04129/2020, Ministerio de Educación, Cultura y Deporte, SBPLY/21/180501/000070, SBPLY/21/180501/000070.

### Declarations

Conflict of interest The authors declare no competing interests.

**Open Access** This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

# References

Abbreviations and symbols are defined in list of symbols heading

- Abou Ali A, Bouchaou L, Er-Raki S, Hssaissoune M, Brouziyne Y, Ezzahar J, Khabba S, Chakir A, Labbaci A, Chehbouni A (2023) Assessment of crop evapotranspiration and deep percolation in a commercial irrigated citrus orchard under semi-arid climate: combined Eddy-covariance measurement and soil water balancebased approach. Agric Water Manag 275:107997
- Abu NS, Bukhari WM, Ong CH, Kassim AM, Izzuddin TA, Sukhaimie MN, Norasikin MA, Rasid AF (2022) Internet of things applications in precision agriculture: a review. J Robot Control. https:// doi.org/10.18196/jrc.v3i3.14159
- Allen RG, Pereira LS (2009) Estimating crop coefficients from fraction of ground cover and height. Irrig Sci 28:17–34

Table 12 (continued)

- Allen RG, Pruitt WO, Jensen ME, Burman RD (1991) Environmental requirements of lysimeters. In: Allen RG, Howell TA, Pruitt WO, Walter IA, Jensen ME (eds) Lysimeters for evapotranspiration and environmental measurements. ASCE, New York, NY, USA, pp 170–181
- Allen RG, Pereira LS, Raes D, Smith M (1998) Crop Evapotranspiration. Guidelines for Computing Crop Water Requirements, FAO Irrig. Drain. Paper 56. FAO, Rome, Italy, p 300
- Allen RG, Pereira LS, Smith M, Raes D, Wright JL (2005) FAO-56 dual crop coefficient method for estimating evaporation from soil and application extensions. J Irrig Drain Eng 131(1):2–13
- Allen RG, Pereira LS, Howell TA, Jensen ME (2011) Evapotranspiration information reporting: I. Factors governing measurement accuracy. Agric Water Manag 98:899–920
- Alves J Jr, Folegatti MV, Parsons LR, Bandaranayake W, Silva CR, Silva TJA, Campeche LFSM (2007) Determination of the crop coefficient for grafted 'Tahiti' lime trees and soil evaporation coefficient of Rhodic Kandiudalf clay soil in Sao Paulo, Brazil. Irrig Sci 25:419–428
- Ballester C, Badal E, Bonet L, Testi L, Intrigliolo DS (2022) Determining transpiration coefficients of 'Rojo Brillante' persimmon trees under Mediterranean climatic conditions. Agric Water Manag 271:107804
- Barboza Júnior CRA, Folegatti MV, Rocha FJ, Atarassi RT (2008) Coeficiente de cultura da lima-ácida Tahiti no outono-inverno determinado por lisimetria de pesagem em Piracicaba – SP. Eng Agric, Jaboticabal 28(4):691–698
- Borkar AR, Singh PK, Saini BC (2010) In-situ determination of crop coefficient (Kc) for tea plantation in Kausani hills of Uttarakhand. Pantnagar J Res 8(1):112–115
- Cammalleri C, Ciraolo G, Minacapilli M, Rallo G (2013a) Evapotranspiration from an olive orchard using remote sensingbased dual crop coefficient approach. Water Resour Manag 27:4877–4895
- Cammalleri C, Rallo G, Agnese C, Ciraolo G, Minacapilli M, Provenzano G (2013b) Combined use of eddy covariance and sap flow techniques for partition of ET fluxes and water stress assessment in an irrigated olive orchard. Agric Water Manag 120:89–97
- Campos I, Neale CMU, Calera A, Balbontín C, González-Piqueras J (2010) Assessing satellite-based basal crop coefficients for irrigated grapes (*Vitis vinifera* L.). Agric Water Manag 98:45–54
- Cárceles Rodríguez B, Durán Zuazo VH, Franco Tarifa D, Cuadros Tavira S, Cermeño Sacristan P, García-Tejero IF (2023) Irrigation alternatives for avocado (*Persea americana* Mill.) in the Mediterranean subtropical region in the context of climate change: a review. Agriculture 13:1049
- Carrasco-Benavides M, Ortega-Farías S, Lagos LO, Kleissl J, Morales L, Poblete-Echeverría C, Allen RG (2012) Crop coefficients and actual evapotranspiration of a drip-irrigated Merlot vineyard using multispectral satellite images. Irrig Sci 30:485–497
- Castel JR, (2000) Water use of developing citrus canopies in Valencia, Spain. In: Proc Int Soc Citriculture, IX Congr Florida, USA, pp 223–226
- Chaves MM, Zarrouk O, Francisco R, Costa JM, Santos T, Regalado AP, Rodrigues ML, Lopes CM (2010) Grapevine under deficit irrigation: hints from physiological and molecular data. Ann Bot 105:661–676
- Conceição MAF, Tecchio MA, Souza RT, Silva MJR, Moura MF (2017a) Estimativa dos coeficientes de cultivo (kc) de videiras para suco. Agrometeoros, Passo Fundo 25:191–198
- Conceição N, Tezza L, Häusler M, Lourenço S, Pacheco CA, Ferreira MI (2017b) Three years of monitoring evapotranspiration components and crop and stress coefficients in a deficit irrigated intensive olive orchard. Agric Water Manag 191:138–152

- Consoli S, Papa R (2013) Corrected surface energy balance to measure and model the evapotranspiration of irrigated orange orchards in semi-arid Mediterranean conditions. Irrig Sci 31:1159–1171
- Consoli S, Vanella D (2014) Mapping crop evapotranspiration by integrating vegetation indices into a soil water balance model. Agric Water Manag 143:71–81
- Consoli S, O'Connell N, Snyder R (2006) Estimation of evapotranspiration of different-sized navel-orange tree orchards using energy balance. J Irrig Drain Eng 132:2–8
- Darouich H, Ramos TB, Pereira LS, Rabino D, Bagagiolo G, Capello G, Simionesei L, Cavallo E, Biddoccu M (2022a) Water use and soil water balance of Mediterranean vineyards under rainfed and drip irrigation management. Evapotranspiration partition, soil management and resource conservation. Water 14:554. https://doi.org/10.3390/w14040554
- Darouich H, Karfoul R, Ramos TB, Moustafa A, Pereira LS (2022b) Searching for sustainable irrigation issues of clementine orchards in the Syrian Akkar Plain: 1. Effects of irrigation method and canopy size on crop coefficients, transpiration and water use with SIMDualKc model. Water 14:2052. https://doi.org/10.3390/ w14132052
- Er-Raki S, Chehbouni A, Guemouria N, Ezzahar J, Khabba S, Boulet G, Hanich L (2009) Citrus orchard evapotranspiration: Comparison between eddy covariance measurements and the FAO-56 approach estimates. Plant Biosyst 143:201–208
- Er-Raki S, Chehbouni A, Boulet G, Williams DG (2010) Using the dual approach of FAO-56 for partitioning ET into soil and plant components for olive orchards in a semi-arid region. Agric Water Manag 97:1769–1778
- Er-Raki S, Rodriguez JC, Garatuza-Payan J, Watts CJ, Chehbouni A (2013) Determination of crop evapotranspiration of table grapes in a semi-arid region of Northwest Mexico using multi-spectral vegetation index. Agric Water Manag 122:12–19
- Evett SR, Kustas WP, Gowda PH, Anderson MC, Prueger JH, Howell TA (2012a) Overview of the Bushland evapotranspiration and agricultural remote sensing experiment 2008 (BEAREX08): a field experiment evaluating methods for quantifying ET at multiple scales. Adv Water Resour 50:4–19
- Evett SR, Schwartz RC, Casanova JJ, Heng LK (2012b) Soil water sensing for water balance, ET and WUE. Agr Water Manag 104:1–9. https://doi.org/10.1016/j.agwat.2011.12.002
- Evett SR, Schwartz RC, Howell TA, Baumhardt RL, Copeland KS (2012c) Can weighing lysimeter ET represent surrounding field ET well enough to test flux station measurements of daily and sub-daily ET? Adv Water Resour 50:79–90
- Evett SR, Howell TA, Schneider AD, Copeland KS, Dusek DA, Brauer DK, Tolk JA, Marek GW, Marek TM, Gowda PH (2016) The bushland weighing lysimeters: a quarter century of crop ET investigations to advance sustainable irrigation. Trans ASABE 58(5):163–179
- Fandiño M (2021) Necesidades de Agua e Influencia de los Sistemas de Riego en *Vitis vinifera* cv. Albariño. PhD thesis, Escuela de Doctorado Internacional, Universidad de Santiago de Compostela, Lugo, Spain, p 153
- Fandiño M, Cancela JJ, Rey BJ, Martínez EM, Rosa RG, Pereira L (2012) Using the dual-Kc approach to model evapotranspiration of Albariño vineyards (*Vitis vinifera* L. cv. Albariño) with consideration of active ground cover. Agric Water Manag 112:75–87
- Fernández JE (2014) Understanding olive adaptation to abiotic stresses as a tool to increase crop performance. Environ Exp Bot 103:158–179
- Fernández JE, Diaz-Espejo A, Infante JM, Durán P, Palomo MJ, Chamorro V, Girón IF, Villagarcía L (2006) Water relations and gas exchange in olive trees under regulated deficit irrigation and partial rootzone drying. Plant Soil 284:273–291

- Fernández JE, Green SR, Caspari HW, Diaz-Espejo A, Cuevas MV (2008) The use of sap flow measurements for scheduling irrigation in olive, apple and Asian pear trees and in grapevines. Plant Soil 305:91–104
- Fidelibus MW (2014) Grapevine cultivars, trellis systems, and mechanization of the California Raisin Industry. HortTechnol 24(3):285–289
- García L, Parra L, Jimenez JM, Lloret J, Lorenz P (2020) IoT-based smart irrigation systems: an overview on the recent trends on sensors and IoT systems for irrigation in precision agriculture. Sensors 20(4):1042
- García Petillo M, Castel JR (2007) Water balance and crop coefficient estimation of a citrus orchard in Uruguay. Span J Agric Res 5(2):232–243
- Gardiazabal F, Magdahl C, Mena F, Wilhelmy C (2003) Determinación del coeficiente de cultivo (Kc) para paltos cv. Hass en Chile. Proc V World Avocado Congress, pp 329–334
- Garrido-Rubio J, González-Piqueras J, Campos I, Osann A, González-Gómez L, Calera A (2020) Remote sensing–based soil water balance for irrigation water accounting at plot and water user association management scale. Agr Water Manage. https://doi. org/10.1016/j.agwat.2020.106236
- Hargreaves GH, Samani ZA (1985) Reference crop evapotranspiration from temperature. Appl Eng Agric 1:96–99
- Holzapfel E, Souza JA, Jara J, Guerra HC (2017) Responses of avocado production to variation in irrigation levels. Irrig Sci 35:205–215
- Hu S, Zhao C, Li J, Wang F, Chen Y (2014) Discussion and reassessment of the method used for accepting or rejecting data observed by a Bowen ratio system. Hydrol Process 28:4506–4510
- Hueso JJ, Cuevas J (2010) Ten consecutive years of regulated deficit irrigation probe the sustainability and profitability of this water saving strategy in loquat. Agr Water Manag 97:645–650
- Intrigliolo DS, Lakso AN, Piccioni RM (2009) Grapevine cv. 'Riesling' water use in the northeastern United States. Irrig Sci 27:253–262
- Intrigliolo DS, Visconti F, Bonet L, Parra M, Besada C, Abrisqueta I, Rubio JS, de Paz JM (2018) Persimmon (*Diospyros kaki*) trees responses to restrictions in water amount and quality. In: IF García Tejero and VH Durán Zuazo (eds) Water Scarcity and Sustainable Agriculture in Semiarid Environment: Tools, Strategies, and Challenges for Woody Crops, p 149–177, Academic Press.
- Ippolito M, De Caro D, Ciraolo G, Minacapilli M, Provenzano G (2023) Estimating crop coefficients and actual evapotranspiration in citrus orchards with sporadic cover weeds based on ground and remote sensing data. Irrig Sci 41:5–22
- Jafari M, Kamali H, Keshavarz A, Momeni A (2021) Estimation of evapotranspiration and crop coefficient of drip-irrigated orange trees under a semi-arid climate. Agr Water Manag 248:106769
- Jamshidi S, Zand-Parsab S, Kamgar-Haghighi AA, Shahsavar AR, Niyogi D (2020) Evapotranspiration, crop coefficients, and physiological responses of citrus trees in semi-arid climatic conditions. Agr Water Manag 227:105838
- Jensen ME, Allen RG (eds) (2016) Evaporation, Evapotranspiration, and Irrigation Water Requirements (2nd ed) In: ASCE Manual 70, ASCE, Reston, VI, 744 p.
- Jia X, Swancar A, Jacobs JM, Dukes MD, Morgan K (2007) Comparison of evapotranspiration rates for flatwoods and ridge citrus. Trans ASABE 50(1):83–94
- Jovanovic N, Pereira LS, Paredes P, Pôças I, Cantore V, Todorovic M (2020) A review of strategies, methods and technologies to reduce non-beneficial consumptive water use on farms considering the FAO56 methods. Agr Water Manag 239:106267
- Kaneko T, Gould N, Campbell D, Snelgar P, Clearwater MJ (2022) The effect of soil type, fruit load and shaded area on 'Hass' avocado (Persea americana Mill.) water use and crop coefficients. Agr Water Manag 264, 107519

- Kanety T, Naor A, Gips A, Dicken U, Lemcoff JH, Cohen S (2014) Irrigation influences on growth, yield, and water use of persimmon trees. Irrig Sci 32:1–13
- Karimi P, Bastiaanssen WGM (2015) Spatial evapotranspiration, rainfall and land use data in water accounting Part 1: Review of the accuracy of the remote sensing data. Hydrol Earth Syst Sci 19:507–532
- Kiggundu N, Migliaccio KW, Schaffer B, Li Y, Crane JH (2012) Water savings, nutrient leaching, and fruit yield in a young avocado orchard as affected by irrigation and nutrient management. Irrig Sci 30:275–286
- Kool D, Ben-Gal A, Agam N (2018) Within-field advection enhances evaporation and transpiration in a vineyard in an arid environment. Agric Forest Meteor 255:104–113
- López-Olivari R, Ortega Farías S, Poblete-Echevarría C (2016) Partitioning of net radiation and evapotranspiration over a superintensive drip irrigated olive orchard. Irrig Sci 34:17–31
- López-Urrea R, de Santa M, Olalla F, Fabeiro C, Moratalla A (2006) Testing evapotranspiration equations using lysimeter observations in a semiarid climate. Agric Water Manag 85:15–26
- López-Urrea R, Montoro A, Mañas F, López-Fuster P, Fereres E (2012) Evapotranspiration and crop coefficients from lysimeter measurements of mature Tempranillo wine grapes. Agric Water Manag 112:13–20
- López-Urrea et al., (2023) Single and basal crop coefficients for estimation of water use of tree and vine woody crops with consideration of fraction of ground cover, height, and training system for temperate climate fruit crops. Irrig Sci. (submitted).
- Louarn G, Dauzat J, Lecoeur J, Lebon E (2008) Influence of trellis system and shoot positioning on light interception and distribution in two grapevine cultivars with different architectures: an original approach based on 3D canopy modelling. Aust J Grape Wine Res 14(3):143–152
- Maestre-Valero JF, Testi L, Jiménez-Bello MA, Castel JR, Intrigliolo DS (2017) Evapotranspiration and carbon exchange in a citrus orchard using eddy covariance. Irrig Sci 35:397–408
- Marras S, Achenza F, Snyder RL, Duce P, Spano D, Sirca C (2016) Using energy balance data for assessing evapotranspiration and crop coefficients in a Mediterranean vineyard. Irrig Sci 34:397–408
- Marsal J, Johnson S, Casadesus J, Lopez G, Girona J, Stöckle C (2014) Fraction of canopy intercepted radiation relates differently with crop coefficient depending on the season and the fruit tree species. Agric Forest Meteor 184:1–11
- Martínez-Cob A, Faci J (2010) Evapotranspiration of an hedgepruned olive orchard in a semiarid area of NE Spain. Agric Water Manag 97:410–418
- Mazhawu E, Clulow A, Savage MJ, Taylor NJ (2018) Water Use of Avocado Orchards – Year 1. South African Avocado Growers' Association Yearbook 41:37–41
- Mbabazi D,. Migliaccio KW,. Crane JH, Debastiani Andreis JH, Fraisse C,. Zotarelli L, Morgan KT (2015) SmartIrrigation Avocado App: A Step-by-Step Guide1. Doc AE513, series of the Agricultural and Biological Engineering Dep, UFlorida, Gainesville, FL.
- Minacapilli M, Agnese C, Blanda F, Cammalleri C, Ciraolo G, D'Urso G, Iovino M, Pumo D, Provenzano G, Rallo G (2009) Estimation of actual evapotranspiration of Mediterranean perennial crops by means of remote-sensing based surface energy balance models. Hydrol Earth Syst Sci 13:1061–1074
- Monteith JL (1965) The state and movement of water in living organisms. Proc XIX Symp society for experimental biology. Cambridge University Press, Cambridge, Swansea, pp 205–234
- Montoro A, Mañas F, López-Urrea R (2016) Transpiration and evaporation of grapevine, two components related to irrigation strategy. Agric Water Manag 177:193–200

- Moratiel R, Martínez-Cob A (2012) Evapotranspiration of grapevine trained to a gable trellis system under netting and black plastic mulching. Irrig Sci 30:167–178
- Morgan KT, Obreza TA, Scholberg JMS, Parsons LR, Wheaton TA (2006) Citrus water uptake dynamics on a sandy Florida entisol. Soil Sci Soc Am J 70:90–97
- Morgani MB, Perez Peña JE, Fanzone M, Prieto JA (2022) Pruning after budburst delays phenology and affects yield components, crop coefficient and total evapotranspiration in *Vitis vinifera* L. cv. 'Malbec' in Mendoza, Argentina. Sci Hortic 296:110886
- Müller Schmied H, Adam L, Eisner S et al (2016) Variations of global and continental water balance components as impacted by climate forcing uncertainty and human water use. Hydrol Earth Syst Sci 20:2877–2898. https://doi.org/10.5194/hess-20-2877-2016
- Munitz S, Schwartz A, Netzer Y (2019) Water consumption, crop coefficient and leaf area relations of a *Vitis vinifera* cv. 'Cabernet Sauvignon' vineyard. Agric Water Manag 219:86–94
- Netzer Y, Yao C, Shenker M, Bravdo B, Schwartz A (2009) Water use and the development of seasonal crop coefficients for superior seedless grapevines trained to an open-gable trellis system. Irrig Sci 27:109–120
- Paço TA, Pôças I, Cunha M, Silvestre JC, Santos FL, Paredes P, Pereira LS (2014) Evapotranspiration and crop coefficients for a super intensive olive orchard. An application of SIMDualKc and MET-RIC models using ground and satellite observations. J Hydrol 519:2067–2080
- Paço TA, Paredes P, Pereira LS, Silvestre J, Santos FL (2019) Crop coefficients and transpiration of a super intensive Arbequina olive orchard using the dual Kc approach and the Kcb computation with the fraction of ground cover and height. Water 11:383
- Paredes P, Pereira LS, Almorox J, Darouich H (2020) Reference grass evapotranspiration with reduced data sets: parameterization of the FAO Penman-Monteith temperature approach and the Hargeaves-Samani equation using local climatic variables. Agric Water Manage 240:106210
- Paredes P, Trigo I, De Bruin H, Pereira LS, Simões N (2021) Daily grass reference evapotranspiration with Meteosat second generation shortwave radiation and reference ET products. Agric Water Manag 248:106543
- Paredes et al. (2023) Single and basal crop coefficients for estimation of water use of tree and vine woody crops with consideration of fraction of ground cover, height, and training system for tropical and subtropical fruit crops. Irrig Sci (submitted)
- Parry CK, Shapland TM, Williams LE, Calderon-Orellana A, Snyder RL, Tha Paw UK, McElrone AJ (2019) Comparison of a standalone surface renewal method to weighing lysimetry and eddy covariance for determining vineyard evapotranspiration and vine water stress. Irrig Sci 37:737–749
- Peddinti SR, Kambhammettu BP (2019) Dynamics of crop coefficients for citrus orchards of central India using water balance and eddy covariance flux partition techniques. Agric Water Manag 212:68–77
- Pereira LS (2017) Water, agriculture and food: challenges and issues. Water Resour Manag 31:2985–2999
- Pereira LS, Perrier A, Allen RG, Alves I (1999) Evapotranspiration: review of concepts and future trends. J Irrig Drain Eng 125:45–51
- Pereira LS, Cordery I, Iacovides I (2009) Coping with water scarcity. Addressing the challenges. Springer, Dordrecht, The Netherlands
- Pereira LS, Allen RG, Smith M, Raes D (2015) Crop evapotranspiration estimation with FAO56: past and future. Agric Water Manag 147:4–20
- Pereira LS, Paredes P, Jovanovic N (2020a) Soil water balance models for determining crop water and irrigation requirements and

irrigation scheduling focusing on the FAO56 method and the dual Kc approach. Agric Water Manag 241:106357

- Pereira LS, Paredes P, Melton F, Johnson L, Wang T, López-Urrea R, Cancela JJ, Allen R (2020b) Prediction of crop coefficients from fraction of ground cover and height. Background and validation using ground and remote sensing data. Agric Water Manag 241:106197
- Pereira LS, Paredes P, Hunsaker DJ, López-Urrea R, Mohammadi Shad Z (2021a) Standard single and basal crop coefficients for field crops. Updates and advances to the FAO56 crop water requirements method. Agric Water Manag 243:106466
- Pereira LS, Paredes P, López-Urrea R, Hunsaker DJ, Mota M, Mohammadi Shad Z (2021b) Standard single and basal crop coefficients for vegetable crops, an update of FAO56 crop water requirements approach. Agric Water Manage 241:106196
- Pereira LS, Paredes P, Melton F, Johnson L, Mota M, Wang T (2021c) Prediction of crop coefficients from fraction of ground cover and height: practical application to vegetable, field and fruit crops with focus on parameterization. Agric Water Manage 252:106663
- Picón-Toro J, González-Dugo V, Uriarte D, Mancha LA, Testi L (2012) Effects of canopy size and water stress over the crop coefficient of a "'Tempranillo" vineyard in south-western Spain. Irrig Sci 30:419–432
- Poblete-Echeverría CA, Ortega-Farias SO (2013) Evaluation of single and dual crop coefficients over a drip-irrigated Merlot vineyard (*Vitis vinifera* L.) using combined measurements of sap flow sensors and an eddy covariance system. Aust J Grape Wine Res 19:249–260
- Pôças I, Paço TA, Cunha M, Andrade JA, Silvestre J, Sousa A, Santos FL, Pereira LS, Allen RG (2014) Satellite based evapotranspiration of a superintensive olive orchard: application of METRIC algorithm. Biosyst Eng 128:69–81
- Pôças I, Calera A, Campos I, Cunha M (2020) Remote sensing for estimating and mapping single and basal crop coefficients: a review on spectral vegetation indices approaches. Agr Water Manag 233:106081
- Priestley CHB, Taylor RJ (1972) On the assessment of surface heat flux and evaporation using large-scale parameters. Mon Weather Rev 100:81–92
- Puig-Sirera À, Rallo G, Paredes P, Paço TA, Minacapilli M, Provenzano G, Pereira LS (2021) Transpiration and water use of an irrigated olive grove with sap-flow observations and the FAO56 dual crop coefficient approach. Water 13:2466
- Rahmati M, Mirás-Avalos JM, Valsesia P, Lescourret F, Génard M, Davarynejad GH, Bannayan M, Azizi M, Vercambre G (2018) Disentangling the effects of water stress on carbon acquisition, vegetative growth, and fruit quality of peach trees by means of the QualiTree model. Front Plant Sci 9:3
- Raj M, Gupta S, Chamola V, Elhence A, Garg T, Atiquzzaman M, Niyato D (2021) A survey on the role of internet of things for adopting and promoting agriculture 4.0. J Netw Comp Appl 187:103107
- Rallo G, González-Altozano P, Manzano-Juárez J, Provenzano G (2017) Using field measurements and FAO-56 model to assess the eco-physiological response of citrus orchards under regulated deficit irrigation. Agric Water Manage 180:136–147
- Rallo G, Paço TA, Paredes P, Puig-Sirera A, Massai R, Provenzano G, Pereira LS (2021) Updated single and dual crop coefficients for tree and vine fruit crops. Agric Water Manag 250:106645
- Ramos TB, Darouich H, Oliveira AR, Farzamian M, Monteiro T, Castanheira N, Paz A, Gonçalves MC, Pereira LS (2023) Water use and soil water balance of Mediterranean tree crops assessed with the SIMDualKc model in orchards of southern Portugal. Agric Water Manage 279(3):108209

- Rana G, Katerji N, De Lorenzi F (2005) Measurement and modelling of evapotranspiration of irrigated citrus orchard under Mediterranean conditions. Agric Forest Meterol 128(3–4):199–209
- Rojo F, Zaccaria D, Gonçalves-Voloua R, Del Rio R, Pérez F, Lagos LO, Snyder RL (2023) Evapotranspiration and water productivity of microirrigated wine grape vineyards grown with different trellis systems in the Central Valley of Chile. J Irrig Drain Eng 149(5):04023005
- Romero P, Navarro JM, Ordaz PB (2022) Towards a sustainable viticulture: the combination of deficit irrigation strategies and agroecological practices in Mediterranean vineyards. A review and update. Agric Water Manag 259:107216
- Rosa R (2018) Modelação da evapotranspiração com o modelo SIM-DualKc: Aplicação à rega de fruteiras, a consociações de culturas e a condições salinas, e ligação ao SIG para análise à escala do projecto de rega. PhD Thesis, Institute of Agronomy, University of Lisbon.
- Rosa RD, Paredes P, Rodrigues GC, Alves I, Allen RG, Pereira LS (2012a) Implementing the dual crop coefficient approach in interactive software. 1. Background and computational strategy. Agric Water Manag 103:8–24
- Rosa RD, Paredes P, Rodrigues GC, Alves I, Allen RG, Pereira LS (2012b) Implementing the dual crop coefficient approach in interactive software: 2. Model Test AgricWater Manag 103:62–77
- Saitta D, Vanella D, Ramírez-Cuesta JM, Longo-Minolo G, Ferlito F, Consoli S (2020) Comparison of orange orchard evapotranspiration by eddy covariance, sap flow, and FAO-56 methods under different irrigation strategies. J Irrig Drain Eng 146(7):05020002
- Sánchez JM, López-Urrea R, Valentín F, Caselles V, Galve JM (2019) Lysimeter assessment of the simplified two-source energy balance model and eddy covariance system to estimate vineyard evapotranspiration. Agric Forest Meteor 274:172–183
- Segovia-Cardozo DA, Franco L, Provenzano G (2022) Detecting cropwater requirement indicators in irrigated agroecosystems from soil water content profiles: an application for a citrus orchard. Sci Total Environ 806:150492
- Shuttleworth WJ, Wallace JS (1985) Evaporation from sparse crops-an energy combination theory. Q J R Meteorol Soc 111:839–855
- Siakou M, Bruggeman A, Eliades M, Zoumides C, Djuma H, Kyriacou MC, Emmanouilidou G, Spyros A, Manolopoulou E, Moriana A (2021) Effects of deficit irrigation on 'Koroneiki' olive tree growth, physiology and olive oil quality at different harvest dates. Agric Water Manag 258:107200
- Sikka AK, Sahoo DC, Madhu M, Selvi V (2009) Determination of crop coefficient of tea. J Agric Eng 46(3):41–45
- Silva SP, Valín MI, Mendes S, Araujo-Paredes C, Cancela JJ (2021) Dual crop coefficient approach in *Vitis vinifera* L. cv. Loureiro. Agronomy 11:2062. https://doi.org/10.3390/agronomy11 102062
- Šimůnek J, van Genuchten MTh, Šejna M (2016) Recent developments and applications of the HYDRUS computer software packages. Vadose Zone J 15(7):1–25. https://doi.org/10.2136/ vzj2016.04.0033
- Siqueira JM, Paço TA, da Silva JM, Silvestre JC (2020) Biot-Granier sensor: a novel strategy to measuring sap flow in trees. Sensors 20:3538. https://doi.org/10.3390/s20123538
- Snyder RL, O'Connell NV (2007) Crop coefficients for microsprinkler-irrigated, clean-cultivated, mature citrus in an arid climate. J Irrig Drain Eng 133:43–52
- Suvočarev K, Blanco O, Faci JM, Medina ET, Martínez-Cob A (2013) Transpiration of table grape (*Vitis vinifera* L.) trained on an overhead trellis system under netting. Irrig Sci 31:1289–1302
- Tanasijevic L, Todorovic M, Pereira LS, Pizzigalli C, Lionello P (2014) Impacts of climate change on olive crop

evapotranspiration and irrigation requirements in the Mediterranean region. Agr Water Manag 144:54–68

- Taylor NJ, Mahohoma W, Vahrmeijer JT, Saaiman H, Gush MB, Mengistu MG, Annandale JG, Everson CS (2014) Water use of citrus orchards. In: Gush MB and Taylor NJ (Eds) The water use of selected fruit tree orchards (Vol 2): technical report on measurements and modelling. Water Research Commission, Pretoria, RSA, WRC Report 1770/2/14, Sect "Olive orchards", pp 51–128
- Taylor NJ, Mahohoma W, Vahrmeijer JT, Gush MB, Allen RG, Annandale JG (2015) Crop coefficient approaches based on fixed estimates of leaf resistance are not appropriate for estimating water use of citrus. Irrig Sci 33:153–166
- Taylor NJ, Annandale JG, Vahrmeijer JT, Ibraimo NA, Mahohoma W, Gush MB, Allen RG (2017) Modelling water use of subtropical fruit crops: the challenges. Acta Hortic 1160:277–284
- Taylor NJ, Mazhawu E, Clulow AD, Savage MJ (2021) Water use of avocado orchards – year 4. In: South African Avocado Growers Association, Yearbook 44, pp 6-17
- Teixeira AHC, Bastiaanssen WGM, Bassoi LH (2007) Crop water parameters of irrigated wine and table grapes to support water productivity analysis in the São Francisco River basin, Brazil. Agric Water Manag 94:31–42
- Testi L, Villalobos FJ, Orgaz F (2004) Evapotranspiration of a young irrigated olive orchard in southern Spain. Agric Forest Meteor 121:1–18
- Torres-Ruíz JM, Fernández JE, Girón IF, Romero R, Jiménez-Bocanegra JA, García Tejero I, Martín-Palomo MJ (2012) Determining evapotranspiration in an olive orchard in Southwest Spain. Acta Hort 949:251–258
- Vanino S, Pulighe G, Nino P, De Michele C, Bolognesi SF, D'Urso G (2015) Estimation of evapotranspiration and crop coefficients of tendone vineyards using multi-sensor remote sensing data in a Mediterranean environment. Remote Sens 7:14708–14730. https://doi.org/10.3390/rs71114708
- Villagra P, Selles G, García de Cortazar V, Ferreyra R, Aspillaga C, Ortega S (2011) Estimation of evapotranspiration and crop coefficient on table grape trained on an overhead trellised system. Acta Hortic 922:163–168
- Villagra P, Cortázar VG, Ferreyra R, Aspillaga C, Zúñiga C, Ortega-Farias S, Sellés G (2014) Estimation of water requirements and Kc values of 'Thompson Seedless' table grapes grown in the overhead trellis system, using the eddy covariance method. Chilean J Agric Res 74(2):213–218
- Villalobos FJ, Orgaz F, Testi L, Fereres E (2000) Measurement and modeling of evapotranspiration of olive (*Olea europaea* L.) orchards. Eur J Agron 13:155–163
- Villalobos FJ, Testi L, Hidalgo J, Pastor M, Orgaz F (2006) Modelling potential growth and yield of olive (*Olea europaea* L.) canopies. Eur J Agron 24:296–303
- Villalobos FJ, Testi L, Orgaz F, García-Tejera O, Lopez-Bernal A, González-Dugo MV, Ballester-Lurbe C, Castel JR, Alarcón-Cabañero JJ, Nicolás-Nicolás E, Girona J, Marsal J, Fereres E (2013) Modelling canopy conductance and transpiration of fruit trees in Mediterranean areas: a simplified approach. Agr Forest Meteorol 171–172:93–103
- Wada Y, Bierkens MFP (2014) Sustainability of global water use: past reconstruction and future projections. Environ Res Lett 9:104003. https://doi.org/10.1088/1748-9326/9/10/104003
- Wang S, Zhu G, Xia D, Ma J, Han T, Ma T, Zhang K, Shang S (2019) The characteristics of evapotranspiration and crop coefficients of an irrigated vineyard in arid Northwest China. Agric Water Manag 212:388–398
- Williams LE, Ayars JE (2005) Grapevine water use and the crop coefficient are linear functions of the shaded area measured beneath the canopy. Agric Forest Meteor 132:201–211

- Williams LE, Fidelibus MW (2016) Measured and estimated water use and crop coefficients of grapevines trained to overhead trellis systems in California's San Joaquin Valley. IrrigSci 34:431–441
- Williams LE, Levin AD, Fidelibus MW (2022) Crop coefficients (Kc) developed from canopy shaded area in California vineyards. Agr Water Manag 271:107771
- Yan H, Huang S, Zhang J, Zhang C, Wang G, Li L, Zhao S, Li M, Zhao B (2022) Comparison of Shuttleworth-Wallace and dual crop coefficient method for estimating evapotranspiration of a tea field in Southeast China. Agriculture 12:1392
- Zhao P, Li SE, Li FS, Du TS, Tong L, Kang SZ (2015) Comparison of dual crop coefficient method and Shuttleworth-Wallace

# **Authors and Affiliations**

model in evapotranspiration partitioning in a vineyard of northwest China. Agric Water Manag 160:41-56

- Zhao P, Kang S, Li S, Ding R, Tong L, Du T (2018) Seasonal variations in vineyard ET partitioning and dual crop coefficients correlate with canopy development and surface soil moisture. Agr Water Manag 197:19–33
- Zheng S, Ni K, Ji L, Zhao C, Chai H, Yi X, He W, Ruan J (2021) Estimation of evapotranspiration and crop coefficient of rainfed tea plants under a subtropical climate. Agronomy 11:2332

**Publisher's Note** Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

# Luis S. Pereira<sup>1</sup> · Paula Paredes<sup>1</sup> · Cristina M. Oliveira<sup>1</sup> · Francisco Montoya<sup>2</sup> · Ramón López-Urrea<sup>3</sup> · Maher Salman<sup>4</sup>

- Paula Paredes pparedes@isa.ulisboa.pt
- <sup>1</sup> LEAF—Linking Landscape, Environment, Agriculture and Food Research Center, Associated Laboratory TERRA , Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisbon, Portugal
- <sup>2</sup> Instituto Técnico Agronómico Provincial (ITAP), Parque Empresarial Campollano, 2ª Avda. N° 61, 02007 Albacete, Spain
- <sup>3</sup> Desertification Research Centre (CIDE), CSIC-UV-GVA, Carretera CV 315, km 10,7, 46113 Moncada (Valencia), Spain
- <sup>4</sup> Land and Water Division, Food and Agriculture Organization of the United Nations, Viale delle Terme di Caracalla, 00153 Rome, Italy