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Abstract

Remote sensing estimation of evapotranspiration (ET) directly quantifies plant water consumption and provides essential
information for irrigation scheduling, which is a pressing need for California vineyards as extreme droughts become more
frequent. Many ET models take satellite-derived Leaf Area Index (LAI) as a major input, but how uncertainties of LAI esti-
mations propagate to ET and the partitioning between evaporation and transpiration is poorly understood. Here we assessed
six satellite-based LAI estimation approaches using Landsat and Sentinel-2 images against ground measurements from four
vineyards in California and evaluated ET sensitivity to LAI in the thermal-based two-source energy balance (TSEB) model.
We found that radiative transfer modeling-based approaches predicted low to medium LAI well, but they significantly
underestimated high LAI in highly clumped vine canopies (RMSE ~0.97 to 1.27). Cubist regression models trained with
ground LAI measurements from all vineyards achieved high accuracy (RMSE ~ 0.3 to 0.48), but these empirical models did
not generalize well between sites. Red edge bands and the related vegetation index (VI) from the Sentinel-2 satellite contain
complementary information of LAI to VIs based on near-infrared and red bands. TSEB ET was more sensitive to positive
LAI biases than negative ones. Positive LAI errors of 50% resulted in up to 50% changes in ET, while negative biases of 50%
in LAI caused less than 10% deviations in ET. However, even when ET changes were minimal, negative LAI errors of 50%
led to up to a 40% reduction in modeled transpiration, as soil evaporation and plant transpiration responded to LAI change
divergently. These findings call for careful consideration of satellite LAI uncertainties for ET modeling, especially for the
partitioning of water loss between vine and soil or cover crop for effective vineyard irrigation management.
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Irrigation is critical for vineyards to sustain plant water
uptake and control berry quality (Knipper et al. 2019). To
conserve water and improve water use efficiency, the fre-
quency and amount of irrigation can be determined by moni-
toring evapotranspiration (ET), which quantifies the water
lost from the soil through direct evaporation and plant tran-
spiration (Ko and Piccinni 2009; Mahmoud and Gan 2019).
ET can be routinely estimated using remote sensing images
collected from airborne or satellite sensors (Allen et al.
2007; Anderson et al. 2012; Hoffmann et al. 2016; Knip-
per et al. 2020). Compared to ground-based measurements,
remote sensing approaches have demonstrated capabilities to
resolve between- and within-field spatial heterogeneities in
plant water stress, with great potential to support the opera-
tional irrigation scheduling (Ohana-Levi et al. 2021).

Among many remote-sensing-based ET models (Ander-
son et al. 1997; Bastiaanssen et al. 1998; Su 2002; Allen
et al. 2007), the Two-Source Energy Balance (TSEB) model
is particularly suited for the unique canopy architecture of
vineyards (Norman et al. 1995; Kustas and Norman 1997;
Kustas et al. 2018, 2019b), where tall and highly clumped
grapevine canopies are separated by wide interrows of bare
soil or cover crop. TSEB uses land surface temperature
(LST) and Leaf Area Index (LAI) to partition evaporative
fluxes between grape canopies and interrow soil or cover
crop, which could inform irrigation management to reduce
water loss from soil (Nieto et al. 2019a). TSEB is region-
ally implemented through the Atmosphere-Land Exchange
Inverse (ALEXI) model using time-differential LST meas-
urements from geostationary satellites (Anderson et al.
1997, 2007). A disaggregation tool called DisALEXI fur-
ther downscales ALEXI fluxes to sub-field levels using high-
resolution images from the MODerate Resolution Imaging
Spectroradiometer (MODIS) and Landsat (Anderson et al.
2004, 2011). With a widely-used image fusion technique,
i.e. the Spatial and Temporal Adaptive Reflectance Fusion
Model (STARFM), DisALEXI can produce 30-m ET data
cubes at daily time steps (Cammalleri et al. 2013, 2014).
Both TSEB and DisALEXI have been successfully applied
to estimate vineyard ET across various spatial scales (Sem-
mens et al. 2016; Anderson et al. 2019; Knipper et al. 2019,
2020; Kustas et al. 2019b; Nieto et al. 2019a, b).

LAl s a key input in TSEB for flux partitioning. LAI data
can be obtained from either ground observation or satel-
lite retrievals. Two broad categories of approaches exist to
derive LAI from satellites: empirical and physical. Empiri-
cal methods establish statistical relationships between in situ
LAI measurements and relevant remote sensing indicators
(Baret and Guyot 1991; Broge and Leblanc 2001; Kang et al.
2016; Wang et al. 2019; Gao et al. 2021). A typical method
is to build simple relationships between LAI and a Veg-
etation Index (VI), which is a mathematical transformation
of spectral bands (Vifia et al. 2011; Nguy-Robertson et al.
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2012). Non-parametric regression models such as Gauss-
ian process regression, neural networks, and support vector
machines may also be used to directly exploit individual
spectral bands (Verrelst et al. 2015). Physical approaches
involve solving radiative transfer models for LAI based on
surface reflectance measurements from satellites (Houborg
and Boegh 2008; Ganguly et al. 2012). Model inversion
methods include Look Up Tables (LUT), search algorithms,
or machine learning models (Myneni et al. 1999; Weiss
and Baret 2016). Approaches that use machine learning to
invert models are sometimes called semi-physical methods.
Empirical approaches are primarily applied in local study
sites where LAI is measured on the ground; however, local
relationships are often constrained to specific environmental
settings and cannot be generalized over time or space (Kang
et al. 2016). Regional to global satellite LAI products mainly
use physical or semi-physical approaches, yet practical chal-
lenges remain (Baret et al. 2016; Yan et al. 2016; Kang et al.
2021).

Satellite LAI estimation is subject to uncertainties due
to low signal-to-noise ratio, forward model assumptions,
the ill-posed inverse retrieval, and errors in the ancillary
information (Combal et al. 2003; Fernandes et al. 2014a;
Fang et al. 2019; Levitan et al. 2019). Previous validation
efforts show that uncertainties in satellite LAI estimations
vary by data product and biome type, with RMSE values
ranging from 0.19 to 2.41 (Fang et al. 2019; Brown et al.
2020, 2021). While many studies have focused on validat-
ing satellite LAI products, less is known about how errors
in LAI propagate to downstream modeling applications. A
few studies found that simulated carbon and water fluxes in
earth system models are sensitive to LAI, and discrepan-
cies among satellite LAI products could lead to substantial
differences in estimated Gross Primary Productivity (GPP)
and ET (Ryu et al. 2011; Jiang et al. 2017; Liu et al. 2018).
In vineyards, the highly clumped canopy structure, diverse
trellis architectures, and seasonal cover crop create addi-
tional challenges for LAI and ET estimation from satellites
(Sun et al. 2017; Kustas et al. 2019b; Nieto et al. 2019a; Gao
et al. 2021). Thus, it is imperative to carefully quantify LAI
estimation uncertainties and understand the impact on ET
modeling for sustainable water management in viticulture.

In the current study, we evaluate different empirical and
physical estimation approaches for LAI based on decamet-
ric-resolution satellite images (i.e., Landsat and Sentinel-2)
and assess the sensitivity of TSEB ET modeling in response
to LAI uncertainty. We focus on three study sites across the
California Central Valley, featuring a broad range of cli-
mate, soil conditions, trellis designs, grape varieties, and
management strategies. These sites are part of the Grape
Remote sensing Atmospheric Profile and Evapotranspiration
eXeperiment (GRAPEX) project (Kustas et al. 2018). LAI
estimation from different methods was compared to ground
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measurements. A sensitivity analysis assesses the impact of
LAI uncertainties on TSEB ET simulations in three sites.
Data and methods

Study site

The study domain includes three GRAPEX sites in the Cali-
fornia Central Valley: BAR, SLM, and RIP (Fig. 1, Table 1).

Characteristics of these fields, including vine variety, trel-
lis structure, and planting details, are provided in Table 1.
BAR is the northernmost site close to the Pacific Ocean.
In the 012 block (BARO12), vines were planted in 2010
in northeast-southwest rows (3.35 m width) with 1.83 m
planting intervals. Flux tower and related measurements as
part of the GRAPEX project began in 2017. In SLM, two
vineyards—SLMOO01 (north) and SLMO002 (south)—were
selected as the study sites. Both fields had a 3.35 m row
spacing and 1.5 m interrow spacing with an east-west row

(a) 125°0°0"W 120°0°0"W

115°0'0"W (b)

~ BARO12

40°0"0”N ~40°0°0"N
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Fig. 1 GRAPEX study site locations (a) and canopy snapshots (b). In
a, vineyard block boundaries are outlined in the high-resolution sat-
ellite imageries (Google Earth) and solid circles indicate flux tower

location. In b, phenocam photos for each site were selected for the
peak vegetative stage in 2018

Table 1 GRAPEX vineyard descriptions

Site  Location Vineyard ID Vine variety Year planted Trellising Row width Planting  Year Measured LAI
method (m) interval tower range
(m) deployed
BAR Sonoma, CA  BAROI2 Cabernet Sau- 2010 Split canopy 3.35 1.83 2017 0.8,2.4)
vignon

SLM Sacramento, SLMO001 Pinot Noir 2009 Quadrilateral ~ 3.35 1.52 2013 0.7,3.9)

CA
SLM Sacramento, SLMO002 Pinot Noir 2011 Quadrilateral ~ 3.35 1.52 2013 (1.0, 4.0)

CA
RIP  Madera, CA RIP760 Chardonnay 2010 Double Verti- 2.74 1.83 2017 (0.7, 4.0)

cal
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orientation. RIP block 760 (RIP760) features a double verti-
cal trellis with a row width of 2.74 m and a planting interval
of 1.83 m. The rows were planted in the east to west direc-
tion. Data collection in RIP started in 2017. All vineyards
use drip irrigation. More information about these sites is
detailed in Kustas et al. (2018) and Knipper et al. (2020).
When evaluating LAI estimation approaches, we analyzed
the results by three study sites, since the two vineyards in
SLM share the same planting and trellising configurations.
The TSEB sensitivity analysis was performed for each of the
four vineyards using corresponding flux tower and canopy
measurements.

Ground measurements

Ground measurements in GRAPEX vineyards include sur-
face energy fluxes, downward/upward radiation, wind, tem-
perature, precipitation, water vapor pressure, soil moisture,
and routine biophysical measurements. Flux tower sensors
and measurements are detailed in Kustas et al. (2018) and
Knipper et al. (2020). Post-processing of the 15-min 20 Hz
eddy covariance data is described in Alfieri (2019). Daytime
latent heat fluxes (LE) were corrected for energy closure
errors using the residual approach, i.e., adding the residual
to LE, following previous studies (Semmens et al. 2016;
Kustas et al. 2019b).

Biophysical measurements, including LAI, were con-
ducted during intensive data collection periods (IOPs) at dif-
ferent vine and cover crop phenological stages (Kustas et al.
2018). The first IOP of each year happened shortly after bud
break (flowering stage) between late April and early May.
This period is generally characterized by low vine biomass
and active cover crop in the interrow. The second IOP cor-
responds to the berry development stage (pre-veraison) in
early to mid-June when vines rapidly grow while cover crops
began senescence. A third IOP (mid-July to early August)
occurred during the veraison stage with a fully developed
vine canopy and cover crop fully senescent. A fourth IOP
was conducted in late September (only during 2014). Grapes
are usually harvested by late August to early September each
year. IOPs were typically scheduled to coincide with Landsat
overpasses.

LAI was measured using an Li-Cor LAI-2200C (in
2014-2019) or LAI-2000 (in 2013 only) instrument during
IOPs (White et al. 2018). Each LAI-2200C (or LAI-2000)
measurement contained one above-canopy reading and four
below-canopy readings evenly placed across the interrow
space. Vine LAI was determined by acquiring below canopy
readings at approximately 30 cm above the ground (above
cover crop). When below canopy readings were directly on
the ground, the measurement included both vine and cover
crop. A 45° view cap was used for all readings, i.e., 45° of
the sensor field of view was exposed. From 2013 to 2016,
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the sensor viewing direction was parallel to the vine row. In
2016, White et al. (2018) compared multiple measurement
protocols and found that a method with the sensor facing the
canopy (sensor view direction perpendicular to the vine row)
yielded the most consistent results with destructive measure-
ments. Consequently, starting from 2017, all measurements
were made with the sensor facing the vine row. Measure-
ments made in 2013-2016 using the “parallel” configura-
tion were found to underestimate LAI and were corrected by
masking the two outermost rings (validated using destructive
sampling) (White et al. 2018).

During IOPs, LAI was measured in grids of 25 samples
(5 x5) to the immediate west of the flux towers. The grids
included five cross-row transects separated by six to seven
vines, and each transect contained five measurements across
five rows (White et al. 2018). LAI was also collected in other
locations where sap flow and soil moisture were monitored.
In these plots, LAI measurements were sampled in grids of
one to three transects across five rows. The final LAI value
at a location was the average of all measurements collected
in the grids. Since Landsat and Sentinel-2 images have a
spatial resolution at 30- or 10-20-m resolution, respectively,
satellite-retrieved LAI includes both vine and crop cover.
Therefore, we selected ground LAI measurements contain-
ing both vine and cover crop or vine-only measurements
when the cover crop was not present (by inspecting Pheno-
Cam photos). In total, we selected 260 ground LAI measure-
ments with corresponding Landsat observations. Since most
ground measurements in SLM were taken between 2013 and
2016, when Sentinel-2 images were not available, the num-
ber of samples was 118 for Sentinel-2 analysis.

Satellite estimation of LAl
Satellite images

We derived VIs and LAI estimates from Landsat 8, Senti-
nel-2, and the Harmonized Landsat and Sentinel-2 (HLS)
(Claverie et al. 2018) surface reflectance images that coin-
cided with GRAPEX IOPs. We used Landsat Collection 1
Surface Reflectance images at 30 m spatial resolution. Senti-
nel-2 top-of-atmosphere images (L1C) were atmospherically
corrected to derive surface reflectance (L2A) using the SEN-
2COR procedure from the Sentinel Application Platform
Toolbox (SNAP) (Main-Knorn et al. 2017). The Sentinel-2
blue (B2), green (B3), red (B4), and wide-band near-infrared
(B8, NIRw) are at 10 m resolution, while three red edge
bands (B5, B6, B7), a narrow band NIR (B8a, NIR), and two
short wave infrared (SWIR) (B11, B12) bands are at 20 m
resolution. Sentinel-2 narrow-band NIR (B8a) corresponds
to Landsat-8 NIR band (B5) wavelength designation. We
resampled all of the 10-m bands to 20 m.
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The HLS dataset combines Landsat-8 and Sentinel-2 sur-
face reflectance data to a consistent grid (Sentinel-2 tile)
and spatial resolution (30 m) through spatial co-registration,
bidirectional reflectance distribution function normalization,
and spectral bandpass adjustment (Claverie et al. 2018). The
HLS data includes Landsat OLI-like spectral bands.

Vegetation indices

We evaluated the relationship between LAI and commonly
used VIs: Normalized Difference Vegetation Index (NDVI),
Enhanced Vegetation Index (EVI), Green Chlorophyll Index
(GCI), Normalized Difference Water Index (NDWI), and
Red-Edge Inflection Point (REIP) (Table 2). NDVI, EVI,
GCI, and NDWTI are broad-band VIs used in many previ-
ous studies to estimate LAI and other plant biophysical
properties. They can be computed from both Landsat and
Sentinel-2 surface reflectance images (Vifia et al. 2011;
Kang et al. 2016). REIP is based on red edge bands and can
only be derived from Sentinel-2 images. The plant canopy
absorbs red light and reflects most near-infrared (NIR) light
due to the chlorophyll content in leaves and plant cell struc-
ture. The result is a sharp increase in reflectance from red to
NIR. The red edge is the inflection point in the reflectance
spectra between red and NIR. The shape and location of the
red edge are sensitive to LAI, leaf chlorophyll content, as
well as leaf hydraulic status (Horler et al. 1983; Filella and
Pefiuelas 1994; Darvishzadeh et al. 2009). REIP approxi-
mates the red edge with four broad red-edge bands like those
from Sentinel-2. Previous studies show that REIP is a better
predictor for LAI in crops than NDVI, which often saturates
and becomes insensitive to high LAI values (Herrmann et al.
2011; Nguy-Robertson et al. 2014). REIP was computed
from Sentinel-2 bands 4-7.

This study compared different VIs for their relationships
with LAI and their prediction power of LAI in vineyards.
We tested the hypothesis that the LAI-VI relationship is
different across the three study sites as each has a unique

Table 2 Vegetation indexes evaluated in this study

combination of vine variety, canopy structure (trellis), and
row configurations.

Physical LAl estimation approaches

Three physical/semi-physical LAI estimation methods were
evaluated (methods 1-3 in Table 3): two Landsat-based
approaches using reference LAI from MODIS LAI (Gao
et al. 2012; Kang et al. 2021) and the Sentinel-2 Level 2
Prototype Processor (SL2P) algorithm (Weiss and Baret
2016). The Landsat-based approaches both train machine
learning models using Landsat surface reflectance as pre-
dictor variables and LAI retrievals from MODIS as ref-
erences. Gao et al. (2012) first proposed this scheme to
generate MODIS-consistent Landsat LAI maps using the
Cubist regression model and homogeneous MODIS LAI
derived within a Landsat footprint over multiple years. This
approach (method 1) was used by DiSALEXI to generate
Landsat ET maps (Yang et al. 2017; Anderson et al. 2018).
Recently, Kang et al. (2021) generalized this approach over
the Contiguous US (CONUS) with an advanced sample
balancing strategy considering MODIS algorithm satura-
tion and spatial, temporal, and biome representativeness
across CONUS. Unlike the Gao et al. (2021) approach in
which the machine learning model does not explicitly con-
sider the biome dependence of the reflectance response to
LAI, the CONUS approach trained biome-specific random
forest models to represent complex vegetation conditions.
This approach (method 2) is used by a Google Earth Engine
(Gorelick et al. 2017) implementation of DisALEXT as part
of the OpenET project (Melton et al. 2021). It is worth not-
ing that the MODIS LAI algorithm uses eight broad plant
functional types to generalize the dependence of canopy-
light interactions on canopy structures. Therefore, biases
arise when the actual vegetation structure differs from
the model assumption, which would propagate to the two
Landsat-based approaches, as they are trained on MODIS
samples.

Vegetation Index Equation References/note
Normalized Difference Vegetation index NDVI = Eii—‘;ej Deering (1978), Wang et al. (2005)
+Re
Enhanced Vegetation Index EVI =25 ( NIR-Red ) Huete et al. (1997), Huete et al. (2002)
T 77\ 1+NIR+6Red—7.5Blue
Green chlorophyll Index Clgreen = NR _ Gitelson (2003, 2005)
reen Green
Normalized Difference Water Index NDWI = SW‘R‘Rej Gao (1996), Houborg et al. (2007)
SWIR+Re:

Red-edge inflection point

REIP = 705 + 35[

(Poss+rr83)/2=Pr0s ]

Clevers et al. (2001); Herrmann et al.
(2011)

Pesss P705» P740s P783 correspond to surface
reflectance from Sentinel-2 Band 4, 5,
6,7

P740~P705

NIR near-infrared,SWIR shortwave infrared
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Table 3 LAI estimation approaches evaluated in this study

No Description Short name Category

Training samples Satellite images References

1 Landsat-LAI based on
MODIS (Local)

2 Landsat-LAI based on
MODIS (CONUS)

3 Sentinel-2 Level 2
Processor

Landsat-MODIS
(CONUS)

SL2P

4 Landsat cubist model Landsat-ground Empirical
from ground samples

5  Sentinel-2 cubist model  Sentinel-2-ground Empirical
from ground samples

6  HLS cubist model from  HLS-ground+MODIS  Empirical

ground and MODIS
LAI samples

Landsat-MODIS (Local) Semi-physical
Semi-physical

Semi-physical

MODIS (local) Landsat Gao et al. (2012)

MODIS (CONUS) Landsat Kang et al. (2021)

Radiative transfer model Sentinel-2 Weiss and Baret (2016)
simulations

Ground samples Landsat This study

Ground samples Sentinel-2 This study

Ground samples and HLS Gao et al. (2014); This

MODIS (local) study

The SL2P algorithm (method 3 in Table 3) estimates LAI
from Sentinel-2 top-of-canopy reflectance L2A data using
neural networks trained with radiative transfer simulations
from the PROSPECT (Jacquemoud and Baret 1990) and
SAIL model (Verhoef 1984; Fernandes et al. 2014b; Weiss
and Baret 2016). Validation results show that SL2P estima-
tion is closer to effective LAI and might underestimate LAI
in clumped canopies (Djamai et al. 2019; Brown et al. 2021).
While all three methods rely on machine learning models,
we consider them as physical approaches since the refer-
ence LAI values were derived from radiative transfer models
rather than ground measurements. Regression models serve
as model inversion or search processes to connect LAI and
surface reflectance. Note that MODIS LAI products were
derived from Look Up Tables generated from 3-D radiative
transfer models (Yan et al. 2016).

Empirical LAl estimation approaches

We used ground-measured LAI to build empirical models
based on surface reflectance from Landsat and Sentinel-2
images (methods 4 and 5 in Table 3). Exploratory analy-
sis suggested that LAI-VI relationships varied substantially
across different vineyards and a single VI cannot provide an
unbiased prediction for all sites (details in “Relationships
between LAI and vegetation indices”). Therefore, we used
the Cubist machine learning algorithm to establish regres-
sion models directly based on Landsat or Sentinel-2 bands.
Cubist is a rule-based model with a tree structure (Quinlan
1993). Intermediate nodes include rule sets defined by input
variables. Leaf nodes contain multivariate linear regression
models that allow for a certain degree of extrapolation.
Compared to other regression tree or random forest models,
Cubist has high interpretability and performs similarly well
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in many remote sensing and Earth system science studies
(Filgueiras et al. 2020; Kumar et al. 2021).

We built cubist models for Landsat (method 4) and Sen-
tinel-2 (method 5) separately using ground-measured LAI
from all vineyards (Table 3). A third cubist model (method
6) used the HLS dataset and combined samples from both
MODIS LAI and ground measurements. The MODIS sam-
ples were screened based on their spatial homogeneity and
were similar to those used in Method 1 following Gao et al.
(2012). Given that MODIS LAI samples (about 50,000)
cover different land cover types and outnumber ground-
measured samples for vineyards (260 records), we assigned
different weights to MODIS and ground samples according
to the relative portion of the area they cover in the domain.
For example, if vineyards covered about 3% of an HLS tile,
then the total contribution of vineyard ground samples was
set to 3%. The total contribution from the rest of MODIS
LAI samples that include other land covers was set to 97%.
The integration of in situ vineyard LAI measurements and
MODIS LALI data allows capturing grapevine specific fea-
tures while maintaining consistency of Landsat LAI with
MODIS, which is essential for models like DisALEXI that
operate across several spatial scales.

For ground-sample-only training (methods 4 and 5), we
used two rules in Cubist. Exploratory analysis using five-fold
cross-validation showed that increasing the number of rules
beyond two may overfit and degrade model performance.
Using a small number of rules also improves the model
interpretability. The model with the combined ground and
MODIS samples (method 6) had 30 determined by five-fold
cross-validation. Additional rules were used since the LAI
samples include all land cover types, not only grapevines as
in methods 4 and 5. For Landsat 8 and HLS data, the input
data included surface reflectance from blue (B2), green (B3),
red (B4), NIR (B5), SWIR1 (B6), and SWIR2 (B7). For
Sentinel-2, the input data included surface reflectance from
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blue (B2), green (B3), red (B4), red-edge 1 (B5), red-edge 2
(B6), red-edge 3 (B7), NIR (B8), NIR narrow (B8a), SWRII
(B11), and SWIR2 (B12). A six-band model was also tested
to be comparable to Landsat. For Landsat 8 (method 4) and
HLS (method 6), we used 260 ground measurements of LAI,
while for Sentinel-2 (method 5), the sample size was 118,
since early measurements before 2016 did not have corre-
sponding Sentinel-2 images. Note that since the GRAPEX
IOPs were scheduled to coincide with Landsat overpass
dates, most HLS data used were from Landsat 8.

Validation

We compared the estimation accuracy of six LAI estima-
tion methods using ground measurements as reference
(Table 3). Error metrics include root mean squared error
(RMSE), mean absolute error (MAE), bias (i.e., mean dif-
ference between modeled and observed values), mean abso-
lute percentage error (MAPE), correlation coefficient (r),
and coefficient of determination (R?). For empirical models
driven by the ground data, the accuracy was estimated using
five-fold cross-validation. Since the sample size (i.e. amount
of ground data) was relatively small, the cubist model could
be sensitive to the way that data was split. Thus, we repeated
the cross-validation procedure with different sample splitting
to obtain a stable estimation of the model performance. The
number of repetitions was determined statistically based on
the mean and standard deviation of RMSE. An additional
set of accuracy statistics was obtained using a leave-one-
site-out cross-validation scheme, where one site was held
out for testing and the other two were used for training. The
purpose of this test was to evaluate the generalizability of
empirical models.

TSEB ET modeling and sensitivity analysis

TSEB is a land surface energy balance model that explic-
itly solves the convective, conductive, and radiative
exchange between soil/substrate and canopy layers. TSEB
has been previously applied to compute ET and partition
water fluxes between soil and canopy in GRAPEX vine-
yards (Hoffmann et al. 2016; Kustas et al. 2019b; Nieto
et al. 2019b). We used a generic version of TSEB written
in Python (pyTSEB) (Nieto et al. 2021)(https://github.
com/hectornieto/pyTSEB) to test the sensitivity of TSEB
ET and water flux partitioning to LAI. Meteorological
model inputs of TSEB include incoming and upwelling
longwave radiation, air temperature, vapor pressure, and
wind speed measured from eddy-covariance systems in
each site. Input hemispherical LST was derived from
incoming and upwelling longwave radiation following
Kustas et al. (2019b) and an emissivity estimated from
the assumed canopy (0.99) and soil/cover crop (0.94)

emissivities weighted by fractional vegetation cover. We
used hourly averages of these meteorological measure-
ments. Major vegetation biophysical inputs included LAI
and canopy height collected during IOPs. Detailed infor-
mation about these measurements can be found in previ-
ous papers (White et al. 2018; Alfieri et al. 2019; Kustas
et al. 2019a, b; Nieto et al. 2019a, b).

Sensitivity analysis was performed in IOP 1-4 for SLM
in 2015, 2017 I0P3, 2019 IOP2 and IOP3 for BAR, and
2018 IOP 1-3 for RIP (Table 4). We used IOPs that had
ground LAI measurements appropriate for remote sensing
application, i.e., those that included both grapevine and
cover crop, or those that were collected when cover crops
were not present. For each site, we chose three to four IOPs
taken during different phenological stages. For each IOP, we
established a baseline TSEB output using ground measured
LAI Baseline TSEB output of daytime ET was evaluated
using eddy covariance measurements, which were corrected
for energy closure with the residual approach (Knipper et al.
2019). Then, sensitivity simulations were run with LAI
changed by + 5% to +50%, with all other inputs unchanged.
The upper limit (50%) corresponded to the maximum pos-
sible satellite LAI estimation error quantified with ground
measurements (“Comparison of LAI estimation methods”).
Results from sensitivity simulations were compared to the
baseline.

Since the generic TSEB model, designed for homogene-
ous canopies, may not fully acknowledge highly clumped
vine canopies, baseline ET estimates using ground measured
LAI as inputs may deviate from observed ET, so chang-
ing input LAI could either increase or decrease ET bias.
Therefore, the sensitivity analysis mainly quantified the
relative changes of ET and its partitioning in response to

Table 4 List of GRAPEX IOPs used in TSEB sensitivity analysis

Vineyard ID Year IOP Date Phenological Measured LAI
stage

BAROI12 2017 IOP3 08/07 Veraison 1.28
BAROI12 2019 IOP2 06/25 Peasize 1.91
BAROI12 2019 IOP3 07/28 Veraison 1.72
SLMO001 2015 IOP1 4/23 Bloom 0.51
SLMO001 2015 IOP2 6/1 Pea size 2.5
SLMO001 2015 IOP3 7/9 Veraison 243
SLMO001 2015 IOP4 8/15 Pre Harvest 2.34
SLM002 2015 IOP1 4/22 Bloom 1.04
SLM002 2015 IOP2 5/31 Peasize 2.29
SLM002 2015 IOP3 17/8 Veraison 1.77
SLM002 2015 IOP4 8/11 Pre Harvest 2.56
RIP760 2018 IOP1 6/18 Bunch Closure 3.86
RIP760 2018 IOP2 7/11  Veraison 3.78
RIP760 2018 IOP3 8/5 Pre Harvest 3.82
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LAI changes and did not evaluate sensitivity simulations
to actual ET observations. As soil evaporation approaches
zero in many cases, its relative change is quantified by divid-
ing the difference between sensitivity simulation and base-
line by the average of the two. For ET and transpiration,
the percentage change is the ratio between the difference of
sensitivity simulation from baseline and the baseline value.
Refining the TSEB model mechanism for vineyard-specific
applications is a topic of active research with initial results
in Kustas et al. (2019b) and Nieto et al. (2019a).

Results
Relationships between LAl and vegetation indices

Each site presented a distinctive LAI-VI relationship for VIs
extracted from both Landsat and Sentinel-2 images (Figs. 2,
3). For a given EVI, GCI, NDVI, and NDWI (Landsat) value
range, LAI varied substantially across three sites with RIP
being the highest and BAR being the lowest (Fig. 2a). For
example, the median LAI values of samples with NDVI
ranging from 0.6 to 0.65 were around 1.3, 1.7, and 3.4 for
BAR, SLM, and RIP, respectively. The high LAI of RIP was
likely connected to high canopy clumping because of its

double-vertical trellis structure (Fig. 1). The highly contrast-
ing responses of VI to LAl in different sites make it difficult
to establish universal relationships applicable to all vineyard
architectures. However, having the same VI does not ensure
equality of reflectance in each band. Within samples whose
NDVI values were around 0.6 to 0.65, surface reflectance
in six Landsat bands had distinctive patterns for each site.
For instance, RIP had a higher reflectance in red, NIR, and
SWIR than the other sites (Fig. 2b). This suggests that while
LAI-VI relationships do not generalize across sites, a uni-
fied model for all sites may be established by considering
individual bands.

The red-edge VI—REIP from Sentinel-2 provided infor-
mation on LAI complementary to that from the other VIs
(Fig. 3). In RIP, the relationship between NDVI and LAI
was not significant, since a wide range of LAI (1.2-4.2)
samples fell into a narrow range of NDVI values (red and
blue boxes in Fig. 3a). Nevertheless, REIP increased with
LAI linearly. In contrast, in BAR where NDVI had a lin-
ear relationship with LAI (as did EVI and GCI), REIP had
no significant relationship with LAI. The relationship for
NDWI, not shown in Fig. 3, was similar to that of NDVI
and EVI. These phenomena can be further understood by
looking at individual bands. Figure 3a highlighted two sets
of samples with contrasting LAI but similar NDVI or REIP

(a) EVI Gcl NDVI NDWI
54 54 5 5
S 41 41 Site
k5 34 34 E=BAR
—_
2 2. 2 —RIP
©
[J)] ~——SLM
= 14 L7
0 0
0.4 0.5 0.6 0.7 0.1 0.2 0.3 04
Vegetation Index (Landsat)
(b) (c) 4
0.4
) .
o %## 3. Site
S 0.3 _ E3 BAR
5 - == 3
2 0.2 - ESRIP
= 0.24 2]
[J) SLM
2 ==
0-11 A T == Q
L =
bllue gréen réd nlir swlirl BAR RIP  SLM

Fig.2 LAI-VI relationships for three GRAPEX sites based on Land-
sat images and ground measured LAI samples. a Relationships
between LAI and EVI, GCI, NDVI, and NDWTI for three vineyard
sites. Solid lines represent fitted simple linear regression and the
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values for RIP and BAR, respectively. In RIP, higher LAI
samples (blue) had elevated reflectance when compared
to lower ones in both red and NIR bands leading to only
a subtle change in NDVI (Fig. 3c). However, there was a
clear shift of the red edge towards a long wavelength which
significantly increased REIP. In BAR, high LAI samples
(red) had lower reflectance in the red band but higher reflec-
tance in NIR, leading to a much higher NDVI compared to
low LAI samples (blue) (Fig. 3b). However, the inflection
point or the position of the red edge did not change. These
results suggest the importance of red edge bands in detecting
changes in LAI when NDVI saturates. Also, note that the
GCI-LALI relationship was more significant than EVI and
NDVTI in RIP, highlighting the role of the green band in LAI
estimation.

Empirical model results

We used the Cubist algorithm to explore the potential of
building a generalized LAI model across all vineyards
using all bands rather than a single VI. A two-rule Cubist
model based on six Landsat bands achieved an RMSE of
0.48 and explained 78% of the variation in ground meas-
ured LAI with no obvious bias (Table 5). Dropping the blue
and SWIR2 bands significantly reduced model performance
(RMSE=0.61). Adding three VIs (NDVI, EVI, GCI) to the
model slightly inflated the error (RMSE =0.49), suggesting
overfitting. When Cubist models were trained using a com-
bination of ground and MODIS LAI samples (method 6),
testing error increased for ground samples (overall RMSE:
0.53, ground RMSE: 0.59) while still within reasonable
ranges. The combined model explained 69% of the variation
in ground LAI, with added benefits of providing MODIS-
consistent LAI estimates for all land covers, essential for
DisALEXI ET modeling. Similarly, the combined model
also saw degraded performance when fewer bands were
involved, or when VIs were added to the feature set. In all
Cubist experiments, we did not find a significant divergence
in training and testing errors suggesting a low risk of overfit-
ting (Table 6).

The Cubist model based on ten bands from Sentinel-2
(method 5) achieved an RMSE of 0.32, a percentage error
of 12%, and R? of 0.92 in RIP and BAR (n=118) (Table 7).
Similar to the Landsat models, adding VIs (NDVI, EVI,
GCI, REIP) to the Sentinel-2-based model also slightly
reduced the accuracy. Further, we tested the three empiri-
cal approaches using the same ground data and same input
feature set consisting of six bands that Landsat-8 and Sen-
tinel-2 share in common. The Sentinel-2 six-band model
had a higher accuracy than both Landsat-8 and HLS-
MODIS + ground, with RMSE 0.42 (S2) vs. 0.49-0.50
(HLS, Landsat) and R?0.87 vs. 0.81-0.82 (HLS, Landsat).
This is likely attributed to the higher spatial resolution (20 m

vs. 30 m) and better geolocation accuracy of Sentinel-2.
Meanwhile, the accuracy of the six-band Sentinel-2 model
was substantially lower than the ten-band version (RMSE
0.42 vs 0.32), suggesting the value of red edge bands in
measuring LAL

The two-rule Cubist models for Landsat and Sentinel-2
both used NIR (NIRw for Sentinel-2) around 0.4 as the split
threshold. The exact threshold value ranged between 0.37
to 0.43 depending on the random split of training samples.
Samples in the first rule had lower NIR and lower LAI, while
samples in the second rule has larger NIR and higher LAI,
reflecting major differences in the spectral response to LAI
in sparse and dense canopies. Taking the Sentinel-2 two-rule
model as an example (Fig. 4), most RIP samples were char-
acterized by high NIRw and high LAI thus belonging to the
second rule, while most BAR samples belonged to Rule 1.
Both rules saw a large positive impact of NIRw on LAI (high
coefficients). Red-edge 1 (Band 5) highly correlated with
red, while Red-edge 2 (Band 6) and Red-edge 3 (Band 7)
shared information with NIRw. There was a small negative
impact of Red-edge 2 and Red-edge 3 on LAI within each
rule, but overall, the impact was positive. Note that while all
ten bands were pre-defined as features, Cubist automatically
determines which feature(s) to use for rules or in the linear
regression models. In this example, NIR (Band 8), which
highly correlates with NIRw (Band 8A), and SWIR2 (Band
12), which highly correlates with SWIR1 (Band 11), were
dropped by Cubist. The band selection may differ depending
on the random split of the training set.

While all three empirical approaches provide robust LAI
estimation with minimal bias, model performance may
degrade substantially when tested in independent locations,
as evidenced by the leave-one-site-out test (Table 7). RMSE
of LAl reached 1.06, 1.31, and 0.66 for BAR, RIP, and SLM
sites used as independent tests, respectively, mainly attrib-
uted to estimation bias. LAI in RIP and SLM were underes-
timated with large negative biases (-1.2 and -0.39, respec-
tively), while RIP had a positive 0.95 bias. The direction
of site-specific biases was consistent with the contrasting
LAI-VI relationships and connected to canopy clumping dif-
ferences among sites (Fig. 2a).

Comparison of LAl estimation methods

Three physical LAI estimation methods showed an over-
all RMSE between 0.97 and 1.27, and the Sentinel S2LP
algorithm achieved the highest accuracy, while two Landsat-
based approaches performed similarly (Table 8). All three
underestimated LAI in RIP (Figs. 5, 6). The local Landsat-
MODIS algorithm also underestimated medium LAI (values
between 2 and 4) in SLM. Although the overall accuracies
of both Landsat-based methods were similar, the CONUS
approach showed a smaller bias for high LAI (e.g. In SLM
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and RIP) attributed to the balanced sampling strategy con-  with a lower precision as seen in Fig. 5. The local scheme

sidering both unsaturated and saturated MODIS LAI (Kang  had a higher accuracy for LAI below 2.
et al. 2021). But the CONUS approach was also associated
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«Fig.3 Comparison of LAI-VI relationships between REIP and other
VIs (NDVI, EVI, GCI) for BAR and RIP vineyards based on Senti-
nel-2 images. NDWI is not presented here as its behavior is similar
to NDVI and EVI. a LAI-VI relationships for EVI, GCI, NDVI, and
REIP. For BAR (upper panel), colored points have REIP between 725
and 727 nm, but with contrasting LAI. Red points (outlined as sam-
ple region I) have LAI less than 1.2, while blue points (outlined as
sample region II) have LAI greater than 1.7. For RIP (lower panel),
colored points share NDVI range from 0.55 to 0.6, while red points
have LAI less than 2 (sample region I) and blue points have LAI
greater than 3 (sample region II). b and c illustrates the spectral pro-
file of samples with similar VI values but contrasting LAI for BAR
and RIP respectively. In b, red and blue lines and boxplots correspond
to samples in Region I and II in the BAR (upper) panel of (a). In ¢,
red and blue lines and boxplots correspond to samples in Region I
and II outlined in the RIP (lower) panel of (a)

The Sentinel S2LP algorithm had the highest accuracy
among the three when the comparison was made using a
common set of samples, yielding RMSE=0.97 (S2LP)
vs. 1.6 (Landsat) (Table 9). This difference was mainly
driven by samples from RIP, where S2LP-estimated LAI
was significantly higher than Landsat LAI. The negative
bias of S2LP in RIP was only half of that from Land-
sat estimations, but it was still considerably large ~ — 1.
The underestimation of high LAI in physical models was
related to several well-known reasons, with NIR reflec-
tance saturation and model assumptions/generalizations
being the most important (Myneni et al. 1999; Fang et al.
2019; Brown et al. 2021; Kang et al. 2021). Plant reflec-
tivity of NIR light saturates and becomes insensitive to
LALI as the vegetation canopy grows denser (LAI>2-3).
The intensity of this phenomenon varies according to can-
opy biophysical, biochemical, and structural differences.
Radiative transfer models underlying global/regional
LAI products often need to make simplified assumptions
regarding canopy and soil properties to support gener-
alization over large areas. As a result, estimation bias in
LAT arises when canopy conditions diverge from model
assumptions (i.e. a horizontally continuous canopy layer
with randomly placed leaves). For grapevines, the diverse
trellis designs—varying canopy geometry and clump-
ing—creates additional challenges for remote estimation
of LAI (Figs. 1, 2).

Estimation bias that arose from model assumptions
could sometimes be mitigated by incorporating ground-
measured LAI. The three empirically trained Cubist mod-
els achieved higher accuracy than physical approaches
with no appreciable bias (Table 8, Figs. 5, 6). The RMSE
of empirical methods ranges between 0.31 and 0.57 with
MAPE below 20%, while the MAPE of physical methods
could be as high as 50% (for RIP). However, empirical
models may not generalize well to unknown conditions.
The leave-one-site-out testing accuracy for the empirical
models of Landsat was comparable to that of physical

approaches, with RMSE around 1 and MAPE around 42%
(Table 8).

Impacts of LAl uncertainties on ET modeling

We analyzed the impact of LAI estimation uncertainty on
TSEB ET simulation by adding +5 to 50% error to ground
measured LAI for each IOP. Baseline TSEB daytime ET
simulations forced by ground-measured LAI were consist-
ent with eddy covariance measured ET. The RMSE was
0.55 mm/day, the mean absolute percentage error was
14%, and r? was 0.78 over 14 IOPs (Table 4). Sensitivity
simulations with varied errors in LAI were compared to
the baseline. Absolute percent changes of TSEB ET gener-
ally increased with LAI error but with a lower magnitude
(Fig. 7a). A 20% change in LAI led to less than 15% change
in ET, with a median value below 5%. A 50% change in LAI
contributed to less than 25% change in ET with a median of
10%. The impact of LAI on TSEB ET was asymmetric in
magnitude (Fig. 7b). A positive error in LAI (i.e. LAI over-
estimation) was far more influential on ET than a negative
one (i.e. when LAI is underestimated). A small underesti-
mation (—5 to —30% in relative bias) in LAI could either
increase or reduce ET, but both positive and large negative
biases in LAI were more likely to reduce ET. A 50% under-
estimation in LAI may only lead to a small negative bias
in ET up to -10%, but a 50% overestimation in LAI could
reduce ET by up to 50% (the median is around 18%).

The impact of LAI on ET partitioning was further evalu-
ated (Fig. 7c, d). While ET showed minimal responses to
negative changes in LAI, evaporation (E) and transpiration
(T) changes were substantial. A 50% underestimation in LAI
led to a reduction in T by up to 40%. Soil evaporation gen-
erally decreases when LAI increases. However, the effect
of LAI on transpiration and total ET is more complex and
depends on canopy growth stages (Fig. 8a). When the vine
canopy is relatively sparse (baseline LAI < 1.5), transpiration
increases with LAI, outpacing the decrease in evaporation
and leading to a slow increase in ET. Sensitivity simula-
tions of three IOPs in BAR and IOP1 for two SLM vine-
yards belong to this case (Fig. 8b). As the vine canopy grows
denser, the increase in transpiration tapers off and eventually
is outpaced by the reduction of soil evaporation leading to
an overall ET decrease. As LAI further increases, it starts
reducing transpiration leading ET to decline at a higher rate,
while soil evaporation is driven down to zero (Fig. 8a). This
scenario is evident in three IOPs of RIP, and I0P2-4 for
SLM (Fig. 8b). The nonmonotonic response of ET to LAI
gives rise to model equifinality, where different LAI val-
ues could result in the same ET due to different partitioning
between E and T.

From a modeling perspective, TSEB starts with an
initial guess that the canopy is transpiring at a potential
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Table 7 Lane—one—site—out Test site Train Test
cross-validation results for
Cubist models based on Landsat RMSE MAPE Bias R2 RMSE MAPE Bias R2
images and ground measured
LAI samples (n=260) BAR 0.40 13% -0.02 0.82 1.06 79% 0.95 0.13
RIP 0.39 18% —-0.05 0.71 1.31 35% —-1.20 0.21
SLM 0.33 12% 0.02 0.92 0.66 24% -0.39 0.53
Overall - - - - 1.01 42% -0.30 0.14
The feature set included six Landsat bands and the models had two rules
S2 blue S2_green S2 red S2 re1 S2 re2
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Fig.4 Cubist model for Sentinel-2 and scatter plots between LAI
and Sentinel-2 bands. Reflectance was normalized based on max
and min, so that coefficients in linear regression equations reflect
the importance of input bands. Dashed line in NIRw panel indicates

Table 8 Comparison of six LAI estimation methods

rule threshold. The underlying data was 80% of all samples (n=118)
selected as the training set. Note that while all ten bands were set as
features, Cubist automatically determined features used as a rule or in
the linear regression models

Methodno  Category LAI_method Count RMSE  Bias MAE  MAPE (%) r R?

1 Physical Landsat-MODIS (Local) 260 1.27 -0.77 093 33.47 0.19  -0.57
2 Physical Landsat-MODIS(CONUS) 260 1.26 -0.60 093 33.65 030 -0.54
3 Physical S2LP 118 0.97 -0.58 0.76 26.11 0.77 0.30
4 Empirical Landsat-ground 260 0.48 —-0.02 0.36 18.64 0.88 0.77
4 Empirical ~ Landsat-ground (Leave-one-site-out) 260 1.01 -030 0.86 41.74 0.38 0.14
5 Empirical ~ Sentinel-2-ground 118 0.31 0.02 0.24 11.30 0.96 0.93
6 Empirical ~ HLS-ground + MODIS 260 0.57 -0.14 041 18.24 0.84 0.68

Errors of empirical methods were from fivefold cross-validation unless indicated otherwise

rate (non-moisture limiting) estimated using the Priest-

ley-Taylor relationship applied to the canopy net radiation
divergence (Kustas et al. 2019a). TSEB then solves for
soil evaporation based on energy balance. If this results in

negative soil evaporation, which is unlikely midday when

Landsat TIR imagery is collected, the TSEB considers the
canopy to be under stress and iteratively reduces transpi-
ration until evaporation estimation is realistic (non-neg-
ative). Elevated LAI can serve to emulate this signal of
stress by overestimating potential transpiration and thereby
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Fig.5 Scatter plots of ground measured LAI and predicted LAI from
six estimation methods. For Landsat-based methods, the number of
reference LAI samples is 260. For Sentinel-2 based methods, the

Fig.6 Bias and MAPE (%) of
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producing negative estimates of soil evaporation. As such,
we found that transpiration degraded almost linearly with
LAI when LAI was positively biased from a high baseline
(Fig. 8b, three IOPs for RIP, IOP2-4 for SLM).

The exact turning points when T and ET start decreasing
with LAI depend on the land surface temperature, plant,
atmospheric, and soil conditions (Kustas and Norman 1997).

@ Springer

Consequently, the sign and magnitude of estimated T and ET
changes induced by LAI are functions of a series of variables
besides LAI. Figure 9 shows the percentage changes in T
and ET connected to LAI errors from six remote sensing
LAI methods. In general, due to divergent responses of E
and T to LAI ET was not as sensitive to LAI as T. In the
two IOPs of BARO12, since the baseline LAI was low (< 2),
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Table9 Comparison of three Site  LAI method Count RMSE Bias MAE MAPE%) r R

physical LAI estimation

methods with a common set of ALL  Landsat-MODIS(Local) 118 1.64 -1.18 131  42.08 012 —1.04

ground observations (n=118) ALL Landsa-MODIS(CONUS) 118 160  —1.16 128  40.58 029 —093
ALL  S2LP 118 097  —058 076 26.11 077 030
BAR  Landsat-MODIS(Local) 46 029 011 023 19.57 0.61 0.19
BAR Landsa-MODIS(CONUS) 46 037 009 024 17.11 077  —026
BAR  S2LP 46 038 0.18 028  20.79 078  —0.32
RIP  Landsat-MODIS(Local) 72 209  —200 200 5647 026 —10.40
RIP  Landsa-tMODIS(CONUS) 72 203  —195 195  55.58 045  —9.70
RIP  S2LP 72 120  —106 106 2951 050 —2.75

T and ET had not reached their turning point with 50% LAI
errors. Their responses to LAI were mainly monotonic. In
RIP IOP1 and IOP3 where the baseline LAI was high (~3.8),
the response of T and ET to LAI errors were not monotonic
(Fig. 8b). For example, in RIP IOP3, methods 1 and 2 under-
estimated LAI by 50-70%, but ET estimates were close to
observations (< 5%). In contrast, methods 3 and 4 had lower
LAI errors (30-50%) but higher ET biases (10-12%).

Discussions

Canopy spectral response to LAI differed significantly across
vineyards characterized by different planting configurations
and trellis structures, consistent with previous investigations
(Nguy-Robertson et al. 2014; Kang et al. 2016). While LAI-
VI relationships were not universal across the three vine-
yards, a simple rule-based regression model reproduced LAI
with no obvious bias and captured 78% of variability for all
vineyards by exploiting all bands. This suggests that ratio-
based VIs like EVI and NDVI often ignore differences in
the absolute reflectance of individual bands like NIR and
Green, which encode information on canopy structure and
LAI (Badgley et al. 2017). Additionally, we found that the
red-edge-based VI (REIP) from Sentinel-2 images provided
complementary information to NDVI in LAI estimation
(Herrmann et al. 2011). These observations imply the value
of exploiting individual bands to estimate LAI across het-
erogeneous canopy structures rather than using a single or a
few VIs that are highly inter-correlated (Gutman et al. 2021).
Many remote sensing ET models estimate LAI or vegetation
fractional cover through a single relationship with NDVI
(Allen et al. 2011), ignoring the effect of canopy structure
and other properties on canopy radiative response. Future
research may benefit from deriving simple theoretical formu-
las directly based on reflectance across the entire spectrum
including the red-edge bands.

Three physical/semi-physical approaches based on Land-
sat or Sentinel-2 reflectances significantly underestimated
LATI for dense and highly clumped canopies (LAI>2).

Inverting radiative transfer models to retrieve LAI is an
ill-posed problem (Combal et al. 2003). Radiative trans-
fer models often use simplified assumptions to generalize
across global ecosystems, thus large bias and uncertainty
are unavoidable in heterogeneous landscapes, like the highly
clumped canopies in vineyards and other orchards. For
example, S2LP uses the turbid-medium PROSAIL model
where the vegetation canopy is modeled as a horizontally
homogenous green turbid medium without foliage clump-
ing. As a result, Sentinel-2 LAI has been found to represent
effective LAI rather than the true LAI (Djamai et al. 2019;
Brown et al. 2021). Likewise, we compared S2LP LAI to
effective LAI measured in RIP and the accuracy was sig-
nificantly better with no obvious bias than when compared
to true LAI (RMSE =0.56; bias=—-0.04). The MODIS
LAT algorithm used 3-D radiative transfer models (2-D
for some biomes) to represent eight biomes, requiring land
cover information to regulate the models. However, these
are broad categories of plant functional types. Thus, spe-
cialty crops such as orchards are not well-represented. Major
improvement in remote sensing estimation of LAI in the
future will likely require additional canopy information to
regularize the ill-posed problem, such as multi-angular (Liu
et al. 2014), hyperspectral (Cawse-Nicholson et al. 2021),
and LiDAR (Potapov et al. 2021) observations.
Uncertainties in LAI propagate proportionally to ET
estimation in TSEB model in general, but the underlying
mechanism differs across growth stages and stress condi-
tions. When vine canopies were in early growing stages,
up to 50% error in LAI (~0.5) did not cause a significant
change in ET, as effects on E and T canceled out (Fig. 8,
column 1). But individual uncertainty of E and T was
around 0.5-0.8 mm with an LAI error of 0.5, which is typ-
ical of satellite retrievals. Such model equifinality (Beven
2006) may not sufficiently inform precise irrigation sched-
uling which requires accurate estimation of water loss both
from vines and the cover crop/bare soil. For vines in late
vegetative or reproductive stages, a positive bias in LAI
may lead to a significant underestimation of T, as TSEB
down-regulates latent heat loss to avoid energy imbalance
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Fig. 7 Sensitivity of ET and its partitioning to LAI estimation errors
from 5 to 50%. a Absolute percentage change in ET vs. absolution
percentage change in LAIL. b Percent changes in ET vs. percent-
age changes in LAI ¢ Relative change in evaporation to LAI. Since
evaporation was close to zero in many cases, relative change was
quantified as dividing the difference between sensitivity simulation

in response to water stress. But since E responds posi-
tively to an increased LAI, the uncertainty in LAI may
not propagate to ET. Taking RIP—IOP2 as an example,
a negative 50% error in LAI (equivalent to the estima-
tion from Landsat-MODIS physical approaches) reduced
T by 1.4 mm, but an equivalent yet positive change was
found in E. Therefore, ET change was negligible (Fig. 8).
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and baseline by their average values. d Percentage change in transpi-
ration to LAIL In a boxplot, the middle bar presents the median, the
box covers 25% and 75% percentiles, and the difference between the
two is called the inter-quartile range (IQR). The whiskers extend from
the box to 1.5 * IQR, and data beyond the whiskers are outliers and
drawn individually

Although remote sensing estimation of LAI is more likely
to underestimate rather than overestimate in dense vegeta-
tion due to the saturation issue, thus resulting in a rela-
tively small error in ET, caution is required when water
stress is assessed for vine and cover crop separately to
inform irrigation scheduling (Kustas et al. 2019b; Bellvert
et al. 2020).
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Fig. 8 Effects of LAI estimation error on TSEB soil evaporation (E)
and plant transpiration (T) partitioning. a Illustration of TSEB E, T,
and ET responses to LAI, based on SLM002 2015-I0P2. b TSEB

Conclusions

This study quantified the uncertainties of several satellite-
based LAI estimation approaches and analyzed the impact
of LAI errors on TSEB ET modeling for four California
vineyards across climate gradients. Physical approaches for

E, T, and ET response to percentage changes in LAI from baseline
in selected IOPs of four vineyards. Baseline LAI refers to the field
measurement

Landsat and Sentinel-2 predicted low to medium LAI rea-
sonably well but underestimated medium to high LAI by
1 to 2 units. Sentinel-2 S2LP algorithm outperformed two
Landsat-based approaches in a highly clumped vineyard.
Although LAI-VI relationships differed substantially across
vineyards, a unified rule-based regression model based on
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Fig.9 Percentage changes of transpiration (a) and ET (b) due to LAI percentage errors from six remote sensing LAI estimation methods

ground LAI measurements and surface reflectance from mul-
tiple bands achieved high estimation accuracy (RMSE ~0.5)
with no significant bias in all vineyards. Moreover, the supe-
rior performance of Sentinel-2 approaches, both physical
and empirical, highlighted the unique value of red-edge
bands for LAI modeling.

ET uncertainty was generally proportional to LAI errors,
but positive LAI biases more significantly affected ET than
negatives ones. In moderate or dense vine canopies, positive
bias in LAI led to severe water stress in TSEB simulations,
which down-regulated transpiration resulting in underes-
timation of ET. In other cases, the overall impact of LAI
uncertainties on ET may be small, but errors in E and T
partitioning could be sizable due to the divergent responses
of plant transpiration and soil evaporation to LAI. Precise

@ Springer

irrigation management in vineyards requires accurate par-
titioning of water fluxes to improve water use efficiency
and reduce water loss from soil or cover crop. Applications
of remote sensing-based-ET models should be mindful of
uncertainties in remote sensing LAI estimation and impacts
on ET modeling, especially on E and T partitioning. Vine-
yard irrigation scheduling can benefit from empirical or
locally calibrated physical LAI approaches based on ground
measurements.
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