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Abstract

This paper reviews the research on the FAOS56 single and basal crop coefficients of fruit trees and vines performed over the
past twenty-five years and focus on Mediterranean and warm temperate trees and vines. Two companion papers (L6pez-Urrea
et al., (2023) Single and basal crop coefficients for estimation of water use of tree and vine woody crops with consideration
of fraction of ground cover, height, and training system for temperate climate fruit crops. Irrig Sci (submitted); Paredes
et al. (2023) Single and basal crop coefficients for estimation of water use of tree and vine woody crops with consideration
of fraction of ground cover, height, and training system for tropical and subtropical fruit crops. Irrig Sci (submitted)) are
dedicated, respectively, to Temperate and to Tropical and Subtropical trees and vines. The main objective of the paper is
to update available information on single (K_) and basal (K,) standard crop coefficients, and to provide for updating and
completing the FAOS56 tabulated K and K, The K is the ratio between non-stressed crop evapotranspiration (ET,) and
the grass reference evapotranspiration (ET,), while K, is the ratio between crop transpiration (T,) and ET,,. The selection
and analysis of the literature were performed considering only studies that adhere to the FAO56 method, thus computing
ET, with the FAO Penman—Monteith ET, equation, the ASCE grass ET,,, or another equation that could be properly related
with the former, and ET, or T, was obtained using properly accurate field measurements on crops under pristine or eustress
conditions. The crops considered refer to Mediterranean (grapes and olive) and warm temperate areas (avocado, citrus, per-
simmon, loquat, and tea) fruit and leaf crops. Papers satisfying the above conditions were selected to provide for standard K
and K, data. Preferably, studies should report on the crop cultivar and rootstock, planting density or plant spacing, fraction
of ground cover (f,), crop height (h), crop age and training systems. Additional information was collected on pruning and
irrigation method and strategy. The ranges of reported K, and K, values were grouped according to crop density in relation
with f_ h, and the training system, namely vase, hedgerow, or trellis systems. Literature collected K, or K, values were
compared with previously tabulated K, and K, values, namely in FAO56, to define the standard K, and K, values for the
referred selected crops. The tabulated values are, therefore, transferable to other locations and aimed for use in crop water
requirement computations and modeling, mainly for irrigation planning and scheduling, and for supporting improved water
use and saving in orchards and vineyards.

Abbreviations DL Drainage lysimeters
A&P Allen and Pereira (2009) approach DPS Density of plants and spacing
AGC Active ground cover EBL Equilibrium boundary layer of air
Avg. Average EC Eddy covariance
BC Bilateral cordon FAO-PM-ET, Grass reference ET, computed with full
BREB Bowen ratio energy balance data
BS Bare soil FAO-PMT Grass reference ET, computed with
Capacit. Capacitance sensors temperature
DI Deficit Irrigation FDR Frequency domain reflectometry
FI Full irrigation
GDC Geneva double curtain
Extended author information available on the last page of the article grav. Gravimetric method
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High-wire cordon

Irrigation scheduling app

Leaf area index

Lysimeter

Mediterranean

Energy balance model for mapping evapo-
transpiration with internalized calibration
Micro-sprinkler or micro-sprayer

Mini or micro lysimeters

Not reported

Normalized difference vegetation index
Open-path Eddy-covariance
Penman—Monteith combination equation
Partial rootzone drying
Priestley—Taylor equation

Quadrilateral cordon trained

Regulated deficit irrigation
Reflectometer

Remote sensing

Remote sensing surface energy balance
Scintillometer

Sustained deficit irrigation

Surface energy balance

Sap flow

Sprinkler

Surface renewal

Shuttleworth and Wallace double source
model

Soil water balance

Time domain reflectometer
Tensiometers

Trellis systems

Training and/or trellis systems
Vegetation index

Vertical shoot positioning

Weighing lysimeter

Crop evapotranspiration under standard
conditions [mm d~! or mm h™!]

Actual crop evapotranspiration, i.e., under
non-standard conditions [mm d~! or mm
h™1

(Grass) reference crop evapotranspiration
[mmd~' or mm h™']

Fraction of soil surface covered by vegeta-
tion [-]

Fraction of the intercepted PAR [-]
Adjustment factor relative to stomatal
control [-]

Soil heat flux density [MJ m~2d~]

Crop height [m]

Sensible heat flux [MJ m~2d™!]

K, (Standard) crop coefficient [-]

K, .o Actual crop coefficient (non-standard
conditions) [-]

K, ave (Standard) average crop coefficient [-]

K ini Crop coefficient during the initial growth
stage [-]

K. mid Crop coefficient during the mid-season
stage [-]

K. ena Crop coefficient at end of the late season
stage [-]

K Standard basal crop coefficient [-]

Kb act Actual basal crop coefficient (non-stand-

ard conditions) [-]
Basal crop coefficient during the initial

cb ini

stage [-]

K b mid Basal crop coefficient during the mid-
season stage [-]

Kb end Basal crop coefficient at end of the late
season stage [-]

K Water stress coefficient [-]

M; Multiplier relative to the canopy transpar-
ency [-]

T, Aerodynamic resistance [s m™!]

Ty Bulk crop—soil surface resistance [s m™]

R, Net radiation at the crop surface [MJ m~2
d

T, Crop transpiration [mm d~! or mm h™']

AET Latent heat flux [MJ m~2d™!]

Introduction

Orchards and vineyards are increasingly irrigated. Knowing
their water requirements is essential to estimate their irriga-
tion requirements, planning and management of crop water
use, assessing water resources availability and demand at
basin level, as well as developing hydrologic studies. Accu-
racy in evapotranspiration (ET) estimates is necessary,
mainly when water scarcity prevails, and because sustain-
able irrigation requires not exceeding crop demand to break
the trend for water over-use (Pereira et al. 2009; Wada and
Bierkens 2014; Miiller Schmied et al. 2016). In addition,
related challenges are becoming more difficult due to a
continuously increased demand for food to nourish an ever-
growing population, increasing drought occurrences, and cli-
mate change. As recently reviewed by Pereira (2017), high
water use performance and productivity, as well as water
conservation and saving in irrigation, require solutions that
need improved knowledge of crop evapotranspiration and
water use.

The application of water conservation and saving, in addi-
tion to the knowledge of water needs and their relations to
growth and yield, also require institutional interventions,
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sectoral policies and new technologies that support improved
irrigation management and performance by farmers and
sustainable, eco-friendly use of water for food production
(Pereira et al. 2009). Literature on management of fruit trees
and grapevines is quite extensive, namely relative to water
management, and particularly aimed at defining deficit irri-
gation (DI) strategies.

The concept of standard crop coefficient implies its deter-
mination in the absence of water stress, or other stress con-
ditions. However, research on tree and vine crops is demon-
strating that the best crop management does not correspond
to the full satisfaction of crop water demand, but to the
adoption of controlled water deficit at given periods, or in
selected modes during the crop cycle aiming that yields are
less affected (Chaves et al. 2010; Rallo et al. 2017; Romero
et al. 2022) and quality is improved (e.g., Lopez-Urrea et al.
2012). The concept of eustress may better describe such con-
ditions than deficit irrigation (Pago et al. 2019; Rallo et al.
2021). Expanding basic and accurate information on crop
water needs is paramount to improve water use and irrigation
management, particularly of fruit trees and vines.

Crop evapotranspiration (ET,) is typically computed or
modeled using the well-known FAOS56 calculation procedure
(Allen et al. 1998), which uses the simple K ~ET, approach
to compute ET,, or alternatively K —ET_ to compute crop
transpiration (T,), i.e., the product of a crop coefficient (K,)
by the grass reference evapotranspiration (ET,), or the prod-
uct of a basal crop coefficient (K,) by ET,. The latter rep-
resents the actual evaporative demand of the atmosphere,
while K, (ratio ET/ET,) represents an integration of the
effects of the main characteristics that distinguish, in terms
of the energy balance, the grass reference crop from the crop
under study (Allen et al. 1998; Pereira et al. 1999). Adopting
the K ~ET, approach is simple but requires the application of
accurate measurements and computations, particularly when
deriving K values for a crop using field observations (Allen
et al. 2011; Pereira et al. 2021a, b).

Standard, transferable crop coefficients must be obtained
from accurate ET, field measurements under non- or eus-
tress conditions, and ET, computed with the FAO-PM ET,_
(Allen et al. 1998), or the ASCE-PM ET, (Allen et al. 2005).
Other equations whose results relate well to those of the
FAO-PM ET, equations may also be used. Adopting fixed
grass parameters for aerodynamic and surface resistance in
FAO-PM ET, equation provides for the crop coefficients
to be crop specific parameters that express consistently the
relation between the aerodynamic and surface resistances
of the considered crop with those of the grass reference
crop (Pereira et al. 1999). This is particularly challenging
for vines and fruit trees due to their canopy architecture and
incomplete ground cover.

Accurate standard, transferable, and updated K, values
obtained from the current literature review require that

related ET, data collection, models and related model cali-
brations, as well as experimental set-ups were exempt of
biases caused by experimental flaws (Allen et al. 2011).
Following the methodology adopted in studies focused
on vegetable and field crops (Pereira et al. 2021a, b), the
selected references were checked to ensure that sufficient
descriptions of ET, measurement practices, crop manage-
ment, and related production environment were provided.
They were also checked to detect possible computational
flaws and shortcomings in data handling, as well as in model
calibration and validation. In addition, the possible influence
of advection was considered (e.g., Wang et al. 2019) since
related K /K, values are then of local value only, thus not
transferable. Nonetheless, for several crops, the collected
information was scarce.

Few studies reports on tabulated standard K /K, of trees
and vine crops. The first is FAO56 guidelines (Allen et al.
1998), whose K /K, values continue to be the main refer-
ence for trees and vine crops. Later, Allen and Pereira (2009)
suggested the A&P approach to determine K_ /K, from the
fraction of ground cover and height and tabulated the related
values. Jensen and Allen (2016) tabulated again K /K, for
woody perennials. The A&P approach was tested for more
crops and the resulting K /K, were reported to support fur-
ther use of the A&P approach (Pereira et al. 2020b, 2021c¢).
Finally, K./K, updated values were tabulated by Rallo et al.
(2021). Excellent K 4, and K results were predicted from the
field observed fraction of ground cover and height (Allen
and Pereira 2009; Pereira et al. 2020b, 2021c). The A&P
approach is particularly interesting for woody and incomplete
cover crops, e.g., fruit trees and vines.

The K ~ET, method is the most common in practice but not
in research. The selected literature reports numerous applica-
tions of the K —ET_ method using the soil-water balance (SWB)
based on a variety of soil water content (SWC) sensors, which
accuracy was reviewed by Evett et al. (2012a) and computation
procedures, including a diversity of calibrated models, were
recently reviewed (Pereira et al. 2020a). Diverse field measur-
ing approaches of actual ET, or T, (ET, ,, and T, ) are reported
such as weighing, drainage, and water-table lysimeters (WL,
DL, and WTL), as reviewed by Allen et al. (1991) and Evett
et al. (2012c, 2016), the eddy covariance systems (EC, Cam-
malleri et al. 2013a), the Bowen ratio energy balance systems
(BREB, Hu et al. 2014), sap-flow (SF, Fernandez et al. 2008),
and remote sensing vegetation indices (RS-VI, Pdcas et al.
2020). Allen et al. (2011) and Evett et al. (2012a) reviewed
these methods for accuracy in ET, , measurements, and various
authors also compared diverse methods for accuracy (Sanchez
et al. 2019). Methods not requiring K nor ET, are also often
used such as remote sensing surface energy balance algorithms
(RS-SEB, Karimi and Bastiaanssen 2015), the Penman—Mon-
teith combination equation (PM-eq, Monteith 1965), that uses
actual aerodynamic and canopy resistances, the two-source
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Shuttleworth—Wallace method (SW, Shuttleworth and Wallace
(1985), that also relies on those resistances, or the Priestley—Tay-
lor equation (PT, Priestley and Taylor (1972), which uses spe-
cific coefficients different of K_. These methods may provide for
K, when ET, is reported in addition to ET, .

Recent advances in sensors, communications and infor-
mation technologies did allow the implementation of tools
to support irrigation and water management decisions, e.g.,
the “internet of things” (Garcia et al. 2020; Raj et al. 2021;
Abu et al. 2022). Tools focusing on irrigation may refer to
water saving practices (Pereira et al. 2009; Jovanovic et al.
2020), to modeling growth and yield (Villalobos et al. 2006;
Rahmati et al. 2018) or, most often, to SWB models (Pereira
et al. 2020a). However, only few report computer software
models (e.g., Rosa et al. 2012a, b; Simtnek et al. 2016).
The use of all those tools to support irrigation management
requires precise knowledge of crop water requirements.
The various methods need to be known for their accuracy
requirements while Tables summarizing the information pro-
vided in literature need to be completed with indication of
field methods used to derive K /K.

The objective of this paper, in line with the previous review
and addressing particularly Mediterranean and warm temper-
ate fruit and leaf tree and vine crops, consists of reviewing
updated single and basal crop coefficient values (K, and K ;)
obtained under near-pristine eustress conditions and use the
available K and K, data for tabulating standard, transferable
K, and K, values. The current review is expected to identify
the main results of recent research on standard K, and K,
values, assessing the methodologies then used and their range
of variation. The selected base data and collected values are,
therefore, summarized and tabulated to support readers’ infor-
mation on tabulated K and K, values. Section “Materials and
methods” focus on requirements for accuracy of the ET meth-
ods reported on transferability requirements of standard K,
and K values, and on the methodologies used to select and
tabulate the standard crop coefficient values. Section “Table
and wine grapes” and following consist of presenting and dis-
cussing the literature review relative to the derivation of K,
and K, ,.. of wine and table grapes, olive, citrus, avocado,
loquat, persimmon, and tea, followed by the tabulation of the
respective standard K, and K, values. Conclusions and rec-
ommendations consist of the last Section.

Materials and methods

The FAO56 evapotranspiration method. Crop
coefficients and requirements for transferability

Adopting the FAO56 method, crop evapotranspiration, ET,

(mm d~!) is estimated by multiplying the grass reference ET,
(mmd™), by a crop coefficient, K, (dimensionless):
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ET, = ET K, (1)

ET, is defined as the evapotranspiration of a grass ref-
erence crop which is a hypothetical crop with height of
0.12 m, a surface resistance of 70 s m~!, and an albedo of
0.23, closely resembling an extensive surface of green grass
of uniform height, actively growing, adequately watered, and
well covering the ground (Allen et al. 1998). The daily ET,
is computed with the PM-ET, equation (Eq. 2), obtained by
parameterizing the Penman—Monteith combination equation
for that grass crop with fixed and well-defined aerodynamic
and surface resistance terms (Allen et al. 1998; Pereira et al.
1999). Daily grass reference evapotranspiration is then
obtained with the following equation:

0.408A(R, — G) + Yozt (e, —¢,)

ET = Ta273 12 , @)

’ A +v(1+0.34u,)

where A is the slope of the saturation vapor pressure—tem-
perature curve at mean air temperature (kPa oCch, R,-G)
is the available energy at the vegetated surface (MJ m=2d~1),
v is the psychrometric constant (kPa °C~!), T is mean daily
air temperature (°C), u, is mean daily wind speed (m s™!) at
2 m height and (e,—e,) is the vapor pressure deficit (VPD)
of the atmosphere (kPa). The PM-ET, equation considers
only vertical fluxes of heat and vapor. Thus, ET, incorpo-
rates most of the weather and related energy effects and then
represents the evaporative demand of the atmosphere. Since
K. is the ratio between ET, and ET, (Eq. 1), its variations
should mainly be attributed to the specific crop characteris-
tics and only for a limited extent to the climate, which ena-
bles the transfer of standard K values between locations and
climates when local and/or regional advection is excluded.

Apart from the FAO-PM-ET, equation, other alterna-
tive equations have been tested to calculate ET,, either
with full or limited weather data sets. Processes with full
data sets have the tendency to overlook the conceptual
framework (Pereira et al. 2015). For reduced data sets,
the Hargreaves—Samani equation (Hargreaves and Samani
1985) and the FAO PM temperature (FAO-PMT) method
have been widely used; consolidated methodologies are
discussed and described by (Paredes et al. 2020), as well
as the use of reanalysis weather data and of geostationary
satellite products (Paredes et al. 2021). However, the use
of alternative approaches requires the scrutiny of input data
and ET, results since processes are not linear. Therefore,
for scientific research studies intending to derive standard
transferable crop coefficients, the FAO-PM-ET, Eq. (2)
should be used.

The crop coefficient represents an integration of the
effects of three primary characteristics that distinguish
any crop from the reference one: crop height, that affects
roughness and aerodynamic resistance (r,); bulk crop—soil
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surface resistance (r,), which relates to leaf area, the fraction
of ground covered by the vegetation (f.), leaf age and condi-
tion, degree of stomatal control, and soil surface wetness;
and albedo of the crop—soil surface influencing the net radia-
tion, that is determined by the fraction of ground covered
by vegetation, and soil surface wetness (Allen et al. 1998).

Two K, approaches are considered (Allen et al. 1998):
one consists of a time-averaged single K, which includes
multi-day effects of evaporation from the soil in addition to
plant transpiration, whereas the second refers to the dual K,
sum of the basal crop coefficient (K,) and the soil evapora-
tion coefficient (K,). These coefficients represent, respec-
tively, the ratios of crop transpiration (T,), or soil evapora-
tion (E,), to ET,,. Therefore, K. =K +K_ with K, =T /ET,
and K. =E/ET,.

Various authors have developed models or procedures
for partitioning ET into T, and E,. However, the FAO56
approach (Allen et al. 1998, 2005) has been successfully
used and implemented in various SWB models such as
SIMDualKc (Rosa et al. 2012a), whose applications to
vineyards (Fandifio et al. 2012; Silva et al. 2021; Darouich
et al. 2022b), olive (Pago et al. 2014, 2019; Puig-Sirera et al.
2021; Ramos et al. 2023), and citrus (Rosa 2018; Peddinti
and Kambhammettu 2019; Darouich et al. 2022a; Ramos
et al. 2023) are reported herein.

For transferability purposes, FAO56 adopted the concept
of standard K and potential ET, (Allen et al. 1998; Pereira
et al. 2015), which refer to well-watered and pristine/eustress
cropping conditions and are distinct of actual field condi-
tions, often under-optimal due to insufficient (or non-uni-
form) irrigation, crop density, salinity, agronomic practices
and soil management. The tabulated K, therefore, must refer
exclusively to the standard K. For tree and vine crops, the
standard K refers to adopting crop-specific eustress prac-
tices, i.e., limited stress practices that do not, or minimally,
impose reduction of the maximal yield. Under water and
salt stress conditions, ET, gives place to the actual crop ET
(ET, ,.), with K, replaced by the actual K_ ,, or, using the
dual approach, by K K, +K.:

ET

cact

= K(ET, = KK ET, = (KK, + K,) ET,, (3)

where K (0-1.0) is the stress coefficient. K, depends upon
the sufficiency of available soil water to maintain the crop
ET rate, i.e., K,=1.0 for pristine conditions for maximal
yield. This concept eases a consistent estimation and trans-
ferability of measured standard K, and avoids the need to
define multiple K, values for the same crop depending upon
the various water and crop management practices adopted
by the growers that cause K< 1.0 and K__ ,, values to vary
widely, contrarily to the standard K. Plot level use of crop
coefficient-based simulations can be backed up by soil
and plant water status measurements to detect water stress

conditions (e.g., leaf or stem water potential) and to support
the use of models.

The estimation of K ,, assuming any value up to the
standard K, may be performed using the A&P approach
(Allen and Pereira 2009; Pereira et al. 2020b, 2021c). K,
act 18 then computed from the fraction of ground cover and
crop height (f, and h) while K, is computed from the wetted
fraction of exposed soil, 1—f, (FAO56, Allen et al. 1998).
The A&P approach shall be used with observed f, and h and
the parameters proposed in Pereira et al. (2020b, 2021c¢). It
is advisable to compare K_ . =K, .. + K, with the stand-
ard K, for computation control. Field and remote sensing
methods for measuring f, and h are referred by those authors.

Evapotranspiration relies on the amount of energy avail-
able at the surface, resulting from the energy balance of that
surface:

JET = (R,—G)-H, 4)

where AET is latent heat flux, or the energy available to the
evaporation process, R, is net radiation at the crop surface,
G is soil heat flux density and H is sensible heat flux, with
all terms expressed in MJ m~2 day~!. The energy balance
imposes physical limits to the evaporation process result-
ing that the upper limits to K, are approximately 1.2 in
sub-humid regions and 1.2-1.4 in arid regions (Allen et al.
2011). Higher values might result from errors in ET meas-
urement, in weather data for ET, calculation, in data process-
ing procedure, or may be due to advective energy. Awareness
of such upper limits of K is extremely important; conditions
where measurements were acquired or those from where
K_’s are meant to be applied must be considered, namely in
terms of advection: If the AET term of the surface energy
balance equation (Eq. 4) results in a value higher than R -G,
the surface is receiving sensible heat downwards, instead of
just losing it by convection to the atmosphere. Therefore,
a larger amount of energy will be available for the process
of evapotranspiration. However, there is an upper bound-
ary to ET,, imposed by limitations in aerodynamic transfer
and equilibrium forces over a vegetated surface (Allen et al.
2011). Then, limits apply and, in general, K < 1.2 except in
the presence of advection. Advection conditions can limit
transferability of crop coefficients, either because they were
determined under advection conditions or they are to be
applied in such conditions.

Advection can result from the small dimension of the
stand under consideration, not providing adequate condi-
tions for the development of a boundary layer in equilib-
rium with the surface, or by favoring a “clothesline effect”,
where stand vegetation is more exposed to atmosphere
drive than the surrounding vegetation (Allen et al. 2011).
Advection can also result from inadequate field measure-
ment conditions, e.g., when lysimeters are not correctly set,
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causing local and micro-scale advection, or a “clothesline
effect”; or when fetch conditions in EC and BREB systems
are not observed, or data quality selection criteria against
wind direction/fetch are not applied (Hu et al. 2014). Under
advection, H decreases to very small values, given the
downward advective H flux and, therefore, AET > (R ,—G).
Hence, it is expected that under advection conditions, and
over small stands of vegetation, ET, would reach a much
larger value (Allen et al. 2011), which is not the case for
large stands, where limits for K near 1.2 apply.

Advection effects on ET, of woody crops are rarely
reported in literature. However, since trees and vines do not
attain full crop development due to pruning and training and
are partial cover crops, in the absence of advection, K values
should not surpass 1.2 (Rallo et al. 2021), but under advective
conditions much larger transpiration and larger soil evapora-
tion values may be observed (Kool et al. 2018; Wang et al.
2019); nevertheless, too much large K values are reported in
literature without signaling the occurrence of advection. For
application in small and isolated areas of vegetation, K  can
exceed the limits for grass reference (1.2-1.4), while for large
areas, or small areas surrounded by vegetation with similar
roughness and soil water status, K. values must stick to val-
ues equal or smaller than those limits (Allen et al. 2011).

The concepts of standard K, and potential crop ET and
related terminology are progressively being accepted by the
user communities (Pereira et al. 2015). However, the stand-
ard K, and K, values for tree and vine crops vary with the
fraction of ground cover and height (Allen and Pereira 2009;
Jensen and Allen 2016) due to crop age and crop manage-
ment, particularly crop training. The present review has
shown that satisfactorily accurate reported K and K, values
for the same crop show dissimilarity among locations, which
is due to differences in cultivar and rootstock, plant density,
orchard management and pruning, training, as well as soil
properties, irrigation method and strategy, soil-crop man-
agement practices and (Minacapilli et al. 2009; Cammalleri
et al. 2013a; Marsal et al. 2014; Rallo et al. 2021). It is, how-
ever, possible to derive local, actual crop coefficients from
f. and h of tree and vine crops (Pereira et al. 2020b, 2021c)
when appropriate parameters are used. K variability due to
weather is less important than causes referred above. Since
most papers did not provide weather data on the experiment,
the correction of K, values for climate as proposed in FAO56
was not applied to literature reported K.

Accuracy of ET estimation and transferability
of derived standard K. and K ,,

Literature reporting field derived crop coefficients has shown
diverse objectives and used quite different methodologies
with variable accuracy, often aiming to just obtain K val-
ues for local use, which are not transferable. Results are
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frequently published without sufficient information relative
to the methods and instrumentation used, or about the crop
itself, the cropping practices and training, which causes diffi-
culties to transferability. When the published material shown
serious limitations to transferability, it was not used. Main
limitations refer to:

(1) Adopting other than the standard FAO or ASCE PM-
ET, equation. Because K_ is defined as the ratio ET,/
ET,, if ET, equation changes K, also changes and the
resulting K, is not usable to derive a standard K_..

(2) Using a K, curve different from the standard segmented
FAO K, curve. Using a curve as a function of time, or a
function of LAI, or else, there is no clear definition of
the K (and K ;) values for the initial, mid-season and
end-season stages, respectively, K. i, K¢ mig, and K -
Then, only approximate estimations of K ;;, K. ;g and
K. cnq could be made from the reported graphical data
or, often more difficult, from tabulated information.

(3) Using non-standard cultivation conditions. In case of
using mulch for controlling E, or active ground cover
for fighting erosion result management-specific K,
values. When reported K values were insufficient to
properly recognize the standard K values, papers could
not be used.

(4) Adopting deficit irrigation practices. Then, deviating
from the desirable eustress conditions, the reported
K. . had only local value.

(5) Reporting insufficient data and information on the
experiment. Then, it was not possible to assume that
field survey practices were adequate, or that data han-
dling were properly performed. To avoid using poor
data, papers were discarded or used with much caution.

(6) Using K, values transferred from other studies. With-
out field testing, papers were discarded, except a few
review papers.

Field data acquisition processes must respect well-
defined requirements. Field data sets used to derive K,
or K, were obtained using various field techniques. The
requirements for data quality acquisition by these methods
are extensively described in Allen et al. (2011), reviewed
by Pereira et al. (2021a, b) and Rallo et al. (2021), and
summarized hereafter.

Techniques that recur to soil water balance methods cal-
culate ET, as the remaining term as commented (Evett et al.
2012a, 2012b; Pereira et al. 2020a). The main sources of
error arise from the quantification of deep percolation and/
or capillary rise. Other difficulties may arise from the differ-
ent patterns of soil water extraction by the roots, namely for
heterogeneous stands, as sampling processes may not rep-
resent adequately the stand. Techniques must consider: (i) a
comprehensive characterization of soil hydraulic properties,
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(i) representativeness of data in spatial and temporal terms,
(iii) appropriate sensors calibration, (iv) uniform spatial wet-
ting by irrigation, (v) consideration of deep percolation and
capillary rise, (vi) root water extraction patterns, and (vii)
sampling criteria. Accuracy of computation procedures
depends upon the calibration of parameters and the adequacy
of selected algorithms (Pereira et al. 2020a).

Weighing, drainage, and water-table lysimeters (WL, DL,
and WTL) are often used for K derivation but their accuracy
depends upon various issues (Allen et al. 1991; Lopez-Urrea
et al. 2006; Evett et al. 2016). Causes of inaccuracy include:
(i) differences in cropping conditions inside and outside of
the lysimeter relative to vigor and growth of vegetation; (ii)
poor setting of the lysimeter, with dissimilar surrounding
vegetation causing local advection or clothesline effects; (iii)
insufficient fetch to establish the equilibrium boundary layer
of air (EBL); (iv) lack of consideration of the area effec-
tively used by the crop for ET, which may often occur with
trees and vines; (v) large rim favoring heat transfer into the
lysimeter.

The BREB method relies on the surface energy balance
equation (Eq. 4) and requires measurements of air tempera-
ture and vapor pressure gradients at an appropriate level
above the evaporating surface (Hu et al. 2014). The accuracy
of the method relies strongly on representativeness of R, and
G measurements and on an adequate fetch for the establish-
ment of the EBL. Main requirements for BREB data quality
include: (i) large enough fetch; (ii) adequate positioning of
sensors above the canopy to avoid the roughness sublayer;
(iii) multiple R, and G measurement points for heterogene-
ous or sparse crops. The EC method implies the knowledge
of vertical wind speed and fluctuations around the mean of
air temperature and humidity in vertical fluxes of sensible
and latent heat, sampling statistically turbulent eddies (Cam-
malleri et al. 2013a). For accuracy, requirements include:
(i) large enough fetch and adequate elevation of sensors; (ii)
application of the required corrections; (iii) recognition of
advection situations and taking of corrective actions, and
(iv) correcting data for lack of closure of the energy balance
equation, when needed.

The transpiration component in ET, is generally obtained
by sap flow measurement systems that use heat as a tracer
to measure the flux in the xylem of plants. These methods
generally follow well the transpiration dynamics but require
calibration for accurate results (Fernandez et al. 2008; Sique-
ira et al. 2020). Sap flow measurements require: (i) a sensor
calibration at each new application, (ii) because measure-
ments are plant-based processes, scaling from plant to stand
level is required, then also dealing with measurement rep-
resentativeness, and (iii) an accurate estimate of conductive
xylem area.

Remote sensing is increasingly used to calculate ET,
namely using surface energy balance models (Pdcas et al.

2014, 2020; Karimi and Bastiaanssen 2015; Sanchez et al.
2019), currently largely used for K and ET calculation. Veg-
etation indices derived from satellite information or using
UAY, require ground data for validation and are related to
actual crop coefficients (Garrido-Rubio et al. 2020; Pd¢as
et al. 2020). Inaccuracies in measuring crop ET and in com-
puting ET often result in high K_ values, commonly indicat-
ing that the corresponding energy use would largely exceed
the energy available at the surface for evaporation (Allen
et al. 2011) as referred early.

Methods adopted to select the papers

The review focused on articles published after the FAO56
guidelines (Allen et al. 1998), until March 2023. The search
first targeted the articles that quoted FAOS56 or that referred
crop coefficients. Several search engines were used (e.g.,
Schooler google, Elsevier, Springer, Wiley, Csiro publish-
ing, Scielo, Scopus) as well as different combination of key-
words (crop coefficients, orchards, and names and scientific
names of plants). Various languages were used for the search
(English, Portuguese, Spanish, French, Italian and German).
Because Insufficiencies and inaccuracies referred in the pre-
vious sections limit the transferability of reported K values,
to update the tabulated K it was necessary to operate a
careful literature selection. Limitations relative to accuracy
of data acquisition, the K curves or crop conditions obliged
a careful review of published material as referred before, to
check when the proposed K, or K, were limited to local
interest and/or represented non-standard experimental condi-
tions, thus contrasting to K resulting from near-pristine eus-
tress cropping practices. Thus, studies were selected when:

e Adopted the FAO-PM-ET, equation (Allen et al. 1998)
or the ASCE-ET, equation (Allen et al. 2005) or other
ET, equations if their ratios to FAO-PM-ET, could be
approximated.

e Presented data referred to two or more experimental sea-
sons, or studies having various treatments, so that it was
possible to understand if the results were or not occa-
sional. However, a few cases referring only one season
were considered for Neglected and Underutilized Species
(NUS) crops.

e Descriptions of experiments are sufficient to consider
their accuracy and that crops were at conditions close to
non-stress or just eustress.

e Adopted the FAO K, curve, or a K —~time curve that
allowed to identify K, or K, for the mid-season and,
preferably, also for the initial and end season.

e Papers describing field studies using BREB or EC sys-
tems, which reported upon the upwind fetch conditions
and the energy balance closure.

@ Springer
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e Studies using SWB methods describing all the terms of
the balance, not just focusing the upper soil depth, and
providing for an adequate description of sensors used
and location, frequency of observations, and the model
calibration and validation, were selected.

e Studies using lysimeters were accepted when adequate
setting and management were referred, namely avoid-
ing “oasis” and “cloth-line” effects, and correction of the
evaporative surface when the tree/vine canopy exceeded
the lysimeter surface (“bloom effect”).

e Studies using remote sensing were considered when ade-
quate ground observations for model or vegetation index
calibration/validation was taken into consideration.

¢ Studies reporting acceptable K values (K, up to 1.30 and
K, <K,) unless convincing explanations were given.

The assumed criteria made it possible to select a good
number of papers, covering numerous species, developed in
a variety of countries and regions, and in quite reasonable
quality conditions. Users are invited to read the papers rela-
tive to the crops of interest and judge by themselves about
the adequateness of the reported research.

Selection and tabulation of updated standard K_
and K, values

Standard values were established considering the ranges of
K, and K, values collected in the selected literature and
the tabulated values since 1998. This work developed in the
following steps:

First step: grouping the various studies relative to every
crop considering:

(i) The density of plants and spacing (DPS);
(i1)) The training and/or trellis systems used (TTS);
(iii) The fraction of ground cover (f,), or fraction of the
intercepted PAR (fjpsr); and
(iv) The crop height (h).

Second step: building a provisional table for every crop.
For all the groups of studies/papers, the ranges of K./
K inis Ke/Kep mia and K /K, o,q Were defined and included
as columns of K_/K_, observed values in a provisional table
relative to every crop. The ranges of previously tabulated
K. /K, values in FAO56 (Allen et al. 1998), Allen and
Pereira (2009), Jensen and Allen (2016), and Rallo et al.
(2021) were also included as columns in that provisional
table.

Third step: draft definition of the standard values for K/
K inis Ke/Kep mig and K /K, oqg for all crops through assess-
ing the various ranges inscribed in each line of the provi-
sional tables relative to sets of DPS, TT, f_ or fp,g, and h.

@ Springer

Fourth step: Definition of the standard values for K, ;..
K mig» and K, onq for all crops through the computation of
the A&P approach (Allen and Pereira 2009; Pereira et al.
2020b) for every set of f. and h using the parameters M, ,
which is a multiplier on f, describing the effect of canopy
density on shading and on maximum relative ET per fraction
of ground shaded [1.0-2.0], and F,, which is is an adjustment
factor relative to crop stomatal control [0.0-1.0]. M| and F,
are available in Pereira et al. (2021c) for most crops, or may
be obtained by adjusting the parameter F, for not previously
validated values comparatively with similar crops.

Fifth step: Once defined the K, values, definition of the
standard K by summing estimated values of K, for each
stage and the defined standard K ;pi, K¢y mia and Kgp, eng-
The estimated values of K, were obtained from observing
the differences (K_-K_,) in the selected papers and in the
previously published Tables quoted above with considera-
tion of changes in K_ due to rain and assuming a reduced soil
evaporation due to using drip or micro-sprinkling under the
canopies and/or for larger plant density. Young plantations
are assigned with larger K, values. K, was assumed smaller
for the mid-season, particularly for deciduous crops, and was
also assumed smaller for the evergreen crops.

Sixth step: consolidating the draft standard K and K
through comparing all values (1) for various plant densities
and ground cover fractions of the same crop; (2) for various
crops of the same group, for instance within citrus; (3) for
various training and trellis systems, e.g., among the multiple
cases of grapes; and (4) between K_ and K,

The Tables presenting the updated standard K ;i Kep migs
and K .4 and standard K_;;, K and K_ .4 show their
values in the last two columns, while the first ones are those
indicating plant density and training or trellis systems, f
and h as well as the values assumed for M; and F, relative
to the initial, mid- and end-season stages, which may be
useful for further uses of the A&P approach. The ranges of
observed and previously tabulated K /K ini» Ko/Kep miq and
K./Kp eng are also included for information to users.

¢ mid®

Table and wine grapes

Table and wine grapes are widely grown worldwide, even
in less suitable environments, as they are the most popular
woody Mediterranean crop. Domesticated after thousands
of years, these plants have been cultivated for a long time
using specific pruning and training systems that adapt to
the climate of the site environment, the soil, the availability
of water, the rootstock and the use of fruit (table grapes
or wine). Furthermore, these variables also have impact on
the timing of full bearing or maturity. Related knowledge is
enormous, namely in relation to pruning and training as well
as on water and irrigation requirements, including responses
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to the timing and severity of water deficits. Therefore, it
has been possible to collect a variety of articles referring
to evapotranspiration and crop water requirements aimed at
irrigation scheduling. The collected information from the
selected articles refer to the characteristics of the vineyards
(Table 1) and to the observed crop coefficients (Table 2).

The former studies for K, tabulation in FAO56 (Allen
et al. 1998) and by Rallo et al. (2021), and reporting for
Tables relative to the use of the A&P approach (Allen and
Pereira 2009; Pereira et al. 2020a, 2021c) have evidenced
that abiotic factors—the fraction of ground cover by the crop
vegetation (f,), which defines the amount of shadowed soil
and the fraction (1-f,) from where soil water evaporates,
the average crop height (h), the plants spacing or density
in terms of plants per unit surface, the crop stress due to
water or associate salinity, plant age, and training or trellis
system—play a main role in determining crop evapotran-
spiration and transpiration. This is true, not only for grapes
but also to other crops. Biotic impacts from the cultivar and
rootstock are also to be considered as both influence the
vigor of the crop. In addition, the destination of the grapes
determines the dates of harvest and the K, by the end of the
crop season. The determination of the end season K results
difficult when not appropriately defined, particularly because
post-harvest irrigation may occur to provide for producing
and store carbohydrates, less dry woody tissues, less inci-
dence of winter injury, and to promote for an even bud break
and shoot growth.

Collected values for characterizing the crop (Table 1)
include these items, as well as the irrigation method and the
irrigation strategy relative to water stress. A few of these
factors are referred again in the Table 2, where K_ and K
are presented, which consist of the three values required to
describe the traditional K and K FAO curves.

Table 1 shows that selected studied vineyards cover a
large, worldwide distribution of locations and cultivars for
both table and wine grapes. This large coverage contrib-
utes to the desired perception of the reviewed case studies,
hence providing for higher quality of the review. All reported
actual K, and K, were derived from field surveys of ET,
which used a large panoply of measurement methods with
verifiable accuracy. ET, has been always computed with the
FAO-PM-ET, equation or similar, while ET, ,., has been
observed with WL and DL lysimeters, or computed with
SWB from soil profiles or DL observations, in some cases
using the SIMDualKc model for data handling, BREB and
EC measurements of energy balance, or the SR approach
and observations to use the A&P approach. In addition,
there are various cases relative to obtaining T, from SF
measurements.

All vineyards but one were micro-irrigated adopting a
full irrigation strategy. Drip was largely the main irrigated
method and just two cases used micro-sprinkling. Various

types of drippers were used. These conditions prefigure good
control of water application depths and low soil evaporation.
The sole non-irrigated vineyard is located in the sub-alpine
slopes of Alessandria, in Italy, where precipitation is enough
to satisfy crop water requirements. It could be assumed that
the selected papers report on vineyards that have not been
under water stress except for short periods due to deficient
irrigation scheduling, thus corresponding to the conditions
defined for standard crop coefficients. As per Table 2, most
cases refer to bare soil (BS) and only a few to active ground
cover (AGC), generally during and immediately after the
rainy season, which require a specific solution to identify
ET from the crop and from the AGC, and soil evaporation
(Rosa et al. 2012a, b).

There is a great variability of spacing and planting den-
sities, that relate with the trellis system used, and a great
variety of training and trellis systems, which, generally,
are differentiated into the two groups of table grapes and
wine grapes. Reported information on pruning was very
scarce and, therefore, is not referred herein; however, some
studies reported that pruning was performed annually dur-
ing dormancy, in a few cases also a slight summer prun-
ing, depending upon the vigour of the plants. The diverse
training and trellis systems determine crop height and the
fraction of ground cover, with fjp,z assumed as an estimate
of f.. Collected data confirms that f, and h are generally
larger for table grapes than for wine grapes. However, there
is a very large variability of f. data for both table and wine
vineyards. That variability also relates with age, with young
plants (<5 years) having smaller f,. But the variability of
f. also refers to crop conditions and age that favor ground
shadow, e.g., the cases studied by Lopez-Urrea et al. (2012)
and Picon-Toro et al. (2012) that show a correspondence
between f, and K, ;4 or Ko mia-

The trellis systems for table grapes vineyards are domi-
nantly overhead trellis, “Y” or “T” trellis, cross-arm trellis
and high vertical shoot positioning (VSP), thus resulting in
h>2.0 m. For wine grapes, overhead systems (e.g., pergola)
are rare and a variety of trellis systems are used such as VSP,
single and double Guyot, single and bilateral cordon, Y-trel-
lis bilateral cordon, Guyot, Lyre trellis, GDC trellis, and
QCT (Quadrilateral cordon trained). Detailed descriptions of
trellis systems and their relations to cultivars and vineyards
mechanization were given by Fidelibus (2014), and an analy-
sis of relationships between trellis systems, shot positioning,
and light interception is available in Louarn et al. (2008).
Wider analysis referring to trellis systems, canopy architec-
ture, water use, and K, values is provided by Williams and
Fidelibus (2016) and Williams et al. (2022).

Actual K and K, values obtained from field ET obser-
vations and the corresponding ET, values are presented in
Table 2 for all reported cultivars and rootstocks together with
factors that mainly influenced them: £, h, and trellis systems.

@ Springer



Irrigation Science

uLem “pajN
vsn
9¢'0 0c Iju dSA €8'1X¥'T) 0T VD ‘Kofrep seurfes
wIem
“PAN SN VO
0 0c Iju dSA (8'TX81) 986C ‘K3J[BA QIOWLIDAI'T
wrem “pIN VSN
LT0 0T I dSA (8TXT1€) TOLI VD ‘$91q0y osed
CLA-Wd-OVd)  wirem “poN VSN
70 0c Iu dSA (81X17) ¥95T 4 % dug d®V woxy Yy ‘v ‘AafreA edeN
9L'0 0c yu o (Wg'p) wre-sso1)
990 0¢ yu (W 9°Q) wire-sso1d wem “poj
(were CLE-Wd-OVd) VSN VD ‘ousary (/) (Teoo)
IS0 0c I doyieonmo[Suls  (SIZTXS€) STEl Hydud IMd®Vwoy’y “(OauvD) Aoureay  sso[padg uosdwoyy, ‘[e 30 SWEIIM
(C1a-nd wrem “paN (3yu)
1$°0 0T 9¢—SC SN L (ST'TXS'E) STET % dug -Ovd) OF “¥S “TM VSN VO ‘Aduredy  sso[paeg uosdwoyy,  (6107) e 10 Aed
«Quop C1a-nd PLIBIWIS ‘PIN (/1) 3go1D
Iyu 0 Iyu -Ua),, PeayIoAQ (€TX€D) 0681 14 % dug  -Ov:) yoeoidde g Aeaf ‘vorSarerndy  pay ‘BLIOIIA ‘BI[EI]  (STOT) ‘T8 10 OuTUEA
PLIBIWAS “PIA (1oyory
uredg 011) ekoy (€100
S80 Iju Iu peoyIaAQ (STXSE) epIL I dua  CLa-Nd-OVd) A4S ‘ezoSerey ‘adse) uWMINY 29 UOSWILL) Te 39 AdIBR0ANS
10y pue prry
OOTXOIA[
090 (8'1X8€) 09¥1 CLA-Nd ‘®IOUOS “Of[ISOW (1/u) Jo119dng
w90 sTe SImEN o[qes padeys-X (0'1X8°€) 0£9¢C 14 % dud  -Ov:d) IAGN ® Dd -IoH 9p ©Is0D) (yw) apId  (£107) T8 10 PeY-1g
(z100)
(C1a-d PLIEIWaS “PaN qoD-ZoupIe
060 0TT 6—8 2[qes padeys-x (0TX$€) 6TH1 14 % duq -OVd) d®V “4S uredg ‘ezoSerez (3/u) 5qo1D pay pue [oneIoN
PLIBIWSS “PajA (Kuourrepy) (v1oc
L6'0 I 6—8 SH[PN peayIoAQ  (SLTTXSE) €€91 yuzpduq  (CLA-Wd-OVA) Od o[y ‘osterediep  sso[poag uosdwoyy, ‘1107) Te 12 LISEIIA
o[qes ‘14 PpLIBIIISS (ussined €011)
80 0¢C 8-C -uado padeys-x (0TXs€) 6TH1 4 % dug -INd-STINID) 1d [ORIS] WIOYINOG  $SA[Paag Jotadng  (600T) ‘T& 19 19Z10N
st[[on (14 pLIBIULSS (3yu) (L00D)
I 81 7€ "Z110Y peayIdAQ OrXsevIL Id % 1ds-0DIN  -IN-OV) 9994 [1zerg ‘eurjoned  SSQ[PIIS Iotradng T8 10 BIIOXIS,
urrem “pajN
("La-Wd-STNID) vsn (v 2uop) (5002)
€50 0c oImely (W 9°0) wre-sso1)  (SI'ZXSE) STET [d2% dug  mopeys J o3 “JA ‘BIUIOJI[ED ‘AouIedy]  SSO[Padg uosdwoy],  SIeAy pue SWEI[IA
(1 vaafina suyip) sadead ajqey,
(wr ‘Sur K391e1S pue (uonenba qrewir[o
VAL 10 °f (w y) yS1ey  (s1eak) oSy wa)sAs Sururely, -oeds) ey/siueld  poylewr uoneStuy  °pqg) poyew PP urew pue uonedo|  (J0031S100I) IeAn[n) oyny

SpIeAQUIA PRJOS[as JO SONSLIANORIEYD) | dqel

pringer

Qs



C1a-nd ONUENY ‘PN
uopIod -0V o¥reng [e3muiog
0¥'0 ¥'C 6181 premdn ofSurg (0TX0°€) 9991 H®dug  -IWIS Yad-9MS ‘W1 9p AUOd (yw) omemoT (1707 Te 12 BA[IS
PLBIWIS ‘PIN (191yPRg 011)
I I 01-§ dSA (S 1x0°¢) Teee H»dua (CLE-Wd-OV:dD 1d [oRIS] [ENUSD) UOUSIANES Jourdqe)  (6107) 'Te 12 ZIunjy
PN
0S°0 0c ST 1040 (8'0X1°7) TS6S 1 dua  (C1a-Wd-0ovd) Od Are)y ‘erurpreg (1/u) ounuawLvA  (9107) T8 19 SeLR]y
050 vl pLIBIWSS ‘PO (10301 (9102)
§9°0 0S'T Cl dSA (S1x0°¢€) Teee 1472 dud  CLA-INd-OV:D 1M uredg ‘0joorq[V 011) ofruerdway, ‘Te 39 0I0JUON
CLa-md pLy
-OVd) [opow MS [dute) (810¢
0¢’0 I ST—1  SIISM [EINIOA JITM (0'TXL7) vOLE I/uzp mormg S DH ‘AvIS-gMS  ‘nsue) ‘eySuedryg (3/u) 10119y ‘S100) 'Te 10 OryZ
PLIBTWIS “PaJA (€100
14 Iy ‘e (OS  seueg-eSauQ pue
0¢’0 I 6—8 dSA (€1X67) L99T % dug  -IWd-OVd) OF ‘AS ‘Ka][eA BOTEL $1-101) OO BLLIOAYDH-919]q0d
090 6
0S°0 8
S 4] L
87°0 9 pLIBIWaS 301 “PIN (3o1gory (T102)
870 ST S uoplIod [erore[tg (T1X67) gege 1 dua CLA-Wd-OV:D M ureds ‘zofepeq 011) ofruexduway, Te 39 0I01-UQdIq
0¥'0 ()1
£e’0 6 PLIBIWSS “PIN (30yyory (T102)
S0 0S'T 8 dSA (S 1x0°¢) Teee 1 dud CLA-Nd-OV:D M ureds ‘2100eq[V 011) ofiruexdwoy, e 10 voxI-zadoT
Cra-md
-OVvd 3ena JTuB3d0 "PIN (z100)
€50 0 Sinjewt (dSA) 104nD (€1Xx0°¢) TTee M dug  -WIS YAL-9MS  ureds ‘eipardjuod (1/u) outreqry ‘Te 39 ourpue
PLIBIWSS “PaJA (2100) B 0
1€°0-8C°0 I 6—8 dSA (S1X67) L99T [ dud  (CLa-Nd-OVA) Od 21D “A9[[eA Bofel, (1/u) 1019 sop1ABUSg-0OsELIEY)
(3w
°Ld-Nd duwdy “pay 0 (0100)
0¢’0 Iju L dSA (S1Xx07¢) TTee H®dua  -Oovd) IA-S¥ DF uredg “a1008q[V 29 ofjruerduwdy, Te 30 sodure)
pruuny (6000
€0 I [4 dSA (I'TXL7) 8ELT H»dud CLA-WNd-OVD AS VSN ‘AN ‘Bad0uoD  (#1-[01) Sut[sory ‘Te 30 oforSnuy
pue-rwag ‘reardory,
Cra  nzeig ‘oonqueu (L002)
Iju 91 €1-C1 uopiIo) [eraerig (T1X5€) 18€C 2 dud  -IWd-OVd) 9939 -1°d ‘opuelD eoSe| (1/u) ye1kg amed e 10 BIIOXIS,
("1 v42fiuna si1A) sadeas aurpp
(w ‘Sur A391e1S pue (uonenba qrewir o
VAl 10 °f (W y) WYS1ey  (s1eak) oSy wa)sAs Sururely, -oeds) ey/siueld  poyrewr uoneStuy  °pg) poyew PP urew pue uonedo|  (J003S100I) IeAn[ND) oyny

Irrigation Science

(ponunuoo) | sjqey

pringer

a's



Irrigation Science

OMH

(d€orm)

uLrem poj
¥9°0 e 8  ‘UOPI0d 2MM-YSTH (S 1X67) 999°C (C1A-INd-ADSV) D uousIAneg jouraqe)
(gg9) ¥S /m ‘AREA Tenuo) (dorn
LY0 0C 8 dsA (0'TXS7) 8pey Teakjom ur [ ‘duq pauIquIod )y J[NEA ‘dnyeoudq UOUSIANeS uqe)  (£707) Te 10 ofoy
CLa-Wd-OVd) wrem pIN (¢zoo)
Iju I L9 dSA (STX67) 999C 4 % dug MOpRYS WOy Y BUNUSSIY ‘BZOPUIA d°qreN "[e 30 TueSION
(1a-Wd-0V4d) tLrem pojA
8¥°0 0c I uopi0d [erolellg  (€8'TXGEE) €91 14 % duq d®V woi’y VD ‘ousary (3/u) yeiks
urrem poj
CLa-Wd-OV) A
1S°0 0¢C Iju 100  (€8°0X99°¢) €6¥1 4 % dug d®V woxy’y ‘KaeA B[noowa], (1/u) Keuuoprey)
wiIem dTuBadQ
) ) vSsn
€50 0c i L0 CLE-W-OV) VO ‘odsiqo sty (ayu)
(430 0¢C Iju dSA  (€8'1XG0°€) TOLI 4 % dug d®V woxy’y ueg ‘A3[[eA BUPH UOUSIANES JoUIaqe)
90 Iju uopi0d [erolellg  (€8'TXGEE) 1€91 (a/u) yeaks
1S°0 Iju 100 wrem ‘papy (a/u) yeaks
170 Iju sI[[on AT CLE-INd-OVA) VO ‘ousar (1/u) Keuuoprey)
0 0c Iju 20D  (€8'1%X99°¢) €6¥1 H»dud TMd®VY woy s (QayvD) Aoureay (1/u) Keuuoprey?)
(Adoueo wLEM POy (a/u)
IS0 0c yu eads) 100 v oue[q uoudranes§
‘0[0 “(sd1rud) (/)
0r'0 0T i SN AIAT  (€8°1X99°€) €6v1 14 7% dug SIITH UeSuuun( UouSIANeS PuIdqe)
890 Iju sten A, wrem ‘papy
19°0 Iju SIPD DAD vsn Q%)
6v'0 0c I sien AT (ZSIXS0€) SSIT 14 % dug VD ‘AdeA edeN  uouSianeg jouraqe)
S0 Iu SHIeN dSA wrem ‘popy
o b SHISH dSA CLa-Wd-OVd) vsn (01D (¢200)
LSO 0c Iu SN AAT (TS IX¥LT) 10¥C 4 % duqg dxV woxy’y VD ‘“AdeA edeN  uouSianeg jouraqe) ‘[e 390 SWelIM
prumy-qns “paj
eSmiog (1/u) 19130
9¢'0 0L'T 101 dSA (0'1x87) 1L5¢  towwns [ % du( ‘BIOLI0)) RIOWIES 29 [EUOTOBN] BSLINO],
. . CLa-Wd
8C0 8L'1
-Ovd) oMenq ourd[e-qng ‘P (qzzoo)
LEO e8'l 1€-8C dSA  (O'TXSLD) 9£9¢ Juzg pajurey IS A@I-GMS AT ‘erpuessoy (3/u) v13qTEg ‘Te 39 yoinore
C1a-nd SIUE320 "PIN
-Ovd) o¥enq  uredg ‘odr[en ‘eIp (19
§To I'C CI-01 [eonIoA BIAT (Tx¢€) L991 M dug  -WIS YAL-GMS  -2AU0d ‘[esoy] O -UYorg-Q1 1) ouLreq[y (1207) outpue]
(w ‘Sur A391e1S pue (uonenba rewir o
VAL 10 °f (W y) YS1ey  (s1eak) oSy wa)sAs Sururely, -oeds) ey/siueld  poylewr uoneStuy  °pg) poyew PP urew pue uonedo|  (J003S1001) IeAn[N)) oyny

(ponunuoo) | sjqey

pringer

Qs



Irrigation Science

Tabulated observed K. ;g and K, iq show to vary greatly
among cultivars and for the same cultivar, as well as with the
trellis system. Finding the most appropriate standard K and
K, values would be nearly impossible without following the
conclusions of Williams et al. (2022) that the prime factor
influencing K values is training and trellis system disre-
garding if vineyards are of table or wine grapes. It resulted
then a good organization of study results and the Table 3
was then built, first a draft working approach as referred in
Section*“Selection and tabulation of updated standard K and
K, values”, then simplified as shown herein. Plant density
will vary within a given training system and, therefore, their
ranges of values in Table 3 shall be considered as indicative
to users.

Table 3 shows initial, mid-, and end-season K and K
of table and wine grapes grouped according to the degree of
ground cover (DGC), training and trellis system (TTS), and
plant density and spacing (PDS). DGC varies from very low
when plants are young (<5 years), to high in case of over-
head trellis in table grapes, or to very high in case of well
covering Y-trellis, the Geneva Double Curtain double wire
system, and the overhead trellis system. The diverse degree
of ground cover corresponds to diverse TTS, which are influ-
enced by the pruning intensity, and to various plant density
and spacing. The described groups are also characterized by
ranges of the fraction of ground cover and height, f. and h,
which may help to decide which group is more appropriate
for the case under study. Moreover, f, and h may be utilized
to compute K, for the three stages with the A&P approach
(Allen and Pereira 2009; Pereira et al. 2020a) with help of
the proposed parameters M; and F,, also tabulated.

The proposed standard K, and K_ are given in the last
two columns of the Table 3. The ranges of K, and K,
obtained from field measurements and proposed in the
selected papers and the ranges reported in previous Tables,
namely FAOS56, are also tabled as they were used for select-
ing the values of the proposed standard coefficients. Readers
are advised to interpolate the proposed K and K using the
data they have available.

It is evidenced by Table 3 that standard K, and K_ for
vineyards mainly increase with ground cover and plant den-
sity, thus depending upon training and trellis systems as they
favor or not ground shading, thus the light intercepted by
the canopy. Soil evaporation, contrarily, is governed by the
TTS that provide for larger or limited solar radiation at the
soil surface, thus for larger or reduced energy for soil water
evaporation.

0.30

Age (years) Height (h, m) f; or fipar
2.0

Training system

VSP

Plants/ha (spac-

ing, m)
4545 2x1.1)

Irrigation method

and strategy
Micro-spr. & n/r

ET, . method (ET,
(FAO-PM-ET,)

equation)

K, from A&P

Tropical humid

climate

bel Precoce IAC  Sdo Paulo, Brazil

Cultivar (rootstock) Location and main
572 and 766)

BRS Carmem &lIsa- Votuporanga,

(2017a)

Abbreviations and symbols are defined in list of symbols heading

Table 1 (continued)
Juice grapes (Vitis labrusca L.)
Conceigdo et al.

Author

@ Springer
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Table 2 (continued)

&

Kc ini Kc mid Kc end ch ini ch mid chend

K. /K, derived from field observations

Age
(years)

f, or fipag Height (m) Ground cover

Training system

Cultivar (rootstock)

Author

Springer

n/r n/r n/r n/r

n/r 0.10 0.72

n/r n/r n/r
BS

VSP
VSP

Malbec (own rooted)

Morgani et al. (2022)
Rojo et al. (2023)

n/r n/r

n/r

0.30 0.50 0.35

0.30 0.65

0.47
0.64

Cabernet Sauvignon (110R)

n/r

n/r n/r

0.45

BS

2.3

HWC

Cabernet Sauvignon (1103P)

Juice grapes (Vitis labrusca L.)

Conceicdo et al. (2017a)

n/r n/r

n/r

0.60 0.74 n/r

0.63 0.81

AGC and netting 3

2.0

0.30

VSPp

BRS Carmem

Isabel Precoce (IAC 572 and

766)

Abbreviations and symbols are defined in list of symbols heading

Olive orchards

Olive trees are, after centuries, main references of the Med-
iterranean landscapes, either isolated or in small groups,
or in orchards. Due to their physiological characteristics,
olives are resistant to dryness and droughts and other abiotic
stresses (Fernandez 2014) but then decreasing growth and
yield. Climate change is affecting olives water requirements
and, then, the landscape (Tanasijevic et al. 2014). Traditional
orchards are rainfed, have wide tree spacing, and are vase-
trained. They continue to be used but are declining and being
replaced by irrigated orchards with increasing plant density,
such as the modern super high density hedgerow system.
Plant density increased from 225-250 trees ha™' to almost
2000 trees ha~!. Unlike vineyards, f, and h show a relatively
little variability, however with exceptions.

The selected orchards (Table 4) are mainly located in the
Mediterranean region, with only one from a Chilean loca-
tion with Mediterranean climate, the Talca Valley. Culti-
vars are often changing from traditional ones (e.g., ‘Picual’,
‘Cobrangosa’) to cultivars adapted to high density systems
like ‘Arbequina’. Training systems and plant density affect
tree maturity, with intensive orchards trained in vase, reach-
ing full bearing by 7-8 years, while high-density systems,
trained as hedges, reach full bearing 4-5 years after plant-
ing. In these latter systems, the mechanical harvesters limit
plant height and therefore pruning is mandatory at least once
a year.

All reported ET, computations refer to the FAO-PM-ET..
Field ET studies were performed mostly using EC systems
and SWB with various sensors and the model SIMDualKc;
SF systems were used for measuring transpiration. Drip irri-
gation was used in most cases but always adopting controlled
or regulated deficit irrigation (Table 4). The eustress con-
cept used for vineyards does not apply to olives due to their
resistance and resilience to droughts and water stress, which
calls to adopt limited water use and costs by currently adopt-
ing deficit irrigation, mainly during the pit hardening stage.

The crop coefficients show some variability, both K. and
K., (Table 5). The K, curves present a mid-season value
lower than the K ;,; and K, .4 which is the consequence of
the Mediterranean rainfall regime, with rain by the initial
stage, by the early spring, and by the final stage, at mid-
autumn, with a dry summer mid-season. The K, curves are
different because transpiration is much higher in mid-sum-
mer under irrigation than during the initial and end stages.
The Med climate does not change much inter-annually, but
global change is making the dry summer season longer.
Without irrigation both K and K, curves tend to flat down
due to impacts of water stress. Soil evaporation is important
during the non-growing period, mostly the winter, when
precipitation occurs; it is negligible during the mid-season

C €N
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if rain is very low and irrigation is under canopy as for drip
and micro-sprinkling; intermediate conditions occur by the
initial and final periods depending upon the distribution
of rainfall. AGC and mulch are rarely practiced but natu-
ral AGC occurs during spring, with AGC converting into
residual mulch during the summer.

The proposed standard K, values in Table 6 were defined
in agreement with the observed ranges, often slightly larger
than these. But the K, values are smaller than the observed
ranges and the ranges previously tabulated because when
irrigation is under the canopies and practiced with good
quality equipment and efficiently there are no reasons for
high soil evaporation or operational losses. This is particu-
larly true in the hedgerow olive orchards since differences
between ranges observed for K, and K, are high, likely indi-
cating non negligible soil evaporation losses. As for vine-
yards, the plant densities referred in Table 6 are guidelines
for users.

Citrus orchards

Various tree species are included among the citrus trees:
clementine, grapefruit, lemon, lime, mandarin, and orange.
Studies relative to orange are by far the most common, fol-
lowed by clementine and mandarin. Studies were carried
mostly in the Mediterranean region but those for lime (Cit-
rus latifolia Tan.) were developed in Brazil, where this crop
is very popular; those for orange, following its wide dis-
semination, in addition to the Med basin, come from North
and South America, South Africa and Iran (Table 7). This
wide origin of the selected studies proposes various perspec-
tives that favor the analysis aimed at finding the appropriate
standard K, and K, for all the crops. Moreover, cultivars
referred for each crop are also diverse.

As for the grapes and olives, the appropriateness and
accuracy of computation of ET, and crop evapotranspiration
were analyzed (Table 7). In most cases, the FAO-PM ET,
was adopted with only 2 cases of using the Penman equa-
tion and the class A pan were observed. A diverse panoply
of field ET measurement was reported. The most common
approach was SWB based on diverse soil water sensors, fol-
lowed by the sap-flow measurement of transpiration and the
EC measurement of ET, often combined. Weighing lysim-
eters and the surface renewal method were also used. Drip
and micro-sprinkler irrigating under canopy were generally
adopted. Full irrigation, sometimes in excess, was the main
strategy. Information reported in literature was however
insufficient to understand if, likely, eustress was considered.
In general, it could be considered that conditions existed to
favor water saving and high yields.

A variety of plant densities and spacing are reported but it
was not possible to relate them to training, with many papers
not reporting about training. The most common is vase but
some hedgerow, yet with relatively low plant spacing, were
also referred. Generally, plant heights varied from about 2.5
to 4.0 m but much larger and uncommon heights near 6 m
were reported for orange in Florida. Tree height was lower
for mandarin (< 2.8 m) and clementine (<4.1 m). The frac-
tion f, followed a similar trend, smaller for mandarin, lime,
lemon and clementine, largest for orange (up to 0.90). Differ-
ences in architecture and sizes, as well as physiological but
not referred herein, justify that K, and K, were not given in
a single group of citrus.

Generally, results in Table 8 show well the dependence
of K, iq and K, niq On crop age, height, and f, as it is the
case of studies by Castel (2000) for clementines, Alves et al.
(2007) for lime trees, Maestre-Valero et al. (2017) for man-
darin, and Consoli et al. (2006) for orange. Since citrus are
evergreen trees, they also show a K_ curve where higher
values are for K ;,; and K, .4 for climates like Mediterra-
nean, with very small precipitation in summer and the rain-
fall season initiating by the fall and ending by the spring.
In other climates, this may not happen. Because citrus are
evergreen and for some species or cultivars show differences
in crop stages, some growers and advisers adopt a constant
K., which lead to flat down the period between spring and
winter, i.e., when irrigation is required. Several citrus stud-
ies report K /K, values on a monthly time scale, so the
growth stages of the plants were defined according to the
tree’s annual cycle (3 vegetative growth peaks correspond-
ing to spring, summer and autumn). Therefore, the initial
stage corresponds to flower initiation (December—January in
the Northern Hemisphere, June—July in the Southern Hemi-
sphere), the mid-season stage is a very long period corre-
sponding to fruit growth extending from March to November
(Northern Hemisphere) or from September to May (South-
ern Hemisphere). The end-season occurs after maturation
and harvesting, i.e., in November (Northern Hemisphere)
or May (Southern Hemisphere). However, these stages
depend on the species and cultivar. It is, therefore, advis-
able to define well the initial, crop development, flowering
and fruiting mid-season, and maturation and harvesting.
Then the K, and K, curves are expected to be as referred
above, however distinct among species and, less, cultivars
(Table 8).

The definition of the standard K_ and K, (Table 9) fol-
lowed the same methodology used and shown for grapes and
olives. Initially, all citrus trees were considered together but,
due to differences among the various species, three groups
were considered. Thus, clementine, lime and mandarin trees
consist of the first group of species, which is characterized
by the smaller tree height, fraction of ground cover and K/

@ Springer
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K, for each degree of ground cover, training, and plant den-
sity. Orange, grapefruit, and tangelo, in contrast, have trees
with higher h, f, and K /K, values. Lemon trees are in an
intermediate position. Nevertheless, the generally required
interpolation may be difficult.

Warm temperate plantations: avocado,
loquat, persimmon, and tea crops

These crops are not grouped but listed in the same Table.
They have great differences: on the one hand, they are ever-
green but persimmon that is deciduous; on the other hand,
all are trees explored for fruits but tea, which is a shrub
explored for the leaves. Thus, tabulated subjects are dis-
cussed in isolation or comparatively.

Selected studies on avocado orchards are from Florida,
South Africa and Chile, which are among the main produc-
ers (Table 10). Only recently, they start to be grown in south-
ern Europe, which may be a consequence of global warming
as suggested in a review by Carceles Rodriguez et al. (2023).
Differently, loquat and persimmon have long been cultivated
in southern Europe and the selected studies are from the
north and east of the Mediterranean region. The selected tea
studies are from two main production areas, southern China,
and mountainous India, but tea has a quite large distribution,
which is also related to the qualities of tea produced.

The FAO-PM-ET, was adopted for most studies on the
various crops (Table 10). Field ET measurements with a
SWB approach, followed by EC systems, were the main
methods used for avocado ET estimation. For persimmon,
EC systems were the main methods to measure ET. Differ-
ently, for loquat a test of K, fitting was employed.

The planting density reported for avocado (Table 10)
ranged 148-370 pl ha=! and the training systems reported
were hedge pruned or, more often, hedgerow. However,
these systems are very different of those used for olive trees
since crop heights are quite high, of up to 7.9 m. These
hedge systems aim to improve harvesting efficiency, which
occurs throughout the year, using Harvest Assist platforms.
A large range of heights results in a wide range of f, values,
from 0.40 to 0.80. Persimmon and loquat have training in
vase while tea is trained at a low hedgerow, with 7 <0.90 m,
to favor hand harvesting of leaves.

Crop coefficients of avocado are reported with two types
of K curves (Table 11): where the summer mid-season is
dry in opposition to the initial stage and the final stage, the
K, curve has K ;4 smaller than K and K, .4 because
mid-season soil evaporation is about negligible; if there is
rain in the mid-summer, it is likely that soil evaporation is

@ Springer

high by then resulting a K .4 higher than K_;; and K_ . 4.
The difference among these K. may be small, then result-
ing a uniform season K. K is reported to follow a typical
segmented crop coefficient curve with K ;4 higher than
K., and K, .4 assuming that transpiration is larger during
the mid-season stage; however, differences among these K,
values may be small as it often happens to citrus trees. How-
ever, for the New Zealand case (Kaneko et al. 2022), with
observations in three different locations, K, ¢ng> Kcp miq 19
reported but without explanations.

There is limited information about loquat (Table 11) but it
is likely, as reported by Hueso and Cuevas (2010), that K ..
and K ..q be larger than initial and end-season values. On
the one hand, flowering occurs by the end of winter and
fruit maturation is also anticipated to the spring, thus the
crop mid-season is likely when rainfall occurs, resulting that
transpiration adds to non-negligeable soil evaporation due
to rains occurring by then, thus with K_ resulting from the
sum of K, ;g With a non-negligible K, value. On the other
hand, leaves are tough and leathery in texture, and densely
velvety-hairy below that favor stomatal control during the
late season.

Despite data are limited, reports show that Persimmon
has K. and K, curves with the mid-season values larger
than the initial and end season values, as it is common for
deciduous trees.

Reported tea results for K, and K, (Table 11) show flat K,
and K, curves since the climate where plantations develop
is generally humid, with only short dry spells, which does
not favor ET values very different of those of the grass refer-
ence, therefore close or equal to 1.0.

The proposed initial, mid-season, and end-season stand-
ard single and basal crop coefficients for avocado, loquat,
persimmon, and tea plantations (Table 12) are generally in
agreement with the ranges of values observed and compat-
ible with those previously tabulated for avocado and tea.
However, hedgerow was not yet considered previously for
avocado while presently it is likely the most popular where
harvesting mechanization is in use; nevertheless, training
in vase is continued. K, for loquat and for persimmon were
never tabulated. Proposed values for these crops agree with
previous discussions. As previously pointed out the tabu-
lated values of the ranges of plant densities are indicative.

cb en

Conclusions and recommendations

The review of crop coefficients for table and vine grape
vineyards, olive, citrus, avocado, loquat, persimmon, and tea
plantations permitted a good collection of well-performed
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Table 9 (continued)

&

Proposed
values

Ranges of previously tabu-

lated values

Ranges of observed values

T

F,

My,

Crop stages

h (m)

e

Degree of ground cover, training and plant density

Springer

Kch

K cb

ch

0.70
0.70
0.70
0.70
0.80
0.75
0.80
0.85
0.85

60
65
60

0.

0.65-0.95
0.55-1.00

0.60-0.85

0.45-0.87
0.60-0.93

0.35-0.60
0.35-0.55
0.42-0.58

0.60
0.65
0.60
0.50
0.60
0.50
0.60
0.65
0.65

1.5
1.5
1.5
2.0
2.0
2.0
2.0
2.0
2.0

Ini

3.04.0

0.40-0.70

Medium, vase (400-600 pl/ha)

0.

0.55-0.95
0.50-0.95

Mid

0.

0.65-0.1.05

0.50-0.83

End
Ini

0.65
0.75
0.70
0.65
0.70
0.70

0.68-0.71

0.35-0.60

0.64-0.74
0.37-0.72

0.

>4.0

>0.70

High, vase (600-950 pl/ha)

0.87-0.89
0.81-0.82

0.67-1.15

Mid

End

Ini

34
37
38

>4.0

>0.60

Hedgerow (industry) (> 1250 pl/ha)

0.77-1.05

0.

Mid

0.65-1.15

0.

End

Abbreviations and symbols are defined in list of symbols heading

field studies and data handling that elucidated about water
use practices and requirements for those crops. The selected
papers allow to conclude that good knowledge exist about
the referred crops and their exploitation, the evapotranspira-
tion and water use process, while water management prac-
tices require to be improved in such a manner that water use
be controlled, limited, while yields are increased. However,
further studies on crops having limited information available
are welcome, e.g., lemon and loquat.

The control and optimization of water use, including
water saving, require appropriate choice and use of irrigation
equipment and adequate irrigation scheduling targeting the
standard K when irrigation equipment allows a good control
of quantities applied and water available is enough to satisfy
that target application. Numerous papers refer to regulated
or controlled deficit irrigation; however, that deficit must
be referred to the potential ET,, product of the standard K|
by the grass reference ET,. The application of those deficit
irrigation practices also imply that farmers, managers and
farmer advisers improve their knowledge on these subjects,
on using models that may help decision-making, as well
as on the use of weather data and information. Estimating
K, and K from the fraction of ground cover or shading
and plant height (A&P approach) provides for quite realistic
estimates of crop coefficients for trees and vines as demon-
strated by Pereira et al. (2020a, b) and as used with the Cali-
fornia remote sensing SIMS framework (Melton et al. 2012;
Pereira et al. 2021a, b, c), with parameterization described
by the latter. Similar approaches on the use of standard K|
and K, or the A&P approach, apply to studies on irriga-
tion planning as well as on consumptive use assessment at
project or watershed level.

When searching for water saving and scheduling irri-
gations for any kind of controlled deficit irrigation, users
may either use the standard K, or K, decreased by a sav-
ing fraction or may schedule irrigations following the actual
ET conditions of the orchard. In the latter case, users may
estimate the K ., using the A&P approach as referred in
the Introduction. Then K, ,., may be computed from the
observed actual fraction of ground cover and crop height
and K, may be estimated from the observed actual wetted
fraction of exposed soil, 1—f_. The resulting actual values for
K_ or K, shall then be compared with the standard K or K,
for computation quality control. It is important to make the
best use of related information and effectively achieve high
water and financial productivity aiming the sustainability of
production and the progressive adaptation to climate change
challenges.

Users are advised to read and analyze the quoted papers
in addition to the information provided and tabulated in the
current review paper. Above all, it is required to develop
awareness on water scarcity and water saving, the latter
mainly based on the knowledge of standard crop coefficients
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Table 12 (continued)

Proposed
values

Ranges of previously tabu-

lated values

Ranges of observed values

F,

My,

Crop stages

h (m)

fe

Degree of ground cover, training, and plant density

ch

0.30
0.65
0.35

0.15
0.55
0.20

0.19-0.27
0.60-0.87

0.10-0.15

0.65
0.85
0.50

1.5
2.0
2.0

2.0-2.5 Ini

0.15-0.40

Low to medium (300-500 pl/ha)

0.40-0.53

Mid

0.35-0.50

0.15-0.20

End

0.35

0.20

0.65 -

1.5

Ini

2.5-3.0

0.40-0.60

High (500-800 pl/ha)

0.90

0.80

0.95

0.80 0.62

2.0

Mid

0.50

0.45

0.50

2.0

End

Tea (Camellia sinensis L.)

0.80
0.90
0.90
1.05
1.05
1.05

0.60
0.70
0.70
0.95
0.95
0.95

0.55
1.31
0.36

0.85
0.85
0.85

1.00
1.00
1.00
1.00
1.00
1.00

1.2
2.0
2.0
2.0
2.0
2.0

Ini

<0.70

<0.50

Young (<2 years), low hedgerow (7000-13500 pl/ha)

Mid

End

Ini

0.95
1.00
1.00

0.90
0.

0.95-1.05

>0.70

0.50-0.90

Mature, hedgerow (7000-13500 pl/ha)

0.78-1.00 95

0.95-1.05

Mid

0.90

0.95-1.05

End

Abbreviations and symbols are defined in list of symbols heading

and related transfer for different locations and diverse cli-
mate conditions.
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