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Abstract
Irrigation water is an expensive and limited resource and optimal scheduling can boost water efficiency. Scheduling deci-
sions often need to be made several days prior to an irrigation event, so a key aspect of irrigation scheduling is the accurate 
prediction of crop water use and soil water status ahead of time. This prediction relies on several key inputs including initial 
soil water status, crop conditions and weather. Since each input is subject to uncertainty, it is important to understand how 
these uncertainties impact soil water prediction and subsequent irrigation scheduling decisions. This study aims to develop 
an uncertainty-based analysis framework for evaluating irrigation scheduling decisions under uncertainty, with a focus on 
the uncertainty arising from short-term rainfall forecasts. To achieve this, a biophysical process-based crop model, APSIM 
(The Agricultural Production Systems sIMulator), was used to simulate root-zone soil water content for a study field in 
south-eastern Australia. Through the simulation, we evaluated different irrigation scheduling decisions using ensemble 
short-term rainfall forecasts. This modelling produced an ensemble of simulations of soil water content, as well as ensem-
ble simulations of irrigation runoff and drainage. This enabled quantification of risks of over- and under-irrigation. These 
ensemble estimates were interpreted to inform the timing of the next irrigation event to minimize both the risks of stressing 
the crop and/or wasting water under uncertain future weather. With extension to include other sources of uncertainty (e.g., 
evapotranspiration forecasts, crop coefficient), we plan to build a comprehensive uncertainty framework to support on-farm 
irrigation decision-making.

Introduction

Irrigation comprises 70% of freshwater consumption glob-
ally, with irrigated agriculture contributing to 40% of total 
food production worldwide (The World Bank 2017). Irriga-
tion scheduling, determining when and how much to irri-
gate, is thus a critical decision to promote efficient irrigation 
water use and good agricultural productivity (Pereira 1999). 
Surface irrigation is the most common irrigation method 
worldwide, for which, control of irrigation depth is only pos-
sible to a certain degree (Brouwer et al. 1989), and thus the 
question about irrigation timing becomes the most critical.

On-farm scheduling of surface irrigation often relies 
on the knowledge and experience of farmers, and is often 

by visual inspection of crop status (e.g., colour, curling of 
leaves) (Brouwer et al. 1989; Martin 2009). Empirical irriga-
tion calendars have been developed for major crops under 
various climatic and soil conditions. These can be adopted 
as a rough guide to scheduling in a cropping season (Brou-
wer et al. 1989). Alternatively, on-farm irrigation scheduling 
is also commonly informed by simple calculations of crop 
water demand based on reference crop evapotranspiration 
(ET0) (Allen et al. 1998; Brouwer et al. 1989).

In contrast to the on-farm implementations, recent 
research has greatly advanced approaches to precise irriga-
tion scheduling, which can be broadly classified into model-
based and monitoring-based approaches (Gu et al. 2020). 
The model-based approaches often focus on estimating crop 
evapotranspiration (ETc) and then predicting the soil water 
balance and root-zone soil moisture contents. The prediction 
is then used to determine future irrigation timing based on 
when the total soil water depletion exceeds a user-defined 
threshold, or management allowable depletion (MAD) 
(Allen et al. 1998). The monitoring-based approaches can 
inform scheduling decisions by either monitoring the soil 

 *	 Danlu Guo 
	 danlu.guo@unimelb.edu.au

1	 Department of Infrastructure Engineering, The University 
of Melbourne, Parkville, VIC, Australia

2	 Rubicon Water, Hawthorn East, VIC, Australia

http://orcid.org/0000-0003-1083-1214
https://orcid.org/0000-0002-8787-2738
https://orcid.org/0000-0002-5335-6209
https://orcid.org/0000-0002-8689-2550
https://orcid.org/0000-0003-4982-146X
http://crossmark.crossref.org/dialog/?doi=10.1007/s00271-022-00807-w&domain=pdf


156	 Irrigation Science (2023) 41:155–171

1 3

water to estimate available water for the crop (Campbell 
et al. 1982; Topp and Davis 1985), or monitoring crop sta-
tus, such as canopy temperature and other canopy measure-
ments, to infer crop water stress (Goldhamer and Fereres 
2001; Sezen et  al. 2014). Traditional monitoring-based 
methods have the key drawbacks of often being invasive and 
being labour intensive. These issues have been substantially 
resolved with the development of automated monitoring and 
remote sensing techniques (Jones 2004).

The model-based approaches show greater potential 
to provide operational tools to support on-farm irrigation 
scheduling due to their capability for making predictions and 
testing management options (George et al. 2000; Gu et al. 
2020). However, a major challenge to implement the model-
based approach arises from the high uncertainty associated 
with the modelling process. For example, models require 
accurate observations and forecasts of recent and future 
weather conditions to estimate the atmospheric evaporative 
demand (Allen et al. 1998; Rhenals and Bras 1981). Uncer-
tainties in future weather can arise from uncertain weather 
forecasts (Slingo and Palmer 2011), while historical weather 
observations can be subject to instrumental errors, limited 
representation of spatial variability and issues in quality con-
trol/assurance (Wright 2008). Model-based irrigation sched-
uling also relies on good information on the characteristics 
of soil (e.g., soil hydraulic parameters) and crop (e.g., grow-
ing stages and crop coefficient) for estimating soil drainage, 
actual soil evaporation and crop transpiration (Allen et al. 
1998; Pereira et al. 2003). Crop characteristics can display 
a wide variation with location, climate and growth stage 
(Guerra et al. 2016), while soil properties are also highly 
variable (Ratliff et al. 1983; Rawls et al. 1982). The soil 
water modelling also relies on knowing soil water content 
to define the initial conditions, which is often obtained from 
soil water monitoring. While soil water monitoring can be 
practically performed at point scale, there is high uncertainty 
in spatial representativeness due to variability (Grayson and 
Western 1998; Or and Hanks 1993; Paraskevopoulos and 
Singels 2014). To enable effective scheduling decision-
making under these uncertainties, a quantitative uncertainty-
based analysis framework is critical for evaluating different 
scheduling decisions.

Within all the sources of uncertainty that need to be con-
sidered in irrigation scheduling, the uncertainty in future 
weather conditions attracts the most attention. The recent 
rapid development of weather forecasting has greatly facili-
tated research on irrigation scheduling under uncertain 
future weather (Azhar and Perera 2011; Jones et al. 2020; 
Perera et al. 2016). Most modelling studies that have incor-
porated short-term forecasts focus on rainfall—which is 
generally considered the most important weather input to 
irrigation scheduling—and have generally achieved a sav-
ing in irrigation water while improving rainfall utilization 

efficiency (Cai et al. 2011; Cao et al. 2019; Gowing and 
Ejieji 2001; Wang and Cai 2009). Cao et al. (2019) com-
bined the forecasted probabilities of different rain intensities 
(no rain, light rain and heavy rain) for three days into the 
future to derive an expected rainfall amount. The expected 
rainfall was used to drive a rule-based irrigation scheduling 
approach and led to a 0–100 mm saving in irrigation water, 
and a 0–60 mm reduction in drainage, when compared with 
conventional scheduling not considering weather forecast. 
Wang and Cai (2009) explored the value of 7-day probabilis-
tic rainfall forecasts for real-time irrigation decision making. 
The forecasted rainfall probability was linked to rule-based 
irrigation scheduling to inform future irrigations, leading to 
a 16% increase in the modelled crop profit compared with 
relying on real-time soil moisture information alone. Cai 
et al. (2011) used probabilistic rainfall forecasts to optimize 
the irrigation amount, with an objective function that con-
siders both the expected incremental crop yield gain and the 
irrigation operational costs. Specifically, the forecast 7-day 
future rainfall probabilities were combined with the histori-
cal average intensities for different rainfall probabilities to 
produce historical ensemble rainfall forecasts (referred to 
as the ‘imperfect forecast’ in their paper). These ensemble 
forecasts were then used to derive ensemble simulations of 
the incremental crop yield gain (representing the accumula-
tion of crop profit over the season), and then aggregated to 
their expected value as input to the objective function for 
irrigation scheduling optimization. Informed by the histori-
cal ensemble rainfall forecasts, the optimal irrigation deci-
sions derived were found to lead to 2.4–8.5% gain in crop 
profit and 11.0–26.9% water saving, relative to irrigation 
scheduling assuming no rainfall for the future seven days. 
In an extension of Cai et al. (2011), Hejazi et al. (2014) also 
optimized irrigation scheduling. In that study, each weather 
input (for rainfall, minimum temperature and maximum tem-
perature) took the weighted average of ensemble forecasts 
from a bias-corrected regional climate model. As summa-
rized above, a number of studies have used probabilistic or 
ensemble weather (mostly on rainfall) forecasts to incorpo-
rate the uncertainties in future weather into irrigation sched-
uling, which in turn helped identifying the best irrigation 
decisions with benefits illustrated by the modelled irrigation 
water efficiency, crop yield or profit.

While optimization appears intuitively attractive, applica-
tion of the existing studies for practical on-farm irrigation 
scheduling remains limited. An important reason for this 
is they fail to recognise varying risk preferences between 
irrigators, which suggests that risk oriented approaches 
may be more appropriate for practical management. Specifi-
cally, existing studies have all recommended the ‘optimal’ 
irrigation decisions based on objective functions that are 
often an aggregation over the modelled risks and profits. In 
operational situations, the key considerations for irrigation 
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decision making extend well beyond risks and profits to 
include individual farmers’ experience and management 
preference (e.g., a desire to completely eliminate crop water 
stress or to intentionally apply some stress to achieve certain 
quality characteristics for the crop), as well as integration 
with other on-farm operations (e.g., fertilization, spraying). 
Therefore, the ‘optimized’ decisions may not represent the 
true interests and objectives of farmers (Cai et al. 2011). 
Considering these issues, we argue that operational irriga-
tion decision making would benefit more from having trans-
parent information on the modelled outcomes of different 
irrigation decisions and their associated uncertainty, rather 
than direct recommendations of the optimal irrigation deci-
sions. To achieve this, we need an uncertainty-based analysis 
framework to:

1)	 Incorporate multiple sources of uncertainty in irrigation 
scheduling modelling. This should include, but not be 
limited to, utilizing ensemble weather forecasts to better 
incorporate the uncertainty in future weather.

2)	 Enable evaluation and comparison of different irrigation 
scheduling decisions under uncertainty.

Nested in the larger problem of lack of a quantitative, 
uncertainty-based analysis framework, the use of weather 
forecasts in representing uncertainties in future weather also 
needs to be improved. Very few studies have fully incorpo-
rated the uncertainty in ensemble forecast to evaluate the 
performance of irrigation decisions (Cai et al. 2011). In 
most existing studies, weather forecasts, although initially 
obtained in ensemble or probabilistic forms, have been used 
only as a deterministic input to irrigation scheduling models 
(Cao et al. 2019; Hejazi et al. 2014; Wang and Cai 2009), 
which has greatly limited the exploration of uncertainties. 
Further, only Hejazi et al. (2014) attempted bias correction 
of the weather forecasts. There is a general lack of qual-
ity control of the weather forecasts used, raising questions 
regarding how well they can represent the expected future 
weather and associated uncertainty.

This study aims to establish a quantitative, uncertainty-
based analysis framework to support short-term in-season 
irrigation scheduling by quantifying the risks of over- or 
under-irrigation arising from various irrigation scheduling 
options, while incorporating uncertainty in future weather 
conditions. As a first step towards developing a full uncer-
tainty framework, we consider the uncertainty contributed 
solely by unknown future rainfall, which represents one 
of the biggest sources of uncertainty in making schedul-
ing decisions. In doing so uncertainty in future weather is 
incorporated using short-term ensemble rainfall forecasts. 
The key novelty of this study is developing an uncertainty-
based framework to quantitatively evaluate risks associated 
with different irrigation decisions. Within this framework, 

this study also incorporates high-quality short-term ensem-
ble rainfall forecasts developed through post-processing of 
numerical weather forecasts, to improve the forecast accu-
racy and uncertainty representation. The key question this 
study addresses is: how does uncertainty in rainfall forecasts 
translate to risks of over- or under-irrigation with different 
scheduling decisions?

Materials and methods

Overview

In this study, we focused on surface irrigation systems and 
assumed that each irrigation replenishes the soil moisture 
deficit to field capacity. Thus, irrigation timing was the 
key variable in scheduling decisions. The framework was 
based on model simulations of root-zone soil water content. 
Specifically, the crop model APSIM (Agricultural Produc-
tion Systems sIMulator, see details in “The APSIM crop 
model”) was used to derive ensemble simulations of soil 
water content for the 9-day future period starting from each 
day in the cropping season. The simulations combined: (1) 
ensemble short-term rainfall forecast for the 9-day future 
period (“Ensemble short-term rainfall forecasts”); and (2) 
different irrigation timings ranging from Day 1 to Day 9 into 
the future (“Ensemble simulations to evaluate risks from 
different irrigation decisions”). The ensemble soil water 
simulations were then used to evaluate the risks of over- or 
under-irrigation (i.e., wasting water or stressing the crop) 
for different irrigation timings for each day in the season. A 
schematic of the simulation is shown in Fig. 1.

Study field

To illustrate this risk analysis framework, we focused on one 
maize field within the Goulburn-Murray Irrigation District 
(GMID) in south-east Australia (field centered at − 36.17S, 
145.02E) over the 2019–2020 summer cropping season. The 
cropping season for summer maize in this region generally 
stretches from November to May, and was from 29 Novem-
ber 2019 to 6 April 2020 for our particular case study. The 
study field was located on the borderline between temper-
ate and arid steppe climate regions (Peel et al. 2007). The 
long-term annual mean rainfall is 447 mm based on observa-
tions from 1964 to 2021, at the closest public weather sta-
tion (Kyabram, Australian Bureau of Meteorology #80091, 
19 km away).

We established continuous in-field monitoring of the cli-
mate and soil water content over the study period, which 
was used to define the initial conditions to model irrigation 
scheduling for each day in the cropping season (detailed 
in “Ensemble simulations to evaluate risks from different 
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irrigation decisions”). We monitored the air temperature, 
solar radiation, relative humidity and wind speed at 2 m 
above ground from a standing weather station, along with 
a tipping-bucket rain gauge installed at ground level. The 
weather station was installed near the field boundary to avoid 
canopy interference with the solar radiation sensor and rain 
gauge. We also installed a Sentek drill-and-drop soil mois-
ture probe within one crop row, which we assumed was rep-
resentative of the soil water status of the entire cropping field 
(see further discussion on this assumption in “Discussion 
and conclusion”). The soil water probe measured soil water 
content continuously for each 10 cm layer down to 90 cm. 
The measurements from each layer were calibrated against 
soil samples taken next to the probe, towards the end of the 
season. All climate variables were monitored every 6 min 
and the soil water was monitored at a 30-min interval. To 
facilitate the APSIM simulations, which were all at a daily 
step, we processed the 6-min raw measurements for solar 
radiation, air temperature and rainfall into the daily average 
solar radiation (MJ/m2), the daily maximum and minimum 
temperature (°C), and the daily total rainfall (mm). We took 
the mid-day values of the sub-daily soil water content meas-
urements as representative daily values.

The APSIM crop model

To simulate crop water use and thus soil water content, we 
used APSIM (Agricultural Production Systems sIMulator, 
v7.10), which is widely applied for simulating agricultural 
systems using information on climate, plant phenology, soil 
properties and irrigation (Holzworth et al. 2014). For this 
study, we focused on the crop and soil water modules within 
the model. The Maize crop module (APSIM 2021b; Car-
berry and Abrecht 1991; Carberry et al. 1989; Keating et al. 
1991; Keating and Wafula 1992) was applied to represent 
the phenology, biomass accumulation, root depth and crop 
water use.

The SoilWat module (APSIM 2021c), which conceptu-
alizes each soil layer as a bucket (Jones and Kiniry 1986; 
Littleboy et al. 1992), was used to model the fluctuation of 
soil water with time within each soil layer, and the vertical 
movement of water between layers, in response to irrigation, 
rainfall and evapotranspiration. The module partitions total 
irrigation and rainfall to evapotranspiration, runoff, infiltra-
tion and drainage, each of which is defined and conceptual-
ized in APSIM as follows:

•	 Evapotranspiration includes evaporation from the soil 
surface and transpiration from the crop. The upper limit 
of evapotranspiration (potential evapotranspiration) is 
first estimated with the Priestly and Taylor model from 
climate data (Priestley and Taylor 1972). This potential 
evapotranspiration is then converted to 1) actual soil 
evaporation depending on the wetness of the soil sur-
face layer; and 2) crop transpiration through daily vapour 
pressure deficit, soil water deficit, as well as the biomass 
accumulation and transpiration efficiency which are both 
determined by the Maize crop module based on simulated 
phenology (APSIM 2021b).

•	 Runoff represents the residual water leaving the soil 
surface. It is generated using the USDA curve num-
ber approach in SoilWat, and is thus dependent on the 
amount of irrigation and/or rainfall (APSIM 2021c).

•	 Infiltration represents the water movement from each 
layer to the next layer below, depending on the satura-
tion status of layers, the water content gradient between 
the layers and the diffusivity (APSIM 2021c).

•	 Drainage is the amount of water leaving the bottom of the 
soil store (i.e., the deepest layer), and is dependent on a 
parameter representing drainage proportion for the bot-
tom layer and the moisture of that layer (APSIM 2021c).

To simulate soil water, APSIM requires the following 
inputs:

Fig. 1   Schematic of the risk analysis framework to evaluate irrigation options. APSIM refers to the crop model, Agricultural Production Systems 
sIMulator, which is detailed in “The APSIM crop model”
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[1]	 The sowing and harvesting dates, which were provided 
by the field owner for this study.

[2]	 The daily climate data consisting of solar radiation, 
maximum and minimum air temperature, and rainfall, 
which were all obtained from our in-field monitoring.

[3]	 The initial soil water status, which was extracted from 
our calibrated in-field soil water observations at the start 
of the season.

[4]	 Timing and amount of each irrigation event. For cali-
bration purposes, these were back-calculated from our 
in-field observations of soil water (calibrated) and rain-
fall. The back-calculated irrigation amounts were found 
to underestimate the actual irrigation amount reported 
by the farmer (~ 40 mm estimated compared to ~ 70 mm 
applied). However, we assumed a minimal effect of this 
uncertainty on the modelled irrigation amount, which 
we will explicitly address in future studies (see the “Dis-
cussion and conclusion” section). For the forecast eval-
uations, irrigation was handled differently, as detailed 
below.

To simulate the soil water content for each soil layer, 
APSIM requires several key soil water parameters e.g., 
bulk density (BD), field capacity (DUL), crop wilting 
point (LL15). To determine these parameters, we first 
chose a soil type from the in-built soil database ApSoil 
(Clay loam Lismore #827) that was representative of our 
study field. Note that this selection is not based on geo-
logical proximity of the soil sample to our study field, but 
on whether the soil parameters can reproduce the range of 
in-field soil water observations obtained from our study 
site. We chose to focus on matching simulations to obser-
vations for the top three soil layers: from the soil surface 
to depths of 150 mm, 300 mm and 700 mm, as the total 
depth of 700 mm was the approximate depth of root zone 
at crop maturity inferred from our soil water observations. 
We then further improved the representativeness of the soil 
parameters by adjusting the values of DUL and LL15 for 
each layer. These adjustments were informed by a manual 
model calibration process, which used the abovementioned 
model inputs ([1]–[4]) and aimed to achieve a good match 
between the modelled and the observed soil water con-
tents over the full cropping season. Since the study does 
not intend to investigate effect of nutrient availability, we 
ensured that the crop was not nutrient-limited by apply-
ing a sufficiently large initial soil nitrogen. Specifically, 
this was achieved by setting the initial NO3 and NH4 for 
each of the three soil layers as 50 ppm and 3 ppm respec-
tively, with no fertilizer applied during the season. We 
also assumed a large initial surface residual of organic 
matter (e.g., stubble from previous season) of 1000 kg/ha 

(APSIM 2021a). We ensured that the crop was not nutri-
ent-limited with these settings via a preliminary model 
simulation.

Ensemble short‑term rainfall forecasts

Ensemble short-term rainfall forecasts were generated for 
the study field over the cropping season as a critical input in 
this risk evaluation framework. There are four steps involved 
in generating these rainfall forecasts:

1)	 We obtained the raw hourly forecasts from the ACCESS-
G2 model, for the future 9-day period across all of 
Australia. This deterministic model was the Australian 
Bureau of Meteorology’s operational numerical weather 
prediction model for the study period.

2)	 The raw forecasts were then aggregated to match the 
spatial and temporal resolutions of the daily precipita-
tion data—0.05° × 0.05° grid (approximately 5 km)—
across Australia, derived from historical observations 
by the Australian Water Availability Project (AWAP).

3)	 The raw daily forecasts were individually calibrated by 
using the Seasonally Coherent Calibration (SCC) model 
(Wang et al. 2019; Yang et al. 2021; Zhao et al. 2021) to 
improve their match with the AWAP data for our study 
field site, and to generate 100 ensemble forecast mem-
bers for the future 9-day period.

4)	 The forecast ensemble members at different lead times 
were stochastically linked using the Schaake Shuffle 
technique (Clark et al. 2004) to form forecast ensemble 
time series with appropriate serial correlations between 
days.

This process yielded a 100-member ensemble of daily 
rainfall forecasts for the study field, for the future 9 day 
period. The process was repeated starting from each day in 
the cropping season.

Figure 2 summarizes the performance of rainfall forecasts 
with three performance metrics (see the Appendix for details 
of the estimation for each metric):

•	 The bias in average daily precipitation in the raw and 
calibrated forecasts;

•	 The continuous ranked probability score (CRPS) skill 
score to measure skill in each of the raw and calibrated 
forecasts relative to ensemble climatology reference fore-
casts; and

•	 The alpha index (α) to summarize the reliability of the 
calibrated forecasts.

The calibrated precipitation forecasts demonstrate better 
accuracy than the raw forecasts. The raw forecasts overpre-
dict precipitation by more than 0.15 mm/day for lead times 
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of 1–7 (i.e., Days 1–7) (Fig. 2a). Calibration with the SCC 
model reduced the biases in the raw forecasts by over 40% 
for Days 1–7. In this study, we used the long-term (30-year) 
AWAP data to derive the climatology of observations for 
forecast calibration. The remaining biases in the calibrated 
forecasts mainly reflect the deviation of precipitation obser-
vations during the evaluation period (4/2016–3/2020) from 
the 30-year climatology (4/1990–3/2020).

The calibrated forecasts are much more skillful than the 
raw forecasts. Specifically, the raw forecasts have increas-
ingly negative CRPS skill scores (meaning worse perfor-
mance than climatology forecasts) beyond Day 1 due to both 
systematic and erratic errors, as well as the lack of uncer-
tainty representation in the raw (deterministic) forecasts 
(Fig. 2b). Calibration with the SCC substantially improved 
forecast skill and shows better performance than the clima-
tology forecasts across all lead times due to correction of 
both the bias and ensemble spread. The high α-index values 
of the calibrated forecasts suggest that they have high reli-
ability. The α-index remains above 0.95 for all lead times, 
indicating good quantification of forecast uncertainties, with 
the distribution of the calibrated ensemble forecasts being 
neither too narrow nor too wide (Fig. 2c).

Ensemble simulations to evaluate risks 
from different irrigation decisions

To evaluate risks from different irrigation decisions, we ran 
APSIM to generate an ensemble simulation of soil water 
contents for each of nine different irrigation timings within 
the future 9-day period. The simulations for each 9-day 
forecast period were made by running APSIM from the 
start of the season with forcing constructed by combining 
three sub-periods. These periods were: (a) the antecedent 
period including all days within the season prior to the 9-day 
window of interest; (b) the future 9-day periods for which 
irrigation decisions need to be made using forecasts; and 

(c) the post-decision period with all days beyond the future 
9-day until the season ends. For the antecedent period, the 
observed climate data and the initial soil water content at 
the start of the season were used as input data, with irriga-
tion determined using the automatic irrigation routines in 
APSIM (see paragraph below). For the future 9-day period, 
the climate input data included the ensemble rainfall fore-
casts, observed data from the remaining climate variables. 
Irrigation was assumed to occur only once during the 9 days 
and individual simulations were performed for all possible 
irrigation timings from Day 1 to Day 9. The simulation for 
the post-decision period relied on the observed climate data 
with no irrigation applied. The simulation results from the 
post-decision period was used only for evaluating possi-
ble drainage following irrigation during the 9 day forecast 
period.

To ensure sufficient water supply to the crop before each 
9-day forecast period (i.e., during the antecedent period), 
we did not use the actual irrigation events derived from the 
observed soil water. Instead, we set up ‘automatic irrigation’ 
within the antecedent period, which triggered an irrigation 
(filling to DUL) as soon as soil water dropped to a user-
defined critical level (refill point). The critical refill point 
was estimated using a tension-based approach, by calculat-
ing the total readily available water over the top three soil 
layers that correspond to a soil matric potential of − 40 kPa. 
The estimation of soil water corresponding to − 40 kPa fol-
lowed a regional guide on refill point estimation by crop and 
soil type (Giddings 2004).

While the simulations were run from the start of the sea-
son to define the antecedent soil water and crop conditions, 
the following 9-day forecast period was focused on evaluat-
ing each possible irrigation decision (timing of irrigation 
on Days 1–9). The simulations were driven by the 100 sets 
of weather inputs from the corresponding 9-day ensemble 
rainfall forecasts (“Ensemble short-term rainfall forecasts”). 
Since this study focuses on future rainfall uncertainty, our 

Fig. 2   The a) bias, b) continuous ranked probability score (CRPS) 
skill score and c) alpha index (α) for the ensemble rainfall forecasts. 
These summarize the forecast accuracy, skill and reliability, respec-

tively. For both a) and b), the corresponding performance of the raw 
forecasts is also shown for comparison. Please see the Appendix for 
detailed definitions and methods of calculation



161Irrigation Science (2023) 41:155–171	

1 3

in-field climate observations for the 9-day period were used 
for all other required weather inputs (i.e., temperature and 
radiation) (“Study field”).

To evaluate each irrigation decision. We first extracted the 
following outputs from the 100 simulations:

1)	 Daily root-zone (70 cm) soil water content, within the 
9-day period;

2)	 Daily runoff, within the 9-day period;
3)	 Daily drainage, within the 9-day period plus a 6-day lag 

period. The lag period was determined by a preliminary 
analysis in which we applied a large irrigation amount 
when the soil water content was near field capacity, and 
concluded a 6-day period was required for drainage to 
complete.

We summarized the outcome of each irrigation decision 
by estimating the corresponding risks of stressing the crop 
and wasting water, specifically:

•	 Risk of crop stress: this was summarized in two ways—
the duration of crop stress, and the extent of stress. The 
stress duration was calculated as the total number of days 
for which the simulated soil water content was below 
the critical refill point (same as the that used to trigger 
the ‘automatic irrigation’) within the 9-day period. The 
stress extent was calculated by summing up the differ-
ences between the soil water content and the critical refill 
point across all days within the stress duration, which 
thus had a unit of mm days. This stress duration was 
intended to account for different levels of cumulative 
stress; specifically, both a low and high deficit below the 

refill point for one day can lead to crop stress with the 
same duration of stress, but would likely have different 
impacts on the crop.

•	 Risk of wasting water: this was calculated as the sum of 
runoff and drainage after the irrigation event within the 
9-day period. For runoff, the summation period ended on 
the last day of the 9-day period; for drainage, the summa-
tion period ended 6 days after the end of the 9-day period 
to allow for the abovementioned lag in drainage (item 
3 in the abovementioned outputs from the 100 model 
simulation). Thus, this wastage risk had a unit of mm.

The above procedure for running APSIM ensemble 
simulations and extracting simulation outputs to evaluate 
irrigation decision was repeated to evaluate each decision 
to irrigation on Day 1 to Day 9, within each 9-day forecast 
period over the full cropping season. Figure 3 shows an 
example of the ensemble soil water simulations for one 
irrigation decision on Day 8 within a single 9-day period, 
which enables estimation of risks associated with this 
decision.

Results

In this section, we first present the detailed risk results 
for three 9-day forecast periods within the cropping sea-
son, starting on Day 42, Day 50 and Day 66 of the crop-
ping season. Results for these particular days were chosen 
because they are representative examples of contrasting 
risk patterns expected in the next 9 days: (1) having both 

Fig. 3   An example of ensemble 
soil water simulations for a 
specific irrigation decision (i.e., 
to irrigate on Day 8) within 
one 9-day period. The dotted 
lines indicate the field capacity 
and the critical refill point: the 
former (blue dotted line) will 
trigger risks of wastage, which 
were summarized by the sum of 
runoff over the 9-day period and 
drainage over the 9-day plus a 
6-day lag period to account for 
drainage (blue arrow); the latter 
(red dotted line) will trigger 
risks of crop stress, which were 
summarized by both the dura-
tion and the cumulative amount 
of soil water below the refill 
point within the 9-day period 
(red arrow)
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stress and wastage risks present; (2) having only the wast-
age risk present; (3) having only the stress risk present. 
Each case is discussed in detail in “Typical short-term risk 
profiles”. We then present a summary of the variation of 
risks across the full cropping season in “Variation of risks 
across the full season”.

Typical short‑term risk profiles

The 9-day period starting on Day 42 of the cropping sea-
son experiences both stress and wastage risks, resulting in a 
trade-off that should be considered in deciding the irrigation 
timing. Since this is the first example we discuss, we present 
more detailed results on the two types of risks associated 
with different irrigation timings, as well as their derivation 
to illustrate how the risks were calculated from the APSIM 
simulations. Figure 4 shows the 100-member ensemble rain-
fall forecasts for the 9-day period starting on Day 42 (panel 
a)), and the corresponding 100-member APSIM ensemble 
simulations of soil water content (middle column, b), e) and 
h)) and total runoff and drainage (right column, c), f) and 
i)). The simulations were performed for all possible irri-
gation timings, i.e. on Days 1 to 9, with only three irriga-
tion timings (Day 1, Day 5 and Day 9) shown in Fig. 4 for 
illustration, with one day on each row. Note that within the 
9 days, there will be no stress after the irrigation event, thus 
the period to assess the stress risk should include all days 
within the 9-day period prior to the irrigation event. We thus 
considered analysis periods of varying lengths for different 
irrigation timings i.e., from the day 1 until the day of irriga-
tion, which ensured that the risk results are purely influenced 
by the irrigation timings assessed. The analysis period for 
the wastage risk included all days within the 9-day forecast 
period and a further 6 days after it to allow for delayed drain-
age to be considered (see details in Risk of wasting water 
in “Ensemble simulations to evaluate risks from different 
irrigation decisions”).

With the ensemble APSIM simulations in Fig. 4, the 
distributions of stress and wastage risks for each irrigation 
timing are derived and summarized in Fig. 5. Specifically, 
for each irrigation timing, the stress duration and extent 
were summarized using the ensemble soil water simulations 
shown in the middle column of Fig. 4 (panels b), e) and h)). 
The wastage risk was summarized with the ensemble simu-
lations of runoff and drainage as shown in the right column 
of Fig. 4 (panels c), f) and i)), see “Ensemble simulations 
to evaluate risks from different irrigation decisions” for the 
detailed risk estimation approach).

Figure 5 shows that the stress risk (considering both the 
stress duration and extent) can only be completely avoided 
if irrigation occurs on Day 1. Note that in summarising the 
highly skewed risks from individual simulations, the sum-
mary of risks in Fig. 5 (and the subsequent Figs. 6 and 7) 

only extends to 1.5 times the interquartile range (i.e., end of 
the whiskers), and do not consider outliers. With irrigation 
from Day 2 onwards, both the stress duration and extent 
increase as irrigation is applied later. No wastage risk is 
produced unless irrigation is applied on either Day 8 or Day 
9. With both risks likely to occur within the 9-day period, 
the irrigation decision making needs to consider the trade-off 
between both risks. If the objective is to completely avoid 
both risks, the optimal timing to irrigation would be Day 1.

Figure 6 shows the stress and wastage risks for the 9-day 
period starting on Day 50 of the season, derived from the 
ensemble APSIM simulation in the same way as illustrated 
in Fig. 4. For this period, wastage risk presents if irrigation 
occurs on Days 1 to 3. There is no risk of stress over the 
entire 9-day period, which suggests the best irrigation deci-
sion as to not to irrigate on any day. The difference in risk 
between different forecast starting days (e.g., comparing Day 
46 with Day 50) is expected to be due to different initial soil 
water conditions and differences in the future rainfall fore-
casted, which will be discussed in more detail in “Variation 
of risks across the full season”.

Figure 7 shows the risks for the future 9-day period start-
ing on Day 66 of the season. For this entire period there is 
no risk of wastage. Stress risk is not produced if irrigating 
on Day 1 or Day 2; if irrigation occurs on Day 3 onwards, 
stress risk will keep increasing with irrigation on a later 
day. Therefore, if the irrigation aims to completely avoid 
the stress risk, the best timing would be either Day 1 or 2.

Variation of risks across the full season

“Typical short-term risk profiles” illustrated how the APSIM 
ensemble simulations are used to derive the stress and wast-
age risks associated with different irrigation decisions for 
individual 9-day periods, and presented three typical periods 
over a cropping season with different types of risks occur-
ring. In this section, we summarize the estimated risks over 
all 9-day forecast periods in the season in Figs. 8 and 9. Note 
that these results do not intend to present or recommend 
any specific irrigation strategy, but instead, they focus on 
the expected short-term risks of under- and over-irrigation 
throughout the season under different soil water and rainfall 
conditions. As such, Figs. 8 and 9 intend to discuss the criti-
cal periods of risks across this season, for which decisions 
on irrigation timing should be carefully considered.

Figure 8 presents the simulated probabilities of occur-
rence for the three different risk types for each day in the 
season, specifically: the crop being stressed, wasting water 
and both a stressed crop and water waste occurring together. 
For irrigation on each day within the future 9-day period, 
the probabilities of each risk type (9 values in total) were 
estimated by counting the number of the corresponding 
100 ensemble simulations that have non-zero extent of the 
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Fig. 5   The ensemble simulations of: a) stress duration in days; b) 
stress extent in mm day, and c) waste extent in mm. All risks are plot-
ted for different irrigation timing decisions i.e., to water on Day 1–9 

within the future 9 days starting on Day 42 in the season (x-axes). All 
boxplots are shown with no outliers and whiskers are 1.5 times the 
interquartile ranges

Fig. 6   The ensemble simulations of: a) stress duration in days; b) 
stress extent in mm.day, and c) waste extent in mm. All risks are plot-
ted for different irrigation decisions i.e., to water on Day 1–9 within 

the future 9 days starting on Day 50 in the season (x-axes). All box-
plots are shown with no outliers and whiskers are 1.5 times the inter-
quartile ranges

Fig. 7   The ensemble simulations of: a) stress duration in days; b) 
stress extent in mm day, and c) waste extent in mm. All risks are plot-
ted for different irrigation decisions i.e., to water on Days 1–9 within 

the future 9 days starting on Day 66 in the season (x-axes). All box-
plots are shown with no outliers and whiskers are 1.5 times the inter-
quartile ranges
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specific risk type. The simulations were produced based on 
the corresponding 100 individual ensemble rainfall fore-
casts. For each risk type, the 9 probabilities of occurrence 
(corresponding to irrigation on each day within Days 1–9 
in the future) were then averaged to derive the final risk 
probability for each day in the season, as shown in Fig. 8. 
The risk probabilities in Fig. 8 suggest that there is some 
risk of wastage nearly all the time over the season, with 
peaks around periods of higher soil water content; in con-
trast, the occurrences of stress risk are infrequent, and are 
aligned in time with low soil water levels (Fig. 9b). Finally, 
the combination of both the stress and waste risks occurring 
together is expected for only a few days in the season. The 
more frequent occurrence of the waste risk is a result of the 
ensemble rainfall forecasts used. It results because there are 
always a few ensemble members with significant rainfall. To 
provide a more comprehensive assessment of the expected 
risk patterns across the full season, instead of considering 
the full set of ensemble simulations, we focus our discussion 
on the 75th percentile of the estimated risk extents in the 
subsequent results (Fig. 9).

The top two panels of Fig. 9 show: (a) the 75th percentile 
of the ensemble rainfall forecasts for each day in the crop-
ping season, with a 1-day forecast lead-time (chosen because 
it provided the most accurate forecasts); and b) the initial 
soil water (as defined in “Ensemble simulations to evaluate 
risks from different irrigation decisions”) for each day in the 
cropping season. The time-series in both panels a) and (b) 
are overlayed by coloured dots which indicate which of the 
three risk types is expected over the corresponding 9-day 
forecast period, where the definition of each risk type was 

based on the 75th percentile of the specific risk from the 
100 ensemble simulations. In contrast to Fig. 8, if consid-
ering only the higher probably of wastage (Fig. 9), almost 
half of the days in this cropping season have no stress or 
wastage risk for the future 9 days (47.3%). This absence of 
risk occurs regardless of whether any irrigation is applied 
within the 9-day period, or which day irrigation is applied. 
A further 15.5% and 29.5% of days in the season have only 
the stress or wastage risk for the future 9-day period, respec-
tively. There is only a small number of days (7.8%) where 
both stress and wastage risks are expected for the future 
9 days. These periods with both risks present a trade-off 
situation that requires critical decisions on irrigation timing.

Panels c) and d) of Fig. 9 show the 75th percentile of 
extent of each risk type averaged over each 9-day period, 
plotted against the rainfall forecasts and the initial soil water 
status. The extents of stress and waste risks were each esti-
mated by averaging the 75th percentile of the specific risk 
extent across the future 9-day period, and were summarized 
in mm.days and mm, respectively. Higher stress risks gen-
erally occur on days when soil water is low; while waste 
risks generally increase with higher soil water content. For 
this particular study site and cropping season, the short-term 
rainfall forecasts do not seem to have big influence on the 
extents of both the stress and waste risks. In theory, the sizes 
stress and waste risks should be controlled by both the soil 
moisture and rainfall. The much higher sensitivity of these 
risks to soil moisture than to forecasted rainfall is likely due 
to the limited high rainfall events in our forecasts and the 
wide range of soil moisture levels during dry days (Fig. 9e).

Fig. 8   The probability of occurrence of the three risk types: stress 
only, waste only and both risks for each day in the season. The prob-
ability of occurrence for each risk type for each day in the season was 
estimated by averaging the probability of each risk type occurring 
when irrigating on each of the future 9 days. For irrigation on each 

day within the 9 days, the probability of occurrence for the specific 
risk was obtained from the 100 ensemble soil water simulations cor-
responding to the 100 ensemble rainfall forecasts. The vertical dashed 
lines indicate Day 42, 50 and 66 which were used as examples in 
“Typical short-term risk profiles” to illustrate the three risk types



166	 Irrigation Science (2023) 41:155–171

1 3

Fig. 9   a)  The 75th percentile of forecast rainfall (with 1-day lead 
time) in mm; and b) the soil water at the start of each forecast period 
over the full cropping season. In both a) and b), the colours of the 
dots indicate the three possible types of risks: trade-off between 
stress and wastage risks, stress risk only, wastage risk only, and no 
risk. The vertical dashed lines indicate Day 42, 50 and 66 which were 
used as examples in “Typical short-term risk profiles” to illustrate 

the three risk types. Panels c) and d) show how the simulated aver-
age risk extents for each 9-day period varies against forecasted rain-
fall and soil moisture contents at the start of the period, where the 
risk are shown separately for stress in mm days (orange) and waste 
in mm (blue) when each risk presents. Panel e) plots the relationship 
between the forecasted rainfall and initial soil water
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Discussion and conclusion

The risk analysis framework presented in this study can be 
used in two ways to inform practical irrigation decision mak-
ing. Firstly, the risks identified for individual 9-day periods 
within the season can help inform a farmer’s day-to-day irri-
gation decisions, as we illustrated with the three contrast-
ing examples in “Typical short-term risk profiles”. Having 
the risk information, rather than only an optimized decision 
recommendation, allows farmers to bring other manage-
ment considerations into their decision making. Assessing 
risks across multiple 9-day periods or over the full cropping 
season (“Variation of risks across the full season”) allows 
one to understand the occurrence of different types of risk, 
the amount of stress or waste expected, and the likely soil 
and weather conditions contributing to these risks. Such full 
season analysis can inform the critical periods and the types 
of risks within a cropping season that require more attention 
for short-term irrigation decision-making. When both risks 
present, a comprehensive risk analysis as we illustrated is 
particularly important for farmers to understand the uncer-
tainty in the risks and deciding an optimal irrigation timing.

This study addresses an important knowledge gap in pro-
viding decision support information based on high-quality 
short-term ensemble weather forecasts (Hejazi et al. 2014). 
Specifically, the analysis framework we developed provides 
an alternative view, compared with previous work on opti-
mization for irrigation scheduling (Cai et al. 2011; Cao et al. 
2019; Gowing and Ejieji 2001; Hejazi et al. 2014; Wang and 
Cai 2009). This framework can better facilitate operational 
irrigation scheduling by presenting the uncertainty in the 
outcomes of different irrigation decisions, while allowing 
flexibility for individual farmers to make their own deci-
sions. As illustrated in “Typical short-term risk profiles”, the 
9-day periods starting from Day 42 and Day 66 both involve 
increasing stress risks if irrigation is applied on a later day, 
so it is better to irrigate earlier in both cases if the aim is 
to completely avoid crop stress. While we used a fixed soil 
water deficit to estimate stress, in real operation, as the crop 
grows and root zone develops, a farmer may use variable 
refill points across a season (instead of the constant refill 
point used in this study), based on his/her experience with 
the local climate, crop water use conditions and growth stage 
of the crop, implying a time variable representation of water 
stress would be required. A farmer can also choose to inten-
tionally reduce irrigation at a key growth stage to induce a 
desired crop response through a regulated crop stress. In 
this situation, the farmer may decide to irrigate on a later 
day with some minor stress expected, thus not following 
the optimal irrigation recommendations (Cai et al. 2011). 
A potential for further extension of our framework lies in 
risk communication with farmers, which might better focus 

on impacts on profit (rather than the stress and waste results 
presented), which might be induced by the impacts of crop 
stress on water use, crop yield and quality (e.g., Cai et al. 
2011; Wang and Cai 2009).

It is worth noting that the novelty of this study is the 
analysis framework developed, rather than the risk results 
presented. Specifically, all the risk results generated were 
based on a case study at a maize field in northern Victoria 
(as detailed in “Study field”), and only the uncertainty in 
future rainfall was considered. The risk results shown are 
specific to the study field and cropping season, which expe-
rienced only a few rain events. In contrast, for fields/sea-
sons with more frequent and/or larger rainfall events, we can 
expect more frequent situations where both the stress and 
waste risks (i.e., trade-off) occur. The risk results are also 
dependent on the irrigation method. With surface irrigation, 
the scheduling often consists of a near-constant irrigation 
depth across a season; such irrigation strategy creates rela-
tively large deficits followed by a large irrigation application, 
which means stress risks only appear near the end of each 
irrigation cycle and waste risks tend to occur just after each 
irrigation. The pattern of risk would be markedly different 
with sprinkler or drip irrigation, which is often applied more 
frequently and with more flexibility to vary the irrigation 
depth across a season (Brouwer et al. 1989). Nevertheless, 
the framework we present is flexible enough to estimate irri-
gation risks for any cropping fields with any irrigation meth-
ods, while also incorporating other sources of uncertainty.

This study is the first step in establishing an uncertainty 
framework to evaluate and inform irrigation decisions, 
thus several simplifications and assumptions were made. 
We focused on gravity-fed surface irrigation systems and 
a critical assumption was that irrigation decisions were 
only about timing. Uncertainty in irrigation amounts can 
be contributed by multiple sources of uncertainty. First, 
in calibrating the APSIM model, we used the irrigation 
amounts which were back-calculated from our calibrated 
soil water observations (“The APSIM crop model”), which 
were found to under-estimate the actual irrigation amounts 
that the farmer applied, possibly due to an unrepresenta-
tive monitoring site. We assumed that the under-estimation 
of these irrigation amounts compared to actual irrigation 
had minimal impacts on the modelling. Realistically, such 
under-estimation may cause the calibrated model to under-
represent the variability in soil water contents, which further 
leads to under-estimation of both the stress and waste risks. 
Therefore, we recommend improved soil water measure-
ments using more detailed site-specific calibration, multi-
ple monitoring sites, and/or multiple sources of information 
including soil samples and irrigation records from farmers. 
Further, uncertainty in irrigation amounts can also affect the 
implementation of APSIM for soil water simulations when 
assessing different irrigation timings. Here we assumed 
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that the irrigation amounts were known with precision and 
each irrigation always refilled soil water to the field capac-
ity (“Ensemble simulations to evaluate risks from different 
irrigation decisions”). However, such modelling is limited 
in representing realistic irrigation events which may not be 
able to precisely replace the deficit of the soil profile. Future 
work will need to incorporate this important uncertainty in 
irrigation amounts to be able to better represent gravity-fed 
surface irrigation systems, as well as extending the analysis 
framework to different irrigation systems such as drip irriga-
tion, for which irrigation amount is another critical decision 
variable apart from timing (Brouwer et al. 1989).

In this study, we generated probabilistic risks by consid-
ering only the uncertainty that arises from rainfall forecasts. 
We plan to incorporate other sources of uncertainty in our 
future expansion of the analysis framework, including:

1)	 Uncertainties in potential evapotranspiration forecasts. 
This is a key source of uncertainty which is especially 
relevant to the stress risks, as it affects the rate of 
soil water depletion in between irrigation and rainfall 
events (Perera et al. 2014). To represent realistic future 
weather conditions, any cross-correlation between mul-
tiple climate variables (e.g., temperature, rainfall and 
solar radiation) should also be taken into account while 
incorporating the uncertainty future rainfall and poten-
tial evapotranspiration (Li et al. 2017).

2)	 Uncertainty in soil water modelling. Similar to 1), this 
also contributes to the uncertainty of estimated soil 
water depletion and thus has important impacts on the 
estimation of stress risks within each period of analysis 
(9 days in this study). The key issues here include uncer-
tainty in model parameterization (e.g., crop water use 
characteristics and soil hydraulic properties) and alterna-
tive choices of crop growth and soil water models (e.g., 
SWAT, CropWat), which both influence the modelled 
rate of soil water depletion (Confalonieri et al. 2016; 
Sándor et al. 2017; Wallach and Thorburn 2017).

3)	 Uncertainty in initial soil water content estimates. 
Depending on how these are established uncertainties 
may arise from (a) uncertainty in soil water observa-
tions, (b) model uncertainties, or (c) uncertainties in 
historical weather observations and irrigation estimates. 
In this study, uncertainty in initial soil water status can 
be contributed by all three factors. The APSIM model 
calibration relied on field observations of soil water, 
which may be subject to instrumental/human errors as 
well as insufficient representation of spatial heterogene-
ity of the cropping field (Grayson and Western 1998; Or 
and Hanks 1993; Paraskevopoulos and Singels 2014). 
When running ensemble simulations with the calibrated 
model, the initial soil water status for each forecast 
period (9 days) depended on both the model uncertainty 

and uncertainties in historical weather observations and 
irrigation estimates for the preceding period.

It is expected that adding these further sources of uncer-
tainty will further expand the range of ensemble soil water 
simulations compared to those presented in this study (e.g., 
Fig. 4). As a result, we can expect more frequent occurrence 
of the risk trade-off situation (i.e., having both the stress and 
waste risks together) and less of the no-risk situation.

A comprehensive uncertainty framework can be estab-
lished once these further sources of uncertainty are incor-
porated. Such a framework will represent uncertainties 
involved in irrigation decision making in a more realistic 
manner, and thus enable more effective comparison and 
optimization of irrigation decisions, which is highly ben-
eficial to irrigation scheduling in practice.

Appendix: Evaluation of forecasting 
performance

Accuracy

We first evaluated the forecast accuracy of precipitation 
by calculating bias in average precipitation in the raw and 
calibrated forecasts relative to AWAP data using:

where Bias refers to bias in average precipitation (mm/day); 
T is total days during the validation period (4/2016–3/2020); 
x(t) is daily precipitation (mm/day) or wet days (%) during 
the 4-year period in forecasts, and y(t) is the corresponding 
observations of the same period.

Skill of the raw and calibrated forecasts

We used the continuous ranked probability score (CRPS) 
skill score to measure the skill in the raw and calibrated 
forecasts relative to ensemble climatology reference fore-
casts. CRPS has been widely used to measure forecast-
ing skill of probabilistic forecasts that provide predictive 
cumulative distribution functions. Specifically, CRPS was 
calculated using Eqs. 2 and 3:

(1)Bias =
1

T

∑T

t=1
(x(t) − y(t))

(2)CRPS(t) = ∫ {F(t, x) − H(x − y(t))}2dx
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where F(t,x) is the cumulative density function of an ensem-
ble forecast, and y(t) is the observation at time t; H is the 
Heaviside step function (H = 1 if x–y(t) ≥ 0 and H = 0 oth-
erwise); the overbar represents averaging across the T days. 
For deterministic forecasts, CRPS is reduced to absolute 
errors.

Following the derivation of CRPS values for the raw, 
calibrated, and ensemble climatology reference forecasts, 
we further calculated the CRPS skill score (CRPSSS) using:

where CRPSreference is the CRPS value of ensemble climatol-
ogy reference forecasts; and CRPSforecasts refers to the CRPS 
value of the raw or calibrated forecasts. Here CRPSSS meas-
ures the difference between the CRPS values of the forecasts 
and those of the ensemble climatology forecasts. Positive 
skill scores indicate better skill than the ensemble climatol-
ogy reference forecasts and vice versa.

Reliability

One important advantage of SCC is the capability to con-
vert deterministic raw forecasts into ensemble forecasts, with 
the ensemble spread representing forecast uncertainty. The 
reliability of ensemble forecasts refers to the consistency 
between forecast distributions and the frequency of associ-
ated events in the observations. To further evaluate the reli-
ability of calibrated forecasts, we calculated the probability 
integral transform (π(t)) value using:

where F(t,x) is the cumulative density function of the ensem-
ble forecast, and y(t) is the observation. For reliable fore-
casts, π(t) follows a uniform distribution. To demonstrate the 
spatial patterns of reliability of calibrated forecasts across 
Australia, we then calculated an alpha index (α) to summa-
rize the reliability in each grid cell using Eq. 6 below:

where π* (t) is the sorted π(t) in ascending order; and n 
is the total number of days. This index represents the total 
deviation of calibrated forecasts from the corresponding uni-
form quantile. Perfectly reliable forecasts should have an 
α-index of 1, and forecasts have lower reliability as α-index 
decreases from 1.

(3)CRPS =
1

T

T∑

t=1

CRPS(t)

(4)CRPSSS =
CRPSreference − CRPSforecasts

CRPSreference
× 100

(5)�(t) = F(t, x = y(t))

(6)� = 1 −
2

T

∑T

t=1

|||
|
�
∗(t) −

t

n + 1

|||
|
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