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Abstract
Remote sensing estimation of evapotranspiration (ET) directly quantifies plant water consumption and provides essential 
information for irrigation scheduling, which is a pressing need for California vineyards as extreme droughts become more 
frequent. Many ET models take satellite-derived Leaf Area Index (LAI) as a major input, but how uncertainties of LAI esti-
mations propagate to ET and the partitioning between evaporation and transpiration is poorly understood. Here we assessed 
six satellite-based LAI estimation approaches using Landsat and Sentinel-2 images against ground measurements from four 
vineyards in California and evaluated ET sensitivity to LAI in the thermal-based two-source energy balance (TSEB) model. 
We found that radiative transfer modeling-based approaches predicted low to medium LAI well, but they significantly 
underestimated high LAI in highly clumped vine canopies (RMSE ~ 0.97 to 1.27). Cubist regression models trained with 
ground LAI measurements from all vineyards achieved high accuracy (RMSE ~ 0.3 to 0.48), but these empirical models did 
not generalize well between sites. Red edge bands and the related vegetation index (VI) from the Sentinel-2 satellite contain 
complementary information of LAI to VIs based on near-infrared and red bands. TSEB ET was more sensitive to positive 
LAI biases than negative ones. Positive LAI errors of 50% resulted in up to 50% changes in ET, while negative biases of 50% 
in LAI caused less than 10% deviations in ET. However, even when ET changes were minimal, negative LAI errors of 50% 
led to up to a 40% reduction in modeled transpiration, as soil evaporation and plant transpiration responded to LAI change 
divergently. These findings call for careful consideration of satellite LAI uncertainties for ET modeling, especially for the 
partitioning of water loss between vine and soil or cover crop for effective vineyard irrigation management.

Introduction

Water management in California faces ever-growing chal-
lenges due to limited water supplies and competing demands 
from agriculture, industry, and the ecosystem. Population 
growth and the increasingly variable precipitation patterns 
caused by climate change further exacerbate the water cri-
sis. Data from the Gravity Recovery and Climate Experi-
ment (GRACE) satellite and in situ measurements suggest 
that groundwater in the California Central Valley declined 
by 11.3  km3/year during 2012 and 2016 due to droughts 
and increased water use by irrigation (Xiao et al. 2017). 
The depletion is projected to continue at a higher rate in the 
future without mitigating efforts (Alam et al. 2019). As a 
result, there is an imperative need to develop efficient irriga-
tion management strategies to reduce overdrafts and improve 
the resilience of the agricultural system to future climate 
extremes.
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Irrigation is critical for vineyards to sustain plant water 
uptake and control berry quality (Knipper et al. 2019). To 
conserve water and improve water use efficiency, the fre-
quency and amount of irrigation can be determined by moni-
toring evapotranspiration (ET), which quantifies the water 
lost from the soil through direct evaporation and plant tran-
spiration (Ko and Piccinni 2009; Mahmoud and Gan 2019). 
ET can be routinely estimated using remote sensing images 
collected from airborne or satellite sensors (Allen et al. 
2007; Anderson et al. 2012; Hoffmann et al. 2016; Knip-
per et al. 2020). Compared to ground-based measurements, 
remote sensing approaches have demonstrated capabilities to 
resolve between- and within-field spatial heterogeneities in 
plant water stress, with great potential to support the opera-
tional irrigation scheduling (Ohana-Levi et al. 2021).

Among many remote-sensing-based ET models (Ander-
son et al. 1997; Bastiaanssen et al. 1998; Su 2002; Allen 
et al. 2007), the Two-Source Energy Balance (TSEB) model 
is particularly suited for the unique canopy architecture of 
vineyards (Norman et al. 1995; Kustas and Norman 1997; 
Kustas et al. 2018, 2019b), where tall and highly clumped 
grapevine canopies are separated by wide interrows of bare 
soil or cover crop. TSEB uses land surface temperature 
(LST) and Leaf Area Index (LAI) to partition evaporative 
fluxes between grape canopies and interrow soil or cover 
crop, which could inform irrigation management to reduce 
water loss from soil (Nieto et al. 2019a). TSEB is region-
ally implemented through the Atmosphere-Land Exchange 
Inverse (ALEXI) model using time-differential LST meas-
urements from geostationary satellites (Anderson et  al. 
1997, 2007). A disaggregation tool called DisALEXI fur-
ther downscales ALEXI fluxes to sub-field levels using high-
resolution images from the MODerate Resolution Imaging 
Spectroradiometer (MODIS) and Landsat (Anderson et al. 
2004, 2011). With a widely-used image fusion technique, 
i.e. the Spatial and Temporal Adaptive Reflectance Fusion 
Model (STARFM), DisALEXI can produce 30-m ET data 
cubes at daily time steps (Cammalleri et al. 2013, 2014). 
Both TSEB and DisALEXI have been successfully applied 
to estimate vineyard ET across various spatial scales (Sem-
mens et al. 2016; Anderson et al. 2019; Knipper et al. 2019, 
2020; Kustas et al. 2019b; Nieto et al. 2019a, b).

LAI is a key input in TSEB for flux partitioning. LAI data 
can be obtained from either ground observation or satel-
lite retrievals. Two broad categories of approaches exist to 
derive LAI from satellites: empirical and physical. Empiri-
cal methods establish statistical relationships between in situ 
LAI measurements and relevant remote sensing indicators 
(Baret and Guyot 1991; Broge and Leblanc 2001; Kang et al. 
2016; Wang et al. 2019; Gao et al. 2021). A typical method 
is to build simple relationships between LAI and a Veg-
etation Index (VI), which is a mathematical transformation 
of spectral bands (Viña et al. 2011; Nguy-Robertson et al. 

2012). Non-parametric regression models such as Gauss-
ian process regression, neural networks, and support vector 
machines may also be used to directly exploit individual 
spectral bands (Verrelst et al. 2015). Physical approaches 
involve solving radiative transfer models for LAI based on 
surface reflectance measurements from satellites (Houborg 
and Boegh 2008; Ganguly et al. 2012). Model inversion 
methods include Look Up Tables (LUT), search algorithms, 
or machine learning models (Myneni et al. 1999; Weiss 
and Baret 2016). Approaches that use machine learning to 
invert models are sometimes called semi-physical methods. 
Empirical approaches are primarily applied in local study 
sites where LAI is measured on the ground; however, local 
relationships are often constrained to specific environmental 
settings and cannot be generalized over time or space (Kang 
et al. 2016). Regional to global satellite LAI products mainly 
use physical or semi-physical approaches, yet practical chal-
lenges remain (Baret et al. 2016; Yan et al. 2016; Kang et al. 
2021).

Satellite LAI estimation is subject to uncertainties due 
to low signal-to-noise ratio, forward model assumptions, 
the ill-posed inverse retrieval, and errors in the ancillary 
information (Combal et al. 2003; Fernandes et al. 2014a; 
Fang et al. 2019; Levitan et al. 2019). Previous validation 
efforts show that uncertainties in satellite LAI estimations 
vary by data product and biome type, with RMSE values 
ranging from 0.19 to 2.41 (Fang et al. 2019; Brown et al. 
2020, 2021). While many studies have focused on validat-
ing satellite LAI products, less is known about how errors 
in LAI propagate to downstream modeling applications. A 
few studies found that simulated carbon and water fluxes in 
earth system models are sensitive to LAI, and discrepan-
cies among satellite LAI products could lead to substantial 
differences in estimated Gross Primary Productivity (GPP) 
and ET (Ryu et al. 2011; Jiang et al. 2017; Liu et al. 2018). 
In vineyards, the highly clumped canopy structure, diverse 
trellis architectures, and seasonal cover crop create addi-
tional challenges for LAI and ET estimation from satellites 
(Sun et al. 2017; Kustas et al. 2019b; Nieto et al. 2019a; Gao 
et al. 2021). Thus, it is imperative to carefully quantify LAI 
estimation uncertainties and understand the impact on ET 
modeling for sustainable water management in viticulture.

In the current study, we evaluate different empirical and 
physical estimation approaches for LAI based on decamet-
ric-resolution satellite images (i.e., Landsat and Sentinel-2) 
and assess the sensitivity of TSEB ET modeling in response 
to LAI uncertainty. We focus on three study sites across the 
California Central Valley, featuring a broad range of cli-
mate, soil conditions, trellis designs, grape varieties, and 
management strategies. These sites are part of the Grape 
Remote sensing Atmospheric Profile and Evapotranspiration 
eXeperiment (GRAPEX) project (Kustas et al. 2018). LAI 
estimation from different methods was compared to ground 
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measurements. A sensitivity analysis assesses the impact of 
LAI uncertainties on TSEB ET simulations in three sites.

Data and methods

Study site

The study domain includes three GRAPEX sites in the Cali-
fornia Central Valley: BAR, SLM, and RIP (Fig. 1, Table 1). 

Characteristics of these fields, including vine variety, trel-
lis structure, and planting details, are provided in Table 1. 
BAR is the northernmost site close to the Pacific Ocean. 
In the 012 block (BAR012), vines were planted in 2010 
in northeast-southwest rows (3.35 m width) with 1.83 m 
planting intervals. Flux tower and related measurements as 
part of the GRAPEX project began in 2017. In SLM, two 
vineyards—SLM001 (north) and SLM002 (south)—were 
selected as the study sites. Both fields had a 3.35 m row 
spacing and 1.5 m interrow spacing with an east–west row 

Fig. 1  GRAPEX study site locations (a) and canopy snapshots (b). In 
a, vineyard block boundaries are outlined in the high-resolution sat-
ellite imageries (Google Earth) and solid circles indicate flux tower 

location. In b, phenocam photos for each site were selected for the 
peak vegetative stage in 2018

Table 1  GRAPEX vineyard descriptions

Site Location Vineyard ID Vine variety Year planted Trellising 
method

Row width 
(m)

Planting 
interval 
(m)

Year 
tower 
deployed

Measured LAI 
range

BAR Sonoma, CA BAR012 Cabernet Sau-
vignon

2010 Split canopy 3.35 1.83 2017 (0.8, 2.4)

SLM Sacramento, 
CA

SLM001 Pinot Noir 2009 Quadrilateral 3.35 1.52 2013 (0.7, 3.9)

SLM Sacramento, 
CA

SLM002 Pinot Noir 2011 Quadrilateral 3.35 1.52 2013 (1.0, 4.0)

RIP Madera, CA RIP760 Chardonnay 2010 Double Verti-
cal

2.74 1.83 2017 (0.7, 4.0)
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orientation. RIP block 760 (RIP760) features a double verti-
cal trellis with a row width of 2.74 m and a planting interval 
of 1.83 m. The rows were planted in the east to west direc-
tion. Data collection in RIP started in 2017. All vineyards 
use drip irrigation. More information about these sites is 
detailed in Kustas et al. (2018) and Knipper et al. (2020). 
When evaluating LAI estimation approaches, we analyzed 
the results by three study sites, since the two vineyards in 
SLM share the same planting and trellising configurations. 
The TSEB sensitivity analysis was performed for each of the 
four vineyards using corresponding flux tower and canopy 
measurements.

Ground measurements

Ground measurements in GRAPEX vineyards include sur-
face energy fluxes, downward/upward radiation, wind, tem-
perature, precipitation, water vapor pressure, soil moisture, 
and routine biophysical measurements. Flux tower sensors 
and measurements are detailed in Kustas et al. (2018) and 
Knipper et al. (2020). Post-processing of the 15-min 20 Hz 
eddy covariance data is described in Alfieri (2019). Daytime 
latent heat fluxes (LE) were corrected for energy closure 
errors using the residual approach, i.e., adding the residual 
to LE, following previous studies (Semmens et al. 2016; 
Kustas et al. 2019b).

Biophysical measurements, including LAI, were con-
ducted during intensive data collection periods (IOPs) at dif-
ferent vine and cover crop phenological stages (Kustas et al. 
2018). The first IOP of each year happened shortly after bud 
break (flowering stage) between late April and early May. 
This period is generally characterized by low vine biomass 
and active cover crop in the interrow. The second IOP cor-
responds to the berry development stage (pre-veraison) in 
early to mid-June when vines rapidly grow while cover crops 
began senescence. A third IOP (mid-July to early August) 
occurred during the veraison stage with a fully developed 
vine canopy and cover crop fully senescent. A fourth IOP 
was conducted in late September (only during 2014). Grapes 
are usually harvested by late August to early September each 
year. IOPs were typically scheduled to coincide with Landsat 
overpasses.

LAI was measured using an Li-Cor LAI-2200C (in 
2014–2019) or LAI-2000 (in 2013 only) instrument during 
IOPs (White et al. 2018). Each LAI-2200C (or LAI-2000) 
measurement contained one above-canopy reading and four 
below-canopy readings evenly placed across the interrow 
space. Vine LAI was determined by acquiring below canopy 
readings at approximately 30 cm above the ground (above 
cover crop). When below canopy readings were directly on 
the ground, the measurement included both vine and cover 
crop. A 45° view cap was used for all readings, i.e., 45° of 
the sensor field of view was exposed. From 2013 to 2016, 

the sensor viewing direction was parallel to the vine row. In 
2016, White et al. (2018) compared multiple measurement 
protocols and found that a method with the sensor facing the 
canopy (sensor view direction perpendicular to the vine row) 
yielded the most consistent results with destructive measure-
ments. Consequently, starting from 2017, all measurements 
were made with the sensor facing the vine row. Measure-
ments made in 2013–2016 using the “parallel” configura-
tion were found to underestimate LAI and were corrected by 
masking the two outermost rings (validated using destructive 
sampling) (White et al. 2018).

During IOPs, LAI was measured in grids of 25 samples 
(5 × 5) to the immediate west of the flux towers. The grids 
included five cross-row transects separated by six to seven 
vines, and each transect contained five measurements across 
five rows (White et al. 2018). LAI was also collected in other 
locations where sap flow and soil moisture were monitored. 
In these plots, LAI measurements were sampled in grids of 
one to three transects across five rows. The final LAI value 
at a location was the average of all measurements collected 
in the grids. Since Landsat and Sentinel-2 images have a 
spatial resolution at 30- or 10–20-m resolution, respectively, 
satellite-retrieved LAI includes both vine and crop cover. 
Therefore, we selected ground LAI measurements contain-
ing both vine and cover crop or vine-only measurements 
when the cover crop was not present (by inspecting Pheno-
Cam photos). In total, we selected 260 ground LAI measure-
ments with corresponding Landsat observations. Since most 
ground measurements in SLM were taken between 2013 and 
2016, when Sentinel-2 images were not available, the num-
ber of samples was 118 for Sentinel-2 analysis.

Satellite estimation of LAI

Satellite images

We derived VIs and LAI estimates from Landsat 8, Senti-
nel-2, and the Harmonized Landsat and Sentinel-2 (HLS) 
(Claverie et al. 2018) surface reflectance images that coin-
cided with GRAPEX IOPs. We used Landsat Collection 1 
Surface Reflectance images at 30 m spatial resolution. Senti-
nel-2 top-of-atmosphere images (L1C) were atmospherically 
corrected to derive surface reflectance (L2A) using the SEN-
2COR procedure from the Sentinel Application Platform 
Toolbox (SNAP) (Main-Knorn et al. 2017). The Sentinel-2 
blue (B2), green (B3), red (B4), and wide-band near-infrared 
(B8, NIRw) are at 10 m resolution, while three red edge 
bands (B5, B6, B7), a narrow band NIR (B8a, NIR), and two 
short wave infrared (SWIR) (B11, B12) bands are at 20 m 
resolution. Sentinel-2 narrow-band NIR (B8a) corresponds 
to Landsat-8 NIR band (B5) wavelength designation. We 
resampled all of the 10-m bands to 20 m.
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The HLS dataset combines Landsat-8 and Sentinel-2 sur-
face reflectance data to a consistent grid (Sentinel-2 tile) 
and spatial resolution (30 m) through spatial co-registration, 
bidirectional reflectance distribution function normalization, 
and spectral bandpass adjustment (Claverie et al. 2018). The 
HLS data includes Landsat OLI-like spectral bands.

Vegetation indices

We evaluated the relationship between LAI and commonly 
used VIs: Normalized Difference Vegetation Index (NDVI), 
Enhanced Vegetation Index (EVI), Green Chlorophyll Index 
(GCI), Normalized Difference Water Index (NDWI), and 
Red-Edge Inflection Point (REIP) (Table 2). NDVI, EVI, 
GCI, and NDWI are broad-band VIs used in many previ-
ous studies to estimate LAI and other plant biophysical 
properties. They can be computed from both Landsat and 
Sentinel-2 surface reflectance images (Viña et al. 2011; 
Kang et al. 2016). REIP is based on red edge bands and can 
only be derived from Sentinel-2 images. The plant canopy 
absorbs red light and reflects most near-infrared (NIR) light 
due to the chlorophyll content in leaves and plant cell struc-
ture. The result is a sharp increase in reflectance from red to 
NIR. The red edge is the inflection point in the reflectance 
spectra between red and NIR. The shape and location of the 
red edge are sensitive to LAI, leaf chlorophyll content, as 
well as leaf hydraulic status (Horler et al. 1983; Filella and 
Peñuelas 1994; Darvishzadeh et al. 2009). REIP approxi-
mates the red edge with four broad red-edge bands like those 
from Sentinel-2. Previous studies show that REIP is a better 
predictor for LAI in crops than NDVI, which often saturates 
and becomes insensitive to high LAI values (Herrmann et al. 
2011; Nguy-Robertson et al. 2014). REIP was computed 
from Sentinel-2 bands 4–7.

This study compared different VIs for their relationships 
with LAI and their prediction power of LAI in vineyards. 
We tested the hypothesis that the LAI-VI relationship is 
different across the three study sites as each has a unique 

combination of vine variety, canopy structure (trellis), and 
row configurations.

Physical LAI estimation approaches

Three physical/semi-physical LAI estimation methods were 
evaluated (methods 1–3 in Table 3): two Landsat-based 
approaches using reference LAI from MODIS LAI (Gao 
et al. 2012; Kang et al. 2021) and the Sentinel-2 Level 2 
Prototype Processor (SL2P) algorithm (Weiss and Baret 
2016). The Landsat-based approaches both train machine 
learning models using Landsat surface reflectance as pre-
dictor variables and LAI retrievals from MODIS as ref-
erences. Gao et al. (2012) first proposed this scheme to 
generate MODIS-consistent Landsat LAI maps using the 
Cubist regression model and homogeneous MODIS LAI 
derived within a Landsat footprint over multiple years. This 
approach (method 1) was used by DisALEXI to generate 
Landsat ET maps (Yang et al. 2017; Anderson et al. 2018). 
Recently, Kang et al. (2021) generalized this approach over 
the Contiguous US (CONUS) with an advanced sample 
balancing strategy considering MODIS algorithm satura-
tion and spatial, temporal, and biome representativeness 
across CONUS. Unlike the Gao et al. (2021) approach in 
which the machine learning model does not explicitly con-
sider the biome dependence of the reflectance response to 
LAI, the CONUS approach trained biome-specific random 
forest models to represent complex vegetation conditions. 
This approach (method 2) is used by a Google Earth Engine 
(Gorelick et al. 2017) implementation of DisALEXI as part 
of the OpenET project (Melton et al. 2021). It is worth not-
ing that the MODIS LAI algorithm uses eight broad plant 
functional types to generalize the dependence of canopy-
light interactions on canopy structures. Therefore, biases 
arise when the actual vegetation structure differs from 
the model assumption, which would propagate to the two 
Landsat-based approaches, as they are trained on MODIS 
samples.

Table 2  Vegetation indexes evaluated in this study

 NIR near-infrared,SWIR shortwave infrared

Vegetation Index Equation References/note

Normalized Difference Vegetation index NDVI =
NIR−Red

NIR+Red
Deering (1978), Wang et al. (2005)

Enhanced Vegetation Index EVI = 2.5

(

NIR−Red

1+NIR+6Red−7.5Blue

)

Huete et al. (1997), Huete et al. (2002)

Green chlorophyll Index CIGreen =
NIR

Green
− 1 Gitelson (2003, 2005)

Normalized Difference Water Index NDWI =
SWIR−Red

SWIR+Red
Gao (1996), Houborg et al. (2007)

Red-edge inflection point REIP = 705 + 35

[

(�665+�783)∕2−�705
�740−�705

] Clevers et al. (2001); Herrmann et al. 
(2011)

�
665

 , �
705

 , �
740

 , �
783

 correspond to surface 
reflectance from Sentinel-2 Band 4, 5, 
6, 7
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The SL2P algorithm (method 3 in Table 3) estimates LAI 
from Sentinel-2 top-of-canopy reflectance L2A data using 
neural networks trained with radiative transfer simulations 
from the PROSPECT (Jacquemoud and Baret 1990) and 
SAIL model (Verhoef 1984; Fernandes et al. 2014b; Weiss 
and Baret 2016). Validation results show that SL2P estima-
tion is closer to effective LAI and might underestimate LAI 
in clumped canopies (Djamai et al. 2019; Brown et al. 2021). 
While all three methods rely on machine learning models, 
we consider them as physical approaches since the refer-
ence LAI values were derived from radiative transfer models 
rather than ground measurements. Regression models serve 
as model inversion or search processes to connect LAI and 
surface reflectance. Note that MODIS LAI products were 
derived from Look Up Tables generated from 3-D radiative 
transfer models (Yan et al. 2016).

Empirical LAI estimation approaches

We used ground-measured LAI to build empirical models 
based on surface reflectance from Landsat and Sentinel-2 
images (methods 4 and 5 in Table 3). Exploratory analy-
sis suggested that LAI-VI relationships varied substantially 
across different vineyards and a single VI cannot provide an 
unbiased prediction for all sites (details in “Relationships 
between LAI and vegetation indices”). Therefore, we used 
the Cubist machine learning algorithm to establish regres-
sion models directly based on Landsat or Sentinel-2 bands. 
Cubist is a rule-based model with a tree structure (Quinlan 
1993). Intermediate nodes include rule sets defined by input 
variables. Leaf nodes contain multivariate linear regression 
models that allow for a certain degree of extrapolation. 
Compared to other regression tree or random forest models, 
Cubist has high interpretability and performs similarly well 

in many remote sensing and Earth system science studies 
(Filgueiras et al. 2020; Kumar et al. 2021).

We built cubist models for Landsat (method 4) and Sen-
tinel-2 (method 5) separately using ground-measured LAI 
from all vineyards (Table 3). A third cubist model (method 
6) used the HLS dataset and combined samples from both 
MODIS LAI and ground measurements. The MODIS sam-
ples were screened based on their spatial homogeneity and 
were similar to those used in Method 1 following Gao et al. 
(2012). Given that MODIS LAI samples (about 50,000) 
cover different land cover types and outnumber ground-
measured samples for vineyards (260 records), we assigned 
different weights to MODIS and ground samples according 
to the relative portion of the area they cover in the domain. 
For example, if vineyards covered about 3% of an HLS tile, 
then the total contribution of vineyard ground samples was 
set to 3%. The total contribution from the rest of MODIS 
LAI samples that include other land covers was set to 97%. 
The integration of in situ vineyard LAI measurements and 
MODIS LAI data allows capturing grapevine specific fea-
tures while maintaining consistency of Landsat LAI with 
MODIS, which is essential for models like DisALEXI that 
operate across several spatial scales.

For ground-sample-only training (methods 4 and 5), we 
used two rules in Cubist. Exploratory analysis using five-fold 
cross-validation showed that increasing the number of rules 
beyond two may overfit and degrade model performance. 
Using a small number of rules also improves the model 
interpretability. The model with the combined ground and 
MODIS samples (method 6) had 30 determined by five-fold 
cross-validation. Additional rules were used since the LAI 
samples include all land cover types, not only grapevines as 
in methods 4 and 5. For Landsat 8 and HLS data, the input 
data included surface reflectance from blue (B2), green (B3), 
red (B4), NIR (B5), SWIR1 (B6), and SWIR2 (B7). For 
Sentinel-2, the input data included surface reflectance from 

Table 3  LAI estimation approaches evaluated in this study

No Description Short name Category Training samples Satellite images References

1 Landsat-LAI based on 
MODIS (Local)

Landsat-MODIS (Local) Semi-physical MODIS (local) Landsat Gao et al. (2012)

2 Landsat-LAI based on 
MODIS (CONUS)

Landsat-MODIS 
(CONUS)

Semi-physical MODIS (CONUS) Landsat Kang et al. (2021)

3 Sentinel-2 Level 2 
Processor

SL2P Semi-physical Radiative transfer model 
simulations

Sentinel-2 Weiss and Baret (2016)

4 Landsat cubist model 
from ground samples

Landsat-ground Empirical Ground samples Landsat This study

5 Sentinel-2 cubist model 
from ground samples

Sentinel-2-ground Empirical Ground samples Sentinel-2 This study

6 HLS cubist model from 
ground and MODIS 
LAI samples

HLS-ground + MODIS Empirical Ground samples and 
MODIS (local)

HLS Gao et al. (2014); This 
study
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blue (B2), green (B3), red (B4), red-edge 1 (B5), red-edge 2 
(B6), red-edge 3 (B7), NIR (B8), NIR narrow (B8a), SWRI1 
(B11), and SWIR2 (B12). A six-band model was also tested 
to be comparable to Landsat. For Landsat 8 (method 4) and 
HLS (method 6), we used 260 ground measurements of LAI, 
while for Sentinel-2 (method 5), the sample size was 118, 
since early measurements before 2016 did not have corre-
sponding Sentinel-2 images. Note that since the GRAPEX 
IOPs were scheduled to coincide with Landsat overpass 
dates, most HLS data used were from Landsat 8.

Validation

We compared the estimation accuracy of six LAI estima-
tion methods using ground measurements as reference 
(Table 3). Error metrics include root mean squared error 
(RMSE), mean absolute error (MAE), bias (i.e., mean dif-
ference between modeled and observed values), mean abso-
lute percentage error (MAPE), correlation coefficient (r), 
and coefficient of determination  (R2). For empirical models 
driven by the ground data, the accuracy was estimated using 
five-fold cross-validation. Since the sample size (i.e. amount 
of ground data) was relatively small, the cubist model could 
be sensitive to the way that data was split. Thus, we repeated 
the cross-validation procedure with different sample splitting 
to obtain a stable estimation of the model performance. The 
number of repetitions was determined statistically based on 
the mean and standard deviation of RMSE. An additional 
set of accuracy statistics was obtained using a leave-one-
site-out cross-validation scheme, where one site was held 
out for testing and the other two were used for training. The 
purpose of this test was to evaluate the generalizability of 
empirical models.

TSEB ET modeling and sensitivity analysis

TSEB is a land surface energy balance model that explic-
itly solves the convective, conductive, and radiative 
exchange between soil/substrate and canopy layers. TSEB 
has been previously applied to compute ET and partition 
water fluxes between soil and canopy in GRAPEX vine-
yards (Hoffmann et al. 2016; Kustas et al. 2019b; Nieto 
et al. 2019b). We used a generic version of TSEB written 
in Python (pyTSEB) (Nieto et al. 2021)(https:// github. 
com/ hecto rnieto/ pyTSEB) to test the sensitivity of TSEB 
ET and water flux partitioning to LAI. Meteorological 
model inputs of TSEB include incoming and upwelling 
longwave radiation, air temperature, vapor pressure, and 
wind speed measured from eddy-covariance systems in 
each site. Input hemispherical LST was derived from 
incoming and upwelling longwave radiation following 
Kustas et al. (2019b) and an emissivity estimated from 
the assumed canopy (0.99) and soil/cover crop (0.94) 

emissivities weighted by fractional vegetation cover. We 
used hourly averages of these meteorological measure-
ments. Major vegetation biophysical inputs included LAI 
and canopy height collected during IOPs. Detailed infor-
mation about these measurements can be found in previ-
ous papers (White et al. 2018; Alfieri et al. 2019; Kustas 
et al. 2019a, b; Nieto et al. 2019a, b).

Sensitivity analysis was performed in IOP 1–4 for SLM 
in 2015, 2017 IOP3, 2019 IOP2 and IOP3 for BAR, and 
2018 IOP 1–3 for RIP (Table 4). We used IOPs that had 
ground LAI measurements appropriate for remote sensing 
application, i.e., those that included both grapevine and 
cover crop, or those that were collected when cover crops 
were not present. For each site, we chose three to four IOPs 
taken during different phenological stages. For each IOP, we 
established a baseline TSEB output using ground measured 
LAI. Baseline TSEB output of daytime ET was evaluated 
using eddy covariance measurements, which were corrected 
for energy closure with the residual approach (Knipper et al. 
2019). Then, sensitivity simulations were run with LAI 
changed by ± 5% to ± 50%, with all other inputs unchanged. 
The upper limit (50%) corresponded to the maximum pos-
sible satellite LAI estimation error quantified with ground 
measurements (“Comparison of LAI estimation methods”). 
Results from sensitivity simulations were compared to the 
baseline.

Since the generic TSEB model, designed for homogene-
ous canopies, may not fully acknowledge highly clumped 
vine canopies, baseline ET estimates using ground measured 
LAI as inputs may deviate from observed ET, so chang-
ing input LAI could either increase or decrease ET bias. 
Therefore, the sensitivity analysis mainly quantified the 
relative changes of ET and its partitioning in response to 

Table 4  List of GRAPEX IOPs used in TSEB sensitivity analysis

Vineyard ID Year IOP Date Phenological 
stage

Measured LAI

BAR012 2017 IOP3 08/07 Veraison 1.28
BAR012 2019 IOP2 06/25 Pea size 1.91
BAR012 2019 IOP3 07/28 Veraison 1.72
SLM001 2015 IOP1 4/23 Bloom 0.51
SLM001 2015 IOP2 6/1 Pea size 2.5
SLM001 2015 IOP3 7/9 Veraison 2.43
SLM001 2015 IOP4 8/15 Pre Harvest 2.34
SLM002 2015 IOP1 4/22 Bloom 1.04
SLM002 2015 IOP2 5/31 Pea size 2.29
SLM002 2015 IOP3 7/8 Veraison 1.77
SLM002 2015 IOP4 8/11 Pre Harvest 2.56
RIP760 2018 IOP1 6/18 Bunch Closure 3.86
RIP760 2018 IOP2 7/11 Veraison 3.78
RIP760 2018 IOP3 8/5 Pre Harvest 3.82

https://github.com/hectornieto/pyTSEB
https://github.com/hectornieto/pyTSEB


538 Irrigation Science (2022) 40:531–551

1 3

LAI changes and did not evaluate sensitivity simulations 
to actual ET observations. As soil evaporation approaches 
zero in many cases, its relative change is quantified by divid-
ing the difference between sensitivity simulation and base-
line by the average of the two. For ET and transpiration, 
the percentage change is the ratio between the difference of 
sensitivity simulation from baseline and the baseline value. 
Refining the TSEB model mechanism for vineyard-specific 
applications is a topic of active research with initial results 
in Kustas et al. (2019b) and Nieto et al. (2019a).

Results

Relationships between LAI and vegetation indices

Each site presented a distinctive LAI-VI relationship for VIs 
extracted from both Landsat and Sentinel-2 images (Figs. 2, 
3). For a given EVI, GCI, NDVI, and NDWI (Landsat) value 
range, LAI varied substantially across three sites with RIP 
being the highest and BAR being the lowest (Fig. 2a). For 
example, the median LAI values of samples with NDVI 
ranging from 0.6 to 0.65 were around 1.3, 1.7, and 3.4 for 
BAR, SLM, and RIP, respectively. The high LAI of RIP was 
likely connected to high canopy clumping because of its 

double-vertical trellis structure (Fig. 1). The highly contrast-
ing responses of VI to LAI in different sites make it difficult 
to establish universal relationships applicable to all vineyard 
architectures. However, having the same VI does not ensure 
equality of reflectance in each band. Within samples whose 
NDVI values were around 0.6 to 0.65, surface reflectance 
in six Landsat bands had distinctive patterns for each site. 
For instance, RIP had a higher reflectance in red, NIR, and 
SWIR than the other sites (Fig. 2b). This suggests that while 
LAI-VI relationships do not generalize across sites, a uni-
fied model for all sites may be established by considering 
individual bands.

The red-edge VI—REIP from Sentinel-2 provided infor-
mation on LAI complementary to that from the other VIs 
(Fig. 3). In RIP, the relationship between NDVI and LAI 
was not significant, since a wide range of LAI (1.2–4.2) 
samples fell into a narrow range of NDVI values (red and 
blue boxes in Fig. 3a). Nevertheless, REIP increased with 
LAI linearly. In contrast, in BAR where NDVI had a lin-
ear relationship with LAI (as did EVI and GCI), REIP had 
no significant relationship with LAI. The relationship for 
NDWI, not shown in Fig. 3, was similar to that of NDVI 
and EVI. These phenomena can be further understood by 
looking at individual bands. Figure 3a highlighted two sets 
of samples with contrasting LAI but similar NDVI or REIP 

Fig. 2  LAI-VI relationships for three GRAPEX sites based on Land-
sat images and ground measured LAI samples. a Relationships 
between LAI and EVI, GCI, NDVI, and NDWI for three vineyard 
sites. Solid lines represent fitted simple linear regression and the 

shaded area shows a 95% confidence interval. b and c Compares sur-
face reflectance and LAI of samples with NDVI ranging between 0.6 
and 0.65, as indicated by the grey box in (a), across three sites
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values for RIP and BAR, respectively. In RIP, higher LAI 
samples (blue) had elevated reflectance when compared 
to lower ones in both red and NIR bands leading to only 
a subtle change in NDVI (Fig. 3c). However, there was a 
clear shift of the red edge towards a long wavelength which 
significantly increased REIP. In BAR, high LAI samples 
(red) had lower reflectance in the red band but higher reflec-
tance in NIR, leading to a much higher NDVI compared to 
low LAI samples (blue) (Fig. 3b). However, the inflection 
point or the position of the red edge did not change. These 
results suggest the importance of red edge bands in detecting 
changes in LAI when NDVI saturates. Also, note that the 
GCI-LAI relationship was more significant than EVI and 
NDVI in RIP, highlighting the role of the green band in LAI 
estimation.

Empirical model results

We used the Cubist algorithm to explore the potential of 
building a generalized LAI model across all vineyards 
using all bands rather than a single VI. A two-rule Cubist 
model based on six Landsat bands achieved an RMSE of 
0.48 and explained 78% of the variation in ground meas-
ured LAI with no obvious bias (Table 5). Dropping the blue 
and SWIR2 bands significantly reduced model performance 
(RMSE = 0.61). Adding three VIs (NDVI, EVI, GCI) to the 
model slightly inflated the error (RMSE = 0.49), suggesting 
overfitting. When Cubist models were trained using a com-
bination of ground and MODIS LAI samples (method 6), 
testing error increased for ground samples (overall RMSE: 
0.53, ground RMSE: 0.59) while still within reasonable 
ranges. The combined model explained 69% of the variation 
in ground LAI, with added benefits of providing MODIS-
consistent LAI estimates for all land covers, essential for 
DisALEXI ET modeling. Similarly, the combined model 
also saw degraded performance when fewer bands were 
involved, or when VIs were added to the feature set. In all 
Cubist experiments, we did not find a significant divergence 
in training and testing errors suggesting a low risk of overfit-
ting (Table 6).

The Cubist model based on ten bands from Sentinel-2 
(method 5) achieved an RMSE of 0.32, a percentage error 
of 12%, and R2 of 0.92 in RIP and BAR (n = 118) (Table 7). 
Similar to the Landsat models, adding VIs (NDVI, EVI, 
GCI, REIP) to the Sentinel-2-based model also slightly 
reduced the accuracy. Further, we tested the three empiri-
cal approaches using the same ground data and same input 
feature set consisting of six bands that Landsat-8 and Sen-
tinel-2 share in common. The Sentinel-2 six-band model 
had a higher accuracy than both Landsat-8 and HLS-
MODIS + ground, with RMSE 0.42 (S2) vs. 0.49–0.50 
(HLS, Landsat) and R2 0.87 vs. 0.81–0.82 (HLS, Landsat). 
This is likely attributed to the higher spatial resolution (20 m 

vs. 30 m) and better geolocation accuracy of Sentinel-2. 
Meanwhile, the accuracy of the six-band Sentinel-2 model 
was substantially lower than the ten-band version (RMSE 
0.42 vs 0.32), suggesting the value of red edge bands in 
measuring LAI.

The two-rule Cubist models for Landsat and Sentinel-2 
both used NIR (NIRw for Sentinel-2) around 0.4 as the split 
threshold. The exact threshold value ranged between 0.37 
to 0.43 depending on the random split of training samples. 
Samples in the first rule had lower NIR and lower LAI, while 
samples in the second rule has larger NIR and higher LAI, 
reflecting major differences in the spectral response to LAI 
in sparse and dense canopies. Taking the Sentinel-2 two-rule 
model as an example (Fig. 4), most RIP samples were char-
acterized by high NIRw and high LAI thus belonging to the 
second rule, while most BAR samples belonged to Rule 1. 
Both rules saw a large positive impact of NIRw on LAI (high 
coefficients). Red-edge 1 (Band 5) highly correlated with 
red, while Red-edge 2 (Band 6) and Red-edge 3 (Band 7) 
shared information with NIRw. There was a small negative 
impact of Red-edge 2 and Red-edge 3 on LAI within each 
rule, but overall, the impact was positive. Note that while all 
ten bands were pre-defined as features, Cubist automatically 
determines which feature(s) to use for rules or in the linear 
regression models. In this example, NIR (Band 8), which 
highly correlates with NIRw (Band 8A), and SWIR2 (Band 
12), which highly correlates with SWIR1 (Band 11), were 
dropped by Cubist. The band selection may differ depending 
on the random split of the training set.

While all three empirical approaches provide robust LAI 
estimation with minimal bias, model performance may 
degrade substantially when tested in independent locations, 
as evidenced by the leave-one-site-out test (Table 7). RMSE 
of LAI reached 1.06, 1.31, and 0.66 for BAR, RIP, and SLM 
sites used as independent tests, respectively, mainly attrib-
uted to estimation bias. LAI in RIP and SLM were underes-
timated with large negative biases (-1.2 and -0.39, respec-
tively), while RIP had a positive 0.95 bias. The direction 
of site-specific biases was consistent with the contrasting 
LAI-VI relationships and connected to canopy clumping dif-
ferences among sites (Fig. 2a).

Comparison of LAI estimation methods

Three physical LAI estimation methods showed an over-
all RMSE between 0.97 and 1.27, and the Sentinel S2LP 
algorithm achieved the highest accuracy, while two Landsat-
based approaches performed similarly (Table 8). All three 
underestimated LAI in RIP (Figs. 5, 6). The local Landsat-
MODIS algorithm also underestimated medium LAI (values 
between 2 and 4) in SLM. Although the overall accuracies 
of both Landsat-based methods were similar, the CONUS 
approach showed a smaller bias for high LAI (e.g. In SLM 
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and RIP) attributed to the balanced sampling strategy con-
sidering both unsaturated and saturated MODIS LAI (Kang 
et al. 2021). But the CONUS approach was also associated 

with a lower precision as seen in Fig. 5. The local scheme 
had a higher accuracy for LAI below 2.
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The Sentinel S2LP algorithm had the highest accuracy 
among the three when the comparison was made using a 
common set of samples, yielding RMSE = 0.97 (S2LP) 
vs. 1.6 (Landsat) (Table 9). This difference was mainly 
driven by samples from RIP, where S2LP-estimated LAI 
was significantly higher than Landsat LAI. The negative 
bias of S2LP in RIP was only half of that from Land-
sat estimations, but it was still considerably large ~ − 1. 
The underestimation of high LAI in physical models was 
related to several well-known reasons, with NIR reflec-
tance saturation and model assumptions/generalizations 
being the most important (Myneni et al. 1999; Fang et al. 
2019; Brown et al. 2021; Kang et al. 2021). Plant reflec-
tivity of NIR light saturates and becomes insensitive to 
LAI as the vegetation canopy grows denser (LAI > 2–3). 
The intensity of this phenomenon varies according to can-
opy biophysical, biochemical, and structural differences. 
Radiative transfer models underlying global/regional 
LAI products often need to make simplified assumptions 
regarding canopy and soil properties to support gener-
alization over large areas. As a result, estimation bias in 
LAI arises when canopy conditions diverge from model 
assumptions (i.e. a horizontally continuous canopy layer 
with randomly placed leaves). For grapevines, the diverse 
trellis designs—varying canopy geometry and clump-
ing—creates additional challenges for remote estimation 
of LAI (Figs. 1, 2).

Estimation bias that arose from model assumptions 
could sometimes be mitigated by incorporating ground-
measured LAI. The three empirically trained Cubist mod-
els achieved higher accuracy than physical approaches 
with no appreciable bias (Table 8, Figs. 5, 6). The RMSE 
of empirical methods ranges between 0.31 and 0.57 with 
MAPE below 20%, while the MAPE of physical methods 
could be as high as 50% (for RIP). However, empirical 
models may not generalize well to unknown conditions. 
The leave-one-site-out testing accuracy for the empirical 
models of Landsat was comparable to that of physical 

approaches, with RMSE around 1 and MAPE around 42% 
(Table 8).

Impacts of LAI uncertainties on ET modeling

We analyzed the impact of LAI estimation uncertainty on 
TSEB ET simulation by adding ± 5 to 50% error to ground 
measured LAI for each IOP. Baseline TSEB daytime ET 
simulations forced by ground-measured LAI were consist-
ent with eddy covariance measured ET. The RMSE was 
0.55  mm/day, the mean absolute percentage error was 
14%, and  r2 was 0.78 over 14 IOPs (Table 4). Sensitivity 
simulations with varied errors in LAI were compared to 
the baseline. Absolute percent changes of TSEB ET gener-
ally increased with LAI error but with a lower magnitude 
(Fig. 7a). A 20% change in LAI led to less than 15% change 
in ET, with a median value below 5%. A 50% change in LAI 
contributed to less than 25% change in ET with a median of 
10%. The impact of LAI on TSEB ET was asymmetric in 
magnitude (Fig. 7b). A positive error in LAI (i.e. LAI over-
estimation) was far more influential on ET than a negative 
one (i.e. when LAI is underestimated). A small underesti-
mation (− 5 to − 30% in relative bias) in LAI could either 
increase or reduce ET, but both positive and large negative 
biases in LAI were more likely to reduce ET. A 50% under-
estimation in LAI may only lead to a small negative bias 
in ET up to -10%, but a 50% overestimation in LAI could 
reduce ET by up to 50% (the median is around 18%).

The impact of LAI on ET partitioning was further evalu-
ated (Fig. 7c, d). While ET showed minimal responses to 
negative changes in LAI, evaporation (E) and transpiration 
(T) changes were substantial. A 50% underestimation in LAI 
led to a reduction in T by up to 40%. Soil evaporation gen-
erally decreases when LAI increases. However, the effect 
of LAI on transpiration and total ET is more complex and 
depends on canopy growth stages (Fig. 8a). When the vine 
canopy is relatively sparse (baseline LAI < 1.5), transpiration 
increases with LAI, outpacing the decrease in evaporation 
and leading to a slow increase in ET. Sensitivity simula-
tions of three IOPs in BAR and IOP1 for two SLM vine-
yards belong to this case (Fig. 8b). As the vine canopy grows 
denser, the increase in transpiration tapers off and eventually 
is outpaced by the reduction of soil evaporation leading to 
an overall ET decrease. As LAI further increases, it starts 
reducing transpiration leading ET to decline at a higher rate, 
while soil evaporation is driven down to zero (Fig. 8a). This 
scenario is evident in three IOPs of RIP, and IOP2-4 for 
SLM (Fig. 8b). The nonmonotonic response of ET to LAI 
gives rise to model equifinality, where different LAI val-
ues could result in the same ET due to different partitioning 
between E and T.

From a modeling perspective, TSEB starts with an 
initial guess that the canopy is transpiring at a potential 

Fig. 3  Comparison of LAI-VI relationships between REIP and other 
VIs (NDVI, EVI, GCI) for BAR and RIP vineyards based on Senti-
nel-2 images. NDWI is not presented here as its behavior is similar 
to NDVI and EVI. a LAI-VI relationships for EVI, GCI, NDVI, and 
REIP. For BAR (upper panel), colored points have REIP between 725 
and 727 nm, but with contrasting LAI. Red points (outlined as sam-
ple region I) have LAI less than 1.2, while blue points (outlined as 
sample region II) have LAI greater than 1.7. For RIP (lower panel), 
colored points share NDVI range from 0.55 to 0.6, while red points 
have LAI less than 2 (sample region I) and blue points have LAI 
greater than 3 (sample region II). b and c illustrates the spectral pro-
file of samples with similar VI values but contrasting LAI for BAR 
and RIP respectively. In b, red and blue lines and boxplots correspond 
to samples in Region I and II in the BAR (upper) panel of (a). In c, 
red and blue lines and boxplots correspond to samples in Region I 
and II outlined in the RIP (lower) panel of (a)

◂
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rate (non-moisture limiting) estimated using the Priest-
ley-Taylor relationship applied to the canopy net radiation 
divergence (Kustas et al. 2019a). TSEB then solves for 
soil evaporation based on energy balance. If this results in 
negative soil evaporation, which is unlikely midday when 

Landsat TIR imagery is collected, the TSEB considers the 
canopy to be under stress and iteratively reduces transpi-
ration until evaporation estimation is realistic (non-neg-
ative). Elevated LAI can serve to emulate this signal of 
stress by overestimating potential transpiration and thereby 

Table 7  Leave-one-site-out 
cross-validation results for 
Cubist models based on Landsat 
images and ground measured 
LAI samples (n = 260)

The feature set included six Landsat bands and the models had two rules

Test site Train Test

RMSE MAPE Bias R2 RMSE MAPE Bias R2

BAR 0.40 13% − 0.02 0.82 1.06 79% 0.95 0.13
RIP 0.39 18% − 0.05 0.71 1.31 35% − 1.20 0.21
SLM 0.33 12% 0.02 0.92 0.66 24% − 0.39 0.53
Overall – – – – 1.01 42% − 0.30 0.14

Fig. 4  Cubist model for Sentinel-2 and scatter plots between LAI 
and Sentinel-2 bands. Reflectance was normalized based on max 
and min, so that coefficients in linear regression equations reflect 
the importance of input bands. Dashed line in NIRw panel indicates 

rule threshold. The underlying data was 80% of all samples (n = 118) 
selected as the training set. Note that while all ten bands were set as 
features, Cubist automatically determined features used as a rule or in 
the linear regression models

Table 8  Comparison of six LAI estimation methods

Errors of empirical methods were from fivefold cross-validation unless indicated otherwise

Method no Category LAI_method Count RMSE Bias MAE MAPE (%) r R2

1 Physical Landsat-MODIS(Local) 260 1.27 − 0.77 0.93 33.47 0.19 − 0.57
2 Physical Landsat-MODIS(CONUS) 260 1.26 − 0.60 0.93 33.65 0.30 − 0.54
3 Physical S2LP 118 0.97 − 0.58 0.76 26.11 0.77 0.30
4 Empirical Landsat-ground 260 0.48 − 0.02 0.36 18.64 0.88 0.77
4 Empirical Landsat-ground (Leave-one-site-out) 260 1.01 − 0.30 0.86 41.74 0.38 0.14
5 Empirical Sentinel-2-ground 118 0.31 0.02 0.24 11.30 0.96 0.93
6 Empirical HLS-ground + MODIS 260 0.57 − 0.14 0.41 18.24 0.84 0.68
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producing negative estimates of soil evaporation. As such, 
we found that transpiration degraded almost linearly with 
LAI when LAI was positively biased from a high baseline 
(Fig. 8b, three IOPs for RIP, IOP2-4 for SLM).

The exact turning points when T and ET start decreasing 
with LAI depend on the land surface temperature, plant, 
atmospheric, and soil conditions (Kustas and Norman 1997). 

Consequently, the sign and magnitude of estimated T and ET 
changes induced by LAI are functions of a series of variables 
besides LAI. Figure 9 shows the percentage changes in T 
and ET connected to LAI errors from six remote sensing 
LAI methods. In general, due to divergent responses of E 
and T to LAI, ET was not as sensitive to LAI as T. In the 
two IOPs of BAR012, since the baseline LAI was low (< 2), 

Fig. 5  Scatter plots of ground measured LAI and predicted LAI from 
six estimation methods. For Landsat-based methods, the number of 
reference LAI samples is 260. For Sentinel-2 based methods, the 

number of reference LAI samples is 118. Results of empirical meth-
ods were from fivefold cross-validation

Fig. 6  Bias and MAPE (%) of 
six LAI estimation methods for 
different sites. Errors of empiri-
cal methods were from fivefold 
cross validation
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T and ET had not reached their turning point with 50% LAI 
errors. Their responses to LAI were mainly monotonic. In 
RIP IOP1 and IOP3 where the baseline LAI was high (~ 3.8), 
the response of T and ET to LAI errors were not monotonic 
(Fig. 8b). For example, in RIP IOP3, methods 1 and 2 under-
estimated LAI by 50–70%, but ET estimates were close to 
observations (< 5%). In contrast, methods 3 and 4 had lower 
LAI errors (30–50%) but higher ET biases (10–12%).

Discussions

Canopy spectral response to LAI differed significantly across 
vineyards characterized by different planting configurations 
and trellis structures, consistent with previous investigations 
(Nguy-Robertson et al. 2014; Kang et al. 2016). While LAI-
VI relationships were not universal across the three vine-
yards, a simple rule-based regression model reproduced LAI 
with no obvious bias and captured 78% of variability for all 
vineyards by exploiting all bands. This suggests that ratio-
based VIs like EVI and NDVI often ignore differences in 
the absolute reflectance of individual bands like NIR and 
Green, which encode information on canopy structure and 
LAI (Badgley et al. 2017). Additionally, we found that the 
red-edge-based VI (REIP) from Sentinel-2 images provided 
complementary information to NDVI in LAI estimation 
(Herrmann et al. 2011). These observations imply the value 
of exploiting individual bands to estimate LAI across het-
erogeneous canopy structures rather than using a single or a 
few VIs that are highly inter-correlated (Gutman et al. 2021). 
Many remote sensing ET models estimate LAI or vegetation 
fractional cover through a single relationship with NDVI 
(Allen et al. 2011), ignoring the effect of canopy structure 
and other properties on canopy radiative response. Future 
research may benefit from deriving simple theoretical formu-
las directly based on reflectance across the entire spectrum 
including the red-edge bands.

Three physical/semi-physical approaches based on Land-
sat or Sentinel-2 reflectances significantly underestimated 
LAI for dense and highly clumped canopies (LAI > 2). 

Inverting radiative transfer models to retrieve LAI is an 
ill-posed problem (Combal et al. 2003). Radiative trans-
fer models often use simplified assumptions to generalize 
across global ecosystems, thus large bias and uncertainty 
are unavoidable in heterogeneous landscapes, like the highly 
clumped canopies in vineyards and other orchards. For 
example, S2LP uses the turbid-medium PROSAIL model 
where the vegetation canopy is modeled as a horizontally 
homogenous green turbid medium without foliage clump-
ing. As a result, Sentinel-2 LAI has been found to represent 
effective LAI rather than the true LAI (Djamai et al. 2019; 
Brown et al. 2021). Likewise, we compared S2LP LAI to 
effective LAI measured in RIP and the accuracy was sig-
nificantly better with no obvious bias than when compared 
to true LAI (RMSE = 0.56; bias = − 0.04). The MODIS 
LAI algorithm used 3-D radiative transfer models (2-D 
for some biomes) to represent eight biomes, requiring land 
cover information to regulate the models. However, these 
are broad categories of plant functional types. Thus, spe-
cialty crops such as orchards are not well-represented. Major 
improvement in remote sensing estimation of LAI in the 
future will likely require additional canopy information to 
regularize the ill-posed problem, such as multi-angular (Liu 
et al. 2014), hyperspectral (Cawse-Nicholson et al. 2021), 
and LiDAR (Potapov et al. 2021) observations.

Uncertainties in LAI propagate proportionally to ET 
estimation in TSEB model in general, but the underlying 
mechanism differs across growth stages and stress condi-
tions. When vine canopies were in early growing stages, 
up to 50% error in LAI (~ 0.5) did not cause a significant 
change in ET, as effects on E and T canceled out (Fig. 8, 
column 1). But individual uncertainty of E and T was 
around 0.5–0.8 mm with an LAI error of 0.5, which is typ-
ical of satellite retrievals. Such model equifinality (Beven 
2006) may not sufficiently inform precise irrigation sched-
uling which requires accurate estimation of water loss both 
from vines and the cover crop/bare soil. For vines in late 
vegetative or reproductive stages, a positive bias in LAI 
may lead to a significant underestimation of T, as TSEB 
down-regulates latent heat loss to avoid energy imbalance 

Table 9  Comparison of three 
physical LAI estimation 
methods with a common set of 
ground observations (n = 118)

Site LAI_method Count RMSE Bias MAE MAPE(%) r R2

ALL Landsat-MODIS(Local) 118 1.64 − 1.18 1.31 42.08 0.12 − 1.04
ALL Landsat-MODIS(CONUS) 118 1.60 − 1.16 1.28 40.58 0.29 − 0.93
ALL S2LP 118 0.97 − 0.58 0.76 26.11 0.77 0.30
BAR Landsat-MODIS(Local) 46 0.29 0.11 0.23 19.57 0.61 0.19
BAR Landsat-MODIS(CONUS) 46 0.37 0.09 0.24 17.11 0.77 − 0.26
BAR S2LP 46 0.38 0.18 0.28 20.79 0.78 − 0.32
RIP Landsat-MODIS(Local) 72 2.09 − 2.00 2.00 56.47 0.26 − 10.40
RIP Landsat-MODIS(CONUS) 72 2.03 − 1.95 1.95 55.58 0.45 − 9.70
RIP S2LP 72 1.20 − 1.06 1.06 29.51 0.50 − 2.75
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in response to water stress. But since E responds posi-
tively to an increased LAI, the uncertainty in LAI may 
not propagate to ET. Taking RIP—IOP2 as an example, 
a negative 50% error in LAI (equivalent to the estima-
tion from Landsat-MODIS physical approaches) reduced 
T by 1.4 mm, but an equivalent yet positive change was 
found in E. Therefore, ET change was negligible (Fig. 8). 

Although remote sensing estimation of LAI is more likely 
to underestimate rather than overestimate in dense vegeta-
tion due to the saturation issue, thus resulting in a rela-
tively small error in ET, caution is required when water 
stress is assessed for vine and cover crop separately to 
inform irrigation scheduling (Kustas et al. 2019b; Bellvert 
et al. 2020).

Fig. 7  Sensitivity of ET and its partitioning to LAI estimation errors 
from 5 to 50%. a Absolute percentage change in ET vs. absolution 
percentage change in LAI. b Percent changes in ET vs. percent-
age changes in LAI. c Relative change in evaporation to LAI. Since 
evaporation was close to zero in many cases, relative change was 
quantified as dividing the difference between sensitivity simulation 

and baseline by their average values. d Percentage change in transpi-
ration to LAI. In a boxplot, the middle bar presents the median, the 
box covers 25% and 75% percentiles, and the difference between the 
two is called the inter-quartile range (IQR). The whiskers extend from 
the box to 1.5 * IQR, and data beyond the whiskers are outliers and 
drawn individually
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Conclusions

This study quantified the uncertainties of several satellite-
based LAI estimation approaches and analyzed the impact 
of LAI errors on TSEB ET modeling for four California 
vineyards across climate gradients. Physical approaches for 

Landsat and Sentinel-2 predicted low to medium LAI rea-
sonably well but underestimated medium to high LAI by 
1 to 2 units. Sentinel-2 S2LP algorithm outperformed two 
Landsat-based approaches in a highly clumped vineyard. 
Although LAI-VI relationships differed substantially across 
vineyards, a unified rule-based regression model based on 

Fig. 8  Effects of LAI estimation error on TSEB soil evaporation (E) 
and plant transpiration (T) partitioning. a Illustration of TSEB E, T, 
and ET responses to LAI, based on SLM002 2015-IOP2. b TSEB 

E, T, and ET response to percentage changes in LAI from baseline 
in selected IOPs of four vineyards. Baseline LAI refers to the field 
measurement
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ground LAI measurements and surface reflectance from mul-
tiple bands achieved high estimation accuracy (RMSE ~ 0.5) 
with no significant bias in all vineyards. Moreover, the supe-
rior performance of Sentinel-2 approaches, both physical 
and empirical, highlighted the unique value of red-edge 
bands for LAI modeling.

ET uncertainty was generally proportional to LAI errors, 
but positive LAI biases more significantly affected ET than 
negatives ones. In moderate or dense vine canopies, positive 
bias in LAI led to severe water stress in TSEB simulations, 
which down-regulated transpiration resulting in underes-
timation of ET. In other cases, the overall impact of LAI 
uncertainties on ET may be small, but errors in E and T 
partitioning could be sizable due to the divergent responses 
of plant transpiration and soil evaporation to LAI. Precise 

irrigation management in vineyards requires accurate par-
titioning of water fluxes to improve water use efficiency 
and reduce water loss from soil or cover crop. Applications 
of remote sensing-based-ET models should be mindful of 
uncertainties in remote sensing LAI estimation and impacts 
on ET modeling, especially on E and T partitioning. Vine-
yard irrigation scheduling can benefit from empirical or 
locally calibrated physical LAI approaches based on ground 
measurements.
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