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Abstract
Under ideal conditions, evapotranspiration (ET) fluxes derived through the eddy covariance (EC) technique are considered 
a direct measure of actual ET. Eddy covariance flux measurements provide estimates at a temporal frequency that allows 
examining sub-daily, daily, and seasonal scale processes and relationships between different surface fluxes. The Grape Remote 
Sensing Atmospheric Profile and Evapotranspiration eXperiment (GRAPEX) project has collected micrometeorological and 
biophysical data to ground-truth new remote sensing tools for fine-tuning vineyard irrigation management across numerous 
sites since 2013. This rich dataset allows us to quantify the impact of different approaches to estimate daily ET fluxes, while 
accounting for energy imbalance. This imbalance results from the lack of agreement between the total available energy and 
turbulent fluxes derived by the EC technique. We found that different approaches to deal with this energy imbalance can lead 
to uncertainty in daily ET estimates of up to 50%. Over the growing season, this uncertainty can lead to considerable biases 
in crop water use estimates, which in some cases were equivalent to ~ 1/3rd of the total growing season applied irrigation We 
analyzed ET uncertainty relative to atmospheric meteorological, stability, and advective conditions, and highlight the impor-
tance of recognizing limitations of micrometeorological observational techniques, considered state of the art, to quantify ET 
for model validation and field-scale monitoring. This study provides a framework to quantify daily ET estimates’ uncertainty 
and expected reliability when using the eddy covariance technique for ground-truthing or model validation purposes.

Introduction

Evapotranspiration (ET) is considered a key parameter 
needed to fine-tune irrigation, optimize water use, and 
enhance crop quality (Hargreaves and Samani 1982; Jensen 
et al. 1990; Allen et al. 1998; Kustas et al. 2018, 2019). 
Satellite remote-sensing technology offers the possibility of 
providing routine sub-field and inter-field-scale ET estimates 
and plant stress indices (Knipper et al. 2019a). Commonly, 
these ET estimates are based on process-based models using 
a combination of thermal, visible, shortwave, and near infra-
red imagery (Glenn et al. 2007; Anderson et al. 2018; Gon-
zalez-Dugo et al. 2009; Anderson et al. 2012; Knipper et al. 
2019a, b; Chen and Liu 2020). However, given the complex-
ity of physical and biological processes controlling evapora-
tion and transpiration, ET estimates from different modeling 
approaches might be subject to substantial uncertainty (Long 
et al. 2014; Chen and Liu 2020). Consequently, many remote 
sensing-based ET methods use ground observations for 
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validation, improving model parameterizations, or embed-
ded data within a given assimilation scheme.

Various methods, including surface energy flux partition-
ing and the soil water balance, have been used to ground-
truth remotely sensed ET estimates. Multiple studies have 
compared ET derivations from modeling approaches based 
on remote sensing data at a wide range of temporal and 
spatial scales. These include lysimetry (e.g., Dhungel et al. 
2021; Evett et al. 2012; Sánchez et al. 2019), profiles of 
soil water content (e.g., Guderle and Hildebrandt, 2015), 
eddy covariance (EC) (Dhungel et al. 2021; García-Gutié-
rrez et al. 2021; Knipper et al. 2020a; Sánchez et al. 2019, 
surface renewal (SR) (e.g., Xue et al. 2020), Bowen ratio 
systems (e.g., Evett et al. 2012), scintillometry (e.g., Evett 
et al. 2012; Geli et al. 2020), and other methods. The various 
approaches have different limitations or requirements regard-
ing spatial representation, frequency of measurements, cali-
bration of sensors, and environmental/landscape character-
istics. Nevertheless, significant advances in the design and 
quality of sensors used in EC systems (Mauder et al. 2020) 
have led to heavy dependence on this technique as a reliable 
method for ET ground-truthing. In fact, flux networks, such 
as Ameriflux, Euroflux, AsiaFlux, and the global network 
FLUXNET (https:// fluxn et. org/ about/ histo ry/), rely on EC 
towers for monitoring water, carbon, and energy fluxes.

The EC method has not only evolved in terms of the 
instrumentation used but also in understanding the theo-
retical basis of eddy covariance measurements related to 
the quantification of energy, momentum, and mass transfer 
between ecosystems and the atmosphere (Webb et al. 1980; 
Leuning et al. 2012; Mauder et al. 2013, 2020; Stoy et al. 
2013). In addition, while storage and data processing were 
challenging a few decades ago, drastic improvements in 
computing technologies have facilitated the conversion of 
raw instrumental data streams into quality-controlled fluxes. 
In addition, the micrometeorological community has also 
moved toward more standardized practices regarding sen-
sor deployment, data processing, and corrections (Pastorello 
et al. 2020).

The EC method works well under ideal conditions, but 
these can be challenging to fulfill, especially in long-term 
studies that continuously characterize surface fluxes. For 
example, a flat, large, and homogeneous surface is ideal for 
implementing the EC method, which is uncommon in many 
agricultural settings. Also, flux observations represent a 
dynamic spatial area depending on wind and stability con-
ditions; this area is referred to as the flux “footprint” (Chu 
et al. 2021). Thus, EC measurements can be challenging to 
interpret. When the source of fluxes is influenced by a het-
erogeneous landscape or during stable or weakly turbulent 
periods (i.e., usually at nighttime), the flux footprint might 
cover areas beyond the scope of the landscape of interest 
(Foken et al. 2005; Mauder et al. 2013). Another critical 

issue regarding the EC method is the assumption that advec-
tive fluxes can be ignored, but such conditions are common 
over multiple landscapes such as heterogeneous irrigated 
agricultural regions (French et al. 2012). Moreover, the sum 
of the components of the energy balance (EB) is often not 
zero, and this imbalance can make up 10 to 40% of the net 
radiation (Wilson et al. 2002; Franssen et al. 2010; Leun-
ing et al. 2012; Kutikoff et al. 2019; Mauder et al. 2020; 
Dhungel et al. 2021). Energy Balance Residual (EBR) is 
commonly used to assess this imbalance with the following 
equation:

where Qnet is the net radiation, G is the soil heat flux, H is 
the sensible heat flux, and λE is the latent heat flux. Canopy 
heat storage in biomass and water content and photosynthe-
sis are often neglected energy terms (Lindroth et al. 2010), 
yet they can significantly contribute to the EBR, particu-
larly the heat storage in trees at full canopy cover and at 
sub-daily timescales (Meyers and Hollinger 2004; Leuning 
et al. 2012).

The Grape Remote sensing Atmospheric Profile and 
Evapotranspiration eXperiment (GRAPEX) aims to develop 
a remote sensing-based ET toolkit using earth observations 
for monitoring vineyard water use and stress from within 
vineyard block to regional scales in California. In this con-
text, ET estimates derived from eddy covariance (ETEC) are 
commonly used as a source of validation of remote-sensing 
ET estimates (Anderson et al. 2018; Knipper et al. 2019a, 
b, 2020b). Considering the challenges related to EC flux 
estimates under non-ideal conditions commonly found in 
California vineyards, it is crucial to quantify the uncertainty 
of daily ET fluxes for use in precision irrigation manage-
ment. This study compares nine approaches to derive daily 
ET estimates from EC flux measurements. The analyses were 
performed based on a rich dataset collected across five vine-
yards between 2018 and 2020. We investigated how mete-
orological conditions, atmospheric stability, and advection 
serve as potential sources of uncertainty.

Approaches for daily ET calculations

The EC method can be used to directly quantify the exchange 
of water vapor fluxes from a crop surface to the atmosphere 
by the covariance between turbulent fluctuations of the verti-
cal wind 

(

w
′) and water vapor 

(

q
′) . Co-spectral analyses 

showed that an averaging period (AP) of 30 min was appro-
priate to capture low-frequency contributions to the fluxes. 
Therefore, the daily ET flux (ETEC) can be computed as the 
sum of all the ET flux for each AP 

(

ETAP
EC

= w�q�
)

 in a given 
day. Therefore:

(1)EBR = Qnet − G − H − �E

https://fluxnet.org/about/history/
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The corresponding time dependency of each ETAP
EC

 
is represented by t, thus n = 24 − AP∕60 to complete a 
full day cycle, and dt = AP × 60 s . Consequently, ETEC 
represents the total daily water vapor mass flux (i.e., g 
 H2O  m−2  d−1).

Since stable conditions are often prevalent during night-
time, the flux footprint can cover more extensive areas than 
the surface of interest, turbulence can be highly intermittent, 
nighttime ET fluxes are assumed to be negligible (Wever 
et al. 2002; Novick et al. 2004; Maltese et al. 2018). How-
ever, there is evidence that further efforts should be consid-
ered to quantify night-time ET (Fisher et al. 2007; Novick 
et  al .  2009).  Thus, ETAP

EC−DT
= w�q� × f (SW) ,  and 

f (SW) =

{

1, SWIN > 50
[

WM
−2
]

0, SWIN ≤ 50
[

WM
−2
] . In this case, a threshold 

of low incoming shortwave radiation is set as a proxy of an 
expected photosynthetic light below the compensation point 
for grapevines (Greer and Weedon 2012). Therefore, the 
ETAP

EC−DT
 for each period becomes dependent on incoming 

shortwave radiation ( SWIN ). Thus, the “EC-DT” subscript 
refers to cases when only daytime fluxes contribute to the 
total daily ET. Therefore, in the same fashion that Eq. 2, the 
daily ET estimate can be estimated by Eq. 3.

Observed lack of closure in the EB is a common issue in 
EC flux systems, in which sensible (H) and latent heat (λE) 
fluxes are not in close agreement with the total available 
energy (i.e., 

(

Qnet − G
)

 . Therefore, based on conservation of 
energy principles, it is common practice to use the Bowen 
(Bo) ratio (H/λE) to partition the EBR (Twine et al. 2000; 
Barr et al. 2006; Widmoser and Wohlfahrt 2018). Then, the 
ET flux corrected by Bo can be estimated by Eq. 4.

where λ is the latent heat of vaporization of water. Similar 
to Eq. 2, once the Bo correction is applied, this daily ET flux 
can be computed by Eq. 5.

Then, the limitations of nighttime fluxes could also 
be considered. In that case, the daily ET corrected by Bo 
assuming only daytime fluxes are relevant can be com-
puted by Eq. 6.

(2)ETEC =

t=n
∑

t=0

ETAP
EC,t

× dt

(3)ET
EC−DT

=

t=n
∑

t=0

ETAP
EC−DT ,t

× dt

(4)ETAP
B−SD

= ETAP
EC

+

(

1 + BAP
o

)−1
× RAP

�
× dt

(5)ET
B−SD

=

t=n
∑

t=0

ETAP
B−SD,t

× dt

The Bo approach for H and λE correction is supported by 
evidence of meso-scale turbulent measurements (Mauder et al. 
2020) and based on comparative studies using lysimeter ET 
estimates against EC λE estimates (Mauder et al. 2018). Never-
theless, when the EBR is considerable relative to the total avail-
able energy and there is evidence of less than ideal experimen-
tal conditions, it might be somewhat arbitrary to assume that 
the energy imbalance should follow the same ratio as the fluxes 
derived by the EC method (Charuchittipan et al. 2014). Alter-
natively, the issues regarding the EB closure are commonly 
mitigated when considering total daily fluxes. For example, 
observed hysteresis in the different fluxes is expected to be 
compensated when sub-daily fluxes are integrated through-
out the day (Dhungel et al. 2021). Also, storage components 
might become less relevant on a daily scale. Furthermore, daily 
adjustment has been linked to less scatter than a complete par-
titioning of the residual for every AP (Mauder et al. 2018). 
Therefore, in a similar fashion to Eq. 4, total daily ET flux can 
be estimated using Eq. 7.

where the total residual is estimated as R =
∑t=n

t=0
RAP
t

× dt , 

and its respective partitioning corresponds to Bo =
∑n

0
HAP

∑n

0
�EAP . 

In this case, Bo is a function of daytime and nighttime fluxes, 
which can lead to bias in the H and λE correction since the 
magnitude of fluxes is much larger at daytime. Thus, imple-
menting this correction only to daytime fluxes seems rele-
vant. In this case, the daily ET for daytime fluxes (ETB-D-DT) 
is calculated by Eq. 8.

Similar to the previous approach, the total residual is 
RDT =

∑t=n

t=0
RAP
t

× dt × f (SW) and BoDT =
∑n

0
HAP

∑n

0
�EAP

× f
�

SWIN

�

 . 

Another alternative correction based on the Bo is deriving a 
factor resulting from a centered moving median over 
a ± 15 days sliding window on each AP (Pastorello et al. 
2020). AP during sunrise (03:00–09:00) and sunset 
(15:00–21:00) local standard time is excluded from the 
analyses to avoid issues related to significant changes in heat 
storage expected during those hours. Then, the daily ET esti-
mation is based on the moving median of � =

QAP
net
−GAP

HAP+�EAP 
parameter can be computed by Eq. 9.

(6)ET
B−SD−DT

=

t=n
∑

t=0

ETAP
B−SD,t

× f (SW) × dt

(7)ET
B−D

= ET
EC

+

(

1 + B
o

)−1
× R

�

(8)ETB−D−DT = ETEC−DT +

(

1 + BoDT

)−1
× RDT

�
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Where �MM is the moving median of � . A similar 
approach has been implemented by FLUXNET (Pastorello 
et al. 2020), which uses an alternative method when there is 
not enough data to estimate a reliable �MM . However, large 
data gaps in the GRAPEX datasets did not exist so this 
method was not required.

Direct estimations of ETAP
EC

 depend on measurements of 
high-frequency atmospheric water vapor, which is costly 
and requires a significant amount of maintenance to work 
reliably. Consequently, a common approach is to estimate 
λE, and then ET, as the energy balance residual. Therefore,

In this case, a comparable estimate of only daytime fluxes 
is computed using Eq. 11.

Nine methodological approaches are used in this study 
to calculate micrometeorological daily ET estimates and are 
summarized in Table 1.

Materials and methods

Study sites

This study focuses on EC flux measurements collected as 
part of GRAPEX on 5 vineyards located over the North 

(9)ET
B−SD−MM

=

t=n
∑

t=0

ETAP
EC,t

× �MM × dt

(10)ETEB =

∑t=n

t=0
QAP

net
− HAP − GAP

�
× dt

(11)ETEB−DT =

∑t=n

t=0
QAP

net
− HAP − GAP

�
× f

�

SWIN

�

× dt

Coast and the Central Valley of California. In the North 
Coast area, two flux towers were deployed at the study site: 
one in a Cabernet Sauvignon (BAR_A12) and another in 
a Petite Sirah vineyard (BAR_A07). In the Central Valley, 
fluxes were captured from three towers; one in the Lodi area 
and two in the Madera area were analyzed. The site in Lodi 
hereafter will be referred to as SLM_001, and the sites at 
Madera will be referred to as RIP_720 and RIP_760. In 
SLM_001, fluxes were measured for a Pinot Noir vineyard 
during 2018 and 2019, while in 2020, the block was con-
verted to Cabernet Sauvignon by cutting the vines at the 
rootstock and re-grafting the former variety. In Madera, the 
flux tower in RIP_720 is deployed in a Merlot vineyard, 
while RIP_760 is a Chardonnay vineyard. Additional details 
regarding location, vineyard characteristics, soil texture, irri-
gation system, and other relevant information are summa-
rized in Table 2.

EC flux towers instrumentation

EC flux towers at each site were instrumented with sensors 
to measure the main components of a surface EB (e.g., Qnet, 
H, λE, and G). Each tower had a very similar array of sen-
sors, yet some differences were unavoidable due to the avail-
ability of sensors at the time of installation and changes in 
technology. In Table 3, a detailed list of sensors at each EC 
flux tower is presented. G was estimated as the mean of five 
heat flux plates installed at a depth of 8 cm along a diagonal 
transect across the inter-row space. A set of soil thermocou-
ples at depths of 2 cm and 6 cm and a soil moisture sensor 
at a depth of 5 cm were co-located with each soil heat flux 
plate to account for soil heat storage. Agam et al. (2019) 
analyzed a network array of 11 sensors in the inter-row and 

Table 1  Summary description of micrometeorological methodological approaches for daily ET estimates

Methodological approach Abbreviated name Equation Description

Eddy covariance ET ETEC Equation 2 Sum of eddy covariance ET flux
Eddy covariance daytime ET ETEC-DT Equation 3 Sum of daytime eddy covariance ET flux (nighttime 

fluxes excluded)
Eddy covariance ET corrected by EBR partitioned 

based on Bo

ETB-SD Equation 5 Sum of eddy covariance ET fluxes corrected by EBR 
partitioned based on Bo at each AP

Eddy covariance daytime ET corrected by EBR parti-
tioned based on Bo

ETB-SD-DT Equation 6 Sum of daytime eddy covariance ET fluxes corrected 
by EBR partitioned based on Bo at each AP

Eddy covariance ET corrected by mean EBR parti-
tioned based on Bo

ETB-D Equation 7 Sum of eddy covariance ET fluxes corrected by EBR 
partitioned based on a daily mean Bo

Eddy covariance daytime ET corrected by mean EBR 
partitioned based on Bo

ETB-D-DT Equation 8 Sum of daytime eddy covariance ET fluxes corrected 
by EBR partitioned based on a daily mean Bo

Eddy covariance daytime ET corrected by EBR parti-
tioned based on a moving median Bo

ETB-SD-MM Equation 9 Sum of eddy covariance ET fluxes corrected by 
EBR partitioned based on a Bo derived as a cen-
tered ± 15 days moving median

Energy balance residual ET ETEB Equation 10 Sum of energy balance residual ET
Energy balance residual ET ETEB-DT Equation 11 Sum of daytime energy balance residual ET
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determined that a transect of 5 sensors evenly spaced across 
the vine inter-row provided a reliable area-averaged soil heat 
flux.

Flux data processing

H and λE were computed as functions of 30 min aver-
age covariance of the corresponding variables sampled at 
20 Hz. Anomalous measurements in the high-frequency 
time series for each computed variable were removed fol-
lowing the Median Absolute Deviation method implemented 
by Mauder et al. (2013a). Wind velocity components were 
rotated into the mean streamwise flow following the 2-D 
coordinate rotation method described by Tanner and Thur-
tell (1969) (Kaimal and Finnigan 1994; Foken and Napo 
2008). Wind components and scalar quantities were adjusted 
in time to account for sensor displacement, and also, fre-
quency response attenuation corrections were performed 
(Massman 2000). The air temperature was derived from 
sonic temperatures and the atmospheric water vapor density 
estimations were based on Schotanus et al. (1983). Then, the 
resulting fluxes were adjusted by the Webb, Pearman, and 
Leuning (WPL) density corrections (Webb et al. 1980). G 

measurements collected over the vineyard inter-row space 
were corrected to represent a surface approximation by 
accounting for the heat storage in the overlying soil layer. 
Then, the adjusted G estimations representing the flux at the 
surface level were averaged to obtain a unique representative 
G flux at each vineyard (Agam et al. 2019).

Atmospheric stability and advection criteria

Energy imbalance was analyzed relative to atmospheric 
stability conditions. The stability parameter ξ was com-
puted based on turbulence data, and fluxes were classified 
in discrete stability category cases: stable (ζ ≥ 0.1), neutral 
(− 0.1 < ζ < 0.1), unstable (− 0.5 ≤ ζ ≤  − 0.1), and very unsta-
ble (ζ <  − 0.5). ζ is a dimensionless quantity that depends on 
the Obukhov length scale parameter (L). L can be physically 
interpreted as the height above the surface at which buoy-
ancy predominantly controls turbulence. Thus, � =

z−d

L
 , and 

the Obukhov length is given by:

(12)L =
−�vu

3

∗

kg
(

w���
v

)

s

Table 2  Study sites and vineyard characteristics for EC flux towers

Study area
(county)

Sonoma Sacramento Madera

Vineyard Block Iden-
tification

BAR_A07 BAR_A12 SLM_001 RIP_760 RIP_720
(Block #4)

Soil type Gravelly loam Gravelly loam Loam/clay loam Sandy loam Loam/sandy loam
Vine variety Petite Sirah Cabernet Sauvignon Pinot Noir/Grafted to 

Cabernet Sauvignon
Chardonnay Merlot

Year planted 2013 2010 2009/2020 2010 2010
Row orientation Northwest–Southeast Northeast–Southwest East–West East–West East–West
Trellising method Stack-T (split canopy) Elk-Horn (split 

canopy)
Split canopy (quadri-

lateral)
Double Vertical Bilateral cordon (split 

canopy)
Row width (m) 3.35 3.35 3.35 2.74 3.35
Planting interval (m) 1.83 1.83 1.52 1.83 1.52
Vine canopy height 

(m) (April-Septem-
ber)

1.5–2.2 1.5–2.3 2.0–2.75 1.5–2.5 1.5–2.2

Cover crop type Annual mixed grass Annual mixed grass Annual mixed grass Perennial grasses Perennial grasses
Cover crop width (m) 2.75 2.75 2.00 1.20 1.85
Cover crop manage-

ment
Periodic mowing (~ 3 

times season)/culti-
vation alternate

Mowed once or twice 
in April/May

Mowed once or twice 
in April/May

Mowed once or twice 
in April/May

Mowed once or twice 
in April/May

Irrigation system Drip irrigation 
(2 × 2L/h flow rate 
emitters)

Drip irrigation 
(2 × 2L/h flow rate 
emitters)

Dripline at the center 
of the vines (0.25 m 
agl). Dripper at 
0.35 m distance 
from each side of 
the vine

In line dripper 
(3 × 2L/h flow rate 
emitters per vine)

Variable Drip Irriga-
tion (VRDI) (3L/h 
flow rate emitters)

Flux Tower Installa-
tion Date

4/4/19 5/12/17 4/2/13 5/9/17 4/9/18
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where z is the turbulence measurements height, d is the zero-
plane displacement height (often taken as ~ 2/3 canopy 
height), �v is the mean virtual potential temperature, u* is 
the friction velocity, k is the von Kármán constant, g is the 
gravitational acceleration, and 

(

w′�′
v

)

s
 is the mean kinematic 

eddy heat flux at the surface.
Similarly, the energy imbalance was also analyzed 

depending on advective conditions. Cases under daytime 
advective conditions were identified when measured H 
was negative (H < 0 W  m−2) for at least three continuous 
hours, or days when H was consistently low throughout 
the day (H < 50 W   m−2 at least 8 h) and λE exceeded 
available energy 

(

Qnet − G
)

 for at least 1 h. Days, when 
neither of these criteria were met, were classified as non-
advective. These criteria were based on previous studies, 
which classified advection with similar indicators (e.g., 
Tolk et al. 2006; French et al. 2012; Kutikoff et al. 2019). 
It should be noted that these daytime stable cases caused 
by advection do not follow the classic definition of stable 
atmospheric conditions where turbulence is suppressed/
weak with a shallow boundary layer since the turbulent 
transport of water vapor is significantly enhanced with 
a fully convective boundary layer; hence, we call these 
daytime stable cases “pseudo-stable”.

Data processing and statistical analyses

Flux and meteorological data were processed and ana-
lyzed using Python and built upon the SciPy library. Lin-
ear least-squares regressions were performed to determine 
sub-daily and daily agreement between available energy 
(

Qnet − G
)

 and EC turbulent fluxes (H + λE). Violin and 
box plots were created using the Python-Plotly data visu-
alization package. Box plots depict data distribution based 
on five parameters: minimum, first quartile (25th percen-
tile), median, third quartile (75th percentile), and maxi-
mum. Minimum and maximum values are estimated as the 
first/third quartile minus/plus 1.5 the interquartile range. 
Violin plots depict the same statistical parameters that are 
found in a box plot, and add a rotated kernel density distri-
bution plot on each side of the center line of the box plot.

We also performed a supplementary analysis comparing 
our daily ET estimates to the new flux processing algo-
rithm flux-data-qaqc (Volk et al. 2021). Flux-data-qaqc is 
a new open-source and object-oriented Python package to 
post-process EC flux data to estimate daily or monthly ET 
that has been corrected for energy balance closure. This 
software can also be used to perform visual or flag-based 

Table 3  Flux towers  instrumentationa

a The use of trade, firm, or corporation names in this article is for the information and convenience of the reader. Such use does not constitute 
official endorsement or approval by the US Department of Agriculture or the Agricultural Research Service of any product or service to the 
exclusion of others that may be suitable

Sensor type Vineyard block identification

BAR_007 BAR_012 SLM_001 RIP_760 RIP_720

Net radiometer SN-500, Apogee 
Instruments,

z = 4.5 m

NR01-L, Hukseflux,
z = 6.5 m

CNR1, Kipp & Zonen,
z = 5.0 m

NR01-L, Hukseflux, 
z = 6.5 m

NR01-L, Hukseflux, 
z = 5.0 m

3D Sonic anemometer CSAT3, Campbell 
Scientific,

z = 4.5 m

CSAT3, Campbell Scientific,
z = 5.0 m

Integrated sonic 
anemometer and 
gas analyzer, 
IRGASON, Camp-
bell Scientific,

z = 4.5

Infrared gas analyzer EC150, Campbell 
Scientific,

z = 4.5 m

EC150, Campbell Scientific,
z = 5.0 m

Air temperature and 
humidity probe

HMP45C, Vaisala,
z = 4.5

EE08 (E + E Elektronik) probe in aspirated shield TS-100 (Apogee 
Instruments),

z = 5.0

EE08 (E + E Elek-
tronik) probe in 
aspirated shield 
TS-100 (Apogee 
Instruments),

z = 4.5
Soil heat flux sensor HFT-3, radiation energy balance systems
Soil Thermocouple Type E soil thermocouples
Soil moisture probe HydraProbes (Stevens Water Monitoring System)
Rain gage TE525, Texas Electronics
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quality control and quality assurance checks on EC flux or 
meteorological data.

Results and discussion

How large is the uncertainty of daily ET estimates 
from flux measurements?

Daily ET estimates derived from nine methods utilizing 
EC flux measurements resulted in a mean difference of 
48% when comparing the minimum and maximum daily 
ET relative to the ensemble mean from all methods. When 
considering the growing season period, the ET average 
difference was 44%, equivalent to 1.71  mm   d−1 (mean 
ET = 3.9 mm  d−1). ETB-MM led to the largest estimates in 88% 
of the cases, and ETEC-DT was the lowest in 87% of the cases 
(Fig. 1). While most methods are near the mean ET estimate, 
certain conditions, especially during the peak of the sum-
mer, lead to important discrepancies. Significantly above-
average discrepancies were observed in the sites RIP_720, 
RIP_760, and BAR_A07. Despite the potential sources of 
uncertainty identified in our analysis, we also found that 
ET flux estimates are more uncertain under nighttime stable 
and strongly advective or pseudo-stable conditions. While 
these atmospheric conditions are quite rare during daytime 
hours, some sites were more prone to these conditions, and 
we unfurl details of these conditions later in the discussion.

Overall, our ET estimates derived using the post-process-
ing analysis described previously compare closely to results 
using other standardized EC processing software (i.e., Eddy-
Pro, EasyFlux). For instance, we compared the mean daily 
ET estimates derived in this study for four GRAPEX sites 
(Fig. S1) against estimates obtained using flux-data-qaqc 
(Volk et al. 2021). Overall, good agreement was observed, 
yet in cases of springtime precipitation or highly advective 
conditions as observed in RIP_760, we found generally 
greater scatter (Fig. S1). The flux-data-qaqc data process-
ing method bases the EBR correction in a 15 day centered 
sliding window filtering threshold, which in some cases can 
lead to attenuation of unusual weather conditions. We identi-
fied similar biases for the estimates based on the ETB-SD-MM, 
which are based on a similar algorithm.

The annual accumulated discrepancy in ET can range 
between 20% in the case of SLM_001 and about 50% in 
RIP760 (Fig. 2). In the context of our efforts to ground 
truth remotely sensed ET models, the magnitude of these 
differences is not trivial. For instance, the expected ET 
uncertainty could lead to different irrigation strategies and 
undesired water stress or excessive application in certain 
circumstances. Multiple studies have used the EC tech-
nique to estimate crop water use based on ET, yet different 
approaches are followed to address the energy imbalance. 

A common approach to close the energy budget uses the 
Bo ratio (Paço et al. 2006), while others use ET measure-
ments directly from the EC system without considering 
the gap in EB closure (i.e., Zhang et al. 2012; Poblete-
Echeverría and Ortega-Farias 2013; Zanotelli et al. 2019; 
Anapalli et al. 2020). Moreover, many studies derive ET 
as the EBR, given that the other components are directly 

Fig. 1  Daily evapotranspiration estimated based on eddy covariance 
flux and surface available energy measurements in five California 
vineyards. Colored dots represent daily sum of ET fluxes computed 
using nine different approaches as described in the “Approach to 
Daily ET calculations” section. Abbreviation in the legend refer to 
the corresponding method as named in Eq. 2–11. Black and red lines 
represent the ensemble mean and median of all methods, respectively. 
Each sub-plot represents the observations for a given year (2018–
2020) at each column and sites (rows)
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measured (Qnet, H, and G). For studies using this approach 
in agricultural systems, H is typically derived based on EC 
or surface renewal methods (i.e., Spano et al. 2000; Cas-
tellví et al. 2008; French et al. 2012; Anapalli et al. 2018). 
On average, we found that ETEB was ~ 21% greater than 
ETEC, and that difference was up to ~ 25% during the grow-
ing season. Those differences are expected to propagate to 
other estimations such as crop coefficients calculations. 
We argue that considering and discussing the assumptions 
underlying ground-based ET estimates from micrometeor-
ological techniques is fundamental when extrapolating and 
determining crop water use to inform irrigation decisions.

Energy balance closure

Lack of EB closure is commonly a significant source of 
uncertainty in daily ET estimates. Previous studies using 
the EC technique on agricultural sites have reported a lack 
of closure between 20 and 30% when comparing the sum 
of H and λE to the residual of Qnet minus G (Stoy et al. 
2013; Eshonkulov et al. 2019). For the analyzed GRAPEX 
sites, we found a mean closure of 75% across all sites 
and years (Fig. 3) when comparing half-hour fluxes. As 
expected, when comparing fluxes at the daily scale, a 
slightly better closure of ~ 78% was found (Fig. S2). The 

Fig. 2  Annual evapotranspira-
tion, years 2018–2020, based 
on eddy covariance flux and 
surface available energy meas-
urements in five California vine-
yards. Each bar represents the 
annual sum of daily ET fluxes 
computed using nine different 
approaches as described in the 
“Daily ET calculations” section. 
Abbreviation in the legend refer 
to the corresponding method as 
named in Eqs. 2–11. Each sub-
plot represents the observations 
for a given year (2018–2020) at 
each column and sites (rows)
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magnitude of this imbalance is comparable to the lack of 
closure reported by other studies measuring EC fluxes 
over vineyards as well (Li et al. 2008; Parry et al. 2019; 
Sánchez et al. 2019; Vendrame et al. 2020). High inter-
annual consistency of the closure was found across sites, 
however, sites of similar characteristics within a given 

region can exhibit quite distinct imbalances (e.g., RIP_720 
and RIP_760).

Usually EC accuracy is assessed based on the slope of the 
regression line between available energy and EC fluxes; the 
slope is assumed to define the overall EB closure capability 
of the EC system. However, using only this parameter can 

Fig. 3  Scatter plots and linear 
least-squares regressions 
of 30 min available energy 
(

Qnet − G
)

 and eddy covari-
ance turbulent fluxes (H + λE). 
Each sub-plot represents the 
observations for a given year 
(2018–2020; columns) and 
sites (rows). Colors of scattered 
dots illustrate the time of the 
day of the fluxes. b0 represents 
the intercept of the respective 
regression line (black), b1 is the 
slope of the regression, and R2 
is the coefficient of determina-
tion for each sub-plot. Fig.S2 
depicts the same analysis for 
daily fluxes
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prevent a detailed understanding of underlying factors lead-
ing to a given energy imbalance. In Fig. 4, we illustrate the 
mean behavior of the H+�E

Qnet−G
 ratio throughout the day at each 

site and analyzed year. Distinct features are observed across 

different sites, yet a consistent high closure (~ 1) is achieved 
at mid-afternoon (~ 1530 local time). Also, while small, 
nighttime fluxes feature a large imbalance in relative mag-
nitude (~ 60–70%). Higher and more consistent closure 
ratios during daytime were found for RIP_720 and 

Fig. 4  Eddy covariance turbu-
lent fluxes (H + λE) to available 
energy 

(

Qnet − G
)

 ratio for 
30 min time average observa-
tions. Each sub-plot represents 
the observations for a given year 
(2018–2020; columns) and sites 
(rows). Solid blue lines repre-
sent the mean ratio estimated 
at each 30 min average period 
throughout the growing season 
(April–October). Shaded light 
blue boundaries for each line 
represents the 95% confidence 
interval. Black dotted lines 
illustrate the “ideal” case or 
total EB closure
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BAR_A07, which had EC measurements 1.5 to 2 m above 
the vine canopy compared to the other tower locations with 
measurements ~ 3 m above the vines. This might suggest that 
considering the complexity of vineyard canopies and their 
influence on surface turbulence (Alfieri et al. 2019), sub-
meso-scale transport processes and secondary circulation 
might strongly influence the EC measurements under certain 
conditions.

One of the most common methods to close the energy bal-
ance is partitioning the EBR based on the Bowen ratio. If a 
significant portion of the lack of closure is due to meso-scale 
transport and secondary circulation, then it is assumed that 
these processes behave similarly to small-scale turbulence 
(Mauder et al. 2007). In fact, recent studies usually approach 
the partitioning of the EBR by applying an eddy covariance 
flux correction somewhere between a buoyancy-flux-based 
and the abovementioned Bo preserving adjustment method, 
which in most cases leads to a larger correction of H com-
pared to λE (Mauder et  al. 2020). However, latent heat 
fluxes are much larger in irrigated agricultural fields, such 
as California vineyards; therefore, corrections based on the 
Bo ratio tend to significantly increase ET estimates. Ven-
drame et al. (2020) concluded that the reason for the energy 
imbalance over two vineyard sites could be attributed to the 
systematic low accuracy of λE measured by EC, given that 
the larger imbalance was found in the sites with larger λE. 
This is consistent with the low closure found in RIP_760, in 
which large irrigation inputs lead to the overall highest λE 
estimates when compared to other GRAPEX sites. However, 
Widmoser and Wohlfahrt (2018) found that in a grassland 
ecosystem about one-third of the energy imbalance could 
be attributed to λE, while only 10% was attributed to H and 
the large remaining fraction (~ 58%) to the available energy 
(

Qnet − G
)

 . When flux measurements aim to represent fluxes 
over a heterogeneous surface, or in cases when the vertical 
source distribution of scalars differs, it is expected that simi-
larity assumptions are violated (Huang et al. 2009). Thus, 
there is enough evidence to assume that compounding fac-
tors are influencing the lack of closure at GRAPEX sites, 
and there is not a particular method that can be considered 
more plausible when partitioning the lack of closure to ET.

Energy imbalance and meteorological conditions

The magnitude of the energy imbalance increased through-
out the growing season for all sites. Increases in temperature 
and VPD seem to affect not only the magnitude of the imbal-
ance but also the H+�E

Qnet−G
 proportionality. As VPD increases, 

there is a larger range of the magnitude of the imbalance 
found at any given H+�E

Qnet−G
 ratio. Extreme VPD observations, 

especially at BAR_A12 and RIP_720, were linked to some 
of the largest imbalance in magnitude and lower H+�E

Qnet−G
 ratio 

(Fig. 5). These results do not imply causality, yet it is impor-
tant to consider that when atmospheric evaporative demands 
increase the expected uncertainty of ET estimates from EC 
might be greater. Extremely high horizontal wind speed also 
affected the imbalance by increasing the H+�E

Qnet−G
 ratio (Fig. 5). 

Windy conditions might be related to ET enhancement due 
to horizontal advection. Further discussions on this relation-
ship is presented in the subsection “Energy imbalance and 
Advection”.

Energy imbalance and atmospheric stability 
conditions

There is evidence that the energy imbalance decreases for 
increasing frictional velocities (u*) and increasing instability 
(Wilson et al. 2002; Barr et al. 2006; Franssen et al. 2010). 
Therefore, convection is not suppressed under unstable 
conditions leading to smaller relative energy balance defi-
cits. Also, under these unstable atmospheric conditions, the 
ergodic (i.e., time average converges to the ensemble average 
on a given appropriate time interval) and Taylor hypotheses 
(i.e., the temporal average can substitute the spatial average) 
are better fulfilled. However, very unstable conditions are 
also related to low-frequency turbulence (i.e., larger eddies) 
due to the development of organized convection, meso-scale 
circulation systems, or an increase in the boundary layer 
height (Franssen et al. 2010), which can negatively affect 
energy balance closure. In this study, as expected, the largest 
fraction of ET takes place under unstable to very unstable 
conditions (Fig. 6), yet the sites in Madera County (RIP_720 
and RIP760) have an important contribution of fluxes under 
daytime pseudo-stable conditions caused by advection. 
Very unstable conditions tend to dominate compared to the 
unstable case; however, while not as predominant, the unsta-
ble conditions were related to less EBR (Fig. 7). While the 
energy imbalance absolute mean and median are greater in 
the very unstable conditions compared to unstable, the very 
unstable tends to be associated with larger fluxes in magni-
tude overall.

Greater uncertainty of ET estimates across methods asso-
ciated with a larger energy imbalance was consistently found 
for days and sites where daytime pseudo-stable conditions 
were more prevalent (Fig. S3). In 2020, both sites in Madera 
County showed a significant contribution of surface energy 
fluxes under daytime pseudo-stable conditions (Fig. 6), and 
fluxes under such conditions were also important in 2018.

Energy imbalance and advection

Advective conditions tended to increase the magnitude of 
the energy imbalance, thus the uncertainties of surface fluxes 
derived by the EC method are less reliable in those cases 
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Fig. 5  Relationship between eddy covariance turbulent fluxes 
(H + λE) to available energy 

(

Qnet − G
)

 ratio for the daily sum of 
daytime observations and the absolute daily energy balance residual 
(

EBR = Qnet − G − H − �E
)

 . Colored dots illustrate the magnitude of 

daily maximum VPD (top row) and wind speed (bottom row). The 
shape of the symbols represents the years, and each column of sub-
plots depicts observations for each study site. Cool to warm colors 
represent low to high VPD and wind speeds, respectively

Fig. 6  Daily ETEC flux for each analyzed study site (columns) and year (rows). Colors represent the contribution to the total daily ET of fluxes 
from each atmospheric stability category. Gray bars represent periods of time with missing data
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(Fig. 8). On days with strong advection, the magnitude of the 
energy imbalance was much larger than the non-advective 
fluxes. We found that advective conditions were very preva-
lent in Madera County, especially in 2020, when 96 days 

during the growing season had extreme advective conditions 
for the RIP_760 site (Fig. S4). A clear impact on the energy 
imbalance was observed in this specific case (RIP_760 in 
2020), when the mean observed daily imbalance was about 
twice as large on days with strong advection (Fig. 8).

EC estimates of surface fluxes are reliant on two impor-
tant assumptions: (1) that the flow of air moving through a 
fixed location of turbulent flux measurement is representing 
a homogeneous landscape; and (2) such fluxes are stationary 
(i.e., the mean flux does not change over the period used 
to compute the mean) (Foken and Napo 2008). The first 
assumption of landscape homogeneity is often violated. 
Most of California’s agriculture takes place in a patchy 
landscape in which cropland is usually a composite of 
grasslands, annual crops, vegetables, and woody perennial 
orchards and vineyards. During the growing season, it is not 
uncommon to observe that irrigated crops are influenced 
by hot and dry air blowing from senescent grasslands, dry 
native ecosystems, and fallow lands, which would affect 
EC measurements based on the homogeneity assumption. 
This advective air flow provides additional energy, which 
enhances ET while decreasing sensible heat flux (French 
et al. 2012). Attempts to quantify the advection term is very 
difficult given limited observations typically available from 
the upwind source (Alfieri et al. 2012). Under strong advec-
tive conditions, especially during the afternoon, such energy 
contribution can reduce the magnitude of the EBR or cause 
an overestimation relative to local available energy (French 
et al. 2012; Kutikoff et al. 2019), such as is illustrated in 
Fig. 4. Second, the stationary assumption is not commonly 
fulfilled due to diurnal variations in atmospheric stability, 
indicating that turbulence conditions might change signifi-
cantly over the chosen flux averaging time (Stoy et al. 2013). 
As a result, changes in heat storage between the soil and the 
point of measurements can play an important role in the 
observed energy imbalance throughout the day. Yet, heat 
storage can be difficult to quantify in irrigated vineyards due 
to vines canopy and soil moisture distribution heterogeneity.

We observed that the energy imbalance is greatest in 
the late afternoon when pseudo-stable conditions are more 
prevalent. The case of RIP_760 in 2020 is of special interest 
given that it illustrates the challenges of EC measurements 
under strongly advective conditions. In this case, the total 
growing season ET range across methods is 433 mm (~ 42% 
of the mean of all methods). The magnitude of this uncer-
tainty was heavily influenced by advection enhanced ET and 
hysteresis effects due to prevailing pseudo-stable conditions 
(Fig. 9).

While these issues raise concern regarding the reli-
ability of studies based on EC flux estimates over patchy 
irrigated agricultural landscapes, we also show that during 
daytime these pseudo-stable and strongly advective condi-
tions are very rare (Fig. 9). Thus, most study sites were not 

Fig. 7  Integrated violin and box plot of the energy balance residual 
(

EBR = Qnet − G − H − �E
)

 for 30  min time average measurements 
classified based on atmospheric stability categories. Statistics for this 
analysis were based on flux observations from all five analyzed study 
sites and years (2018–2020) during the growing season (April–Octo-
ber). A more detailed analysis per study site and analyzed year is pre-
sented in Fig S3
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Fig. 8  Integrated violin and box plots of the daily energy balance 
residuals 

(

EBR = Qnet − G − H − �E
)

 classified based on advective 
conditions for all five analyzed study sites and years (2018–2020) 
during the growing season (April–October). Absence of violin/box 
plot for the advective case means that there were no advective condi-
tions for that given analyzed period/study site. Fig.S4 shows the num-
ber of days with advective conditions for each site and analyzed year
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significantly influenced by strong advection, and a more 
consistent impact on the energy imbalance is related to a 
lack of closure under the much more frequent condition of 
very unstable.

Conclusion

In this study, we assess nine different approaches to calculate 
daily ET based on EC flux measurements over five vine-
yards spanning a significant climate gradient from northern, 
central and southern areas of the California Central Val-
ley. The implemented methods address the eddy covariance 
energy imbalance issue differently, which led to a mean 

daily uncertainty of 46% during the growing season. This 
uncertainty was remarkably consistent across years and sites, 
ranging between 43 and 50%. We found that this uncertainty 
is usually underestimated when considering the slope of the 
relationship between the available energy 

(

Qnet − G
)

 and the 
surface fluxes (H + λE). This simple analysis can hide issues, 
such as hysteresis, advection, and heat storage, which can 
mislead the interpretation of surface fluxes derived through 
the EC method. The debate on how best to deal with the 
energy imbalance within the EC method, in our opinion, 
remains open. While there has been some significant pro-
gress toward understanding the causes behind the energy 
imbalance in the last two decades, there is a lack of agree-
ment regarding best practices to deal with it once it arises. 

Fig. 9  Sunburst plot hierarchi-
cally illustrating the proportion 
of ET 30 min time average flux 
data at each site (rows) and ana-
lyzed year (column) classified 
based on advective conditions 
and atmospheric stability
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Major challenges remain regarding creating frameworks 
to systematically identify and quantify the sources of the 
energy imbalance and further understanding specific-site 
dependencies. Nevertheless, while the debate remains open, 
we believe that this study illustrates a general framework to 
quantify the uncertainty of EC ET estimates. This approach 
can be especially relevant when those estimates are used to 
compare with other measuring approaches, validating mod-
els, and/or ground-truthing remote sensing estimates.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00271- 022- 00783-1.

Acknowledgements We would like to thank E.J. Gallo Winery and the 
staff of Winegrowing Research Division for access to vineyard sites, 
support for deployment of towers and sensors, and the assistance in the 
collection of data used in this study.

Funding Financial support for this research was provided by NASA 
Applied Sciences-Water Resources Program [Announcement num-
ber NNH16ZDA001N-WATER]. Proposal no. 16-WATER162{0005, 
Request number: NNH17AE39I and USDA Agricultural Research Ser-
vice. USDA is an equal opportunity provider and employer.

Declarations 

Conflict of interest On behalf of all authors, the corresponding authors 
state that there is no conflict of interest.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article's Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article's Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

Agam N, Kustas WP, Alfieri JG et al (2019) Micro-scale spatial vari-
ability in soil heat flux (SHF) in a wine-grape vineyard. Irrig Sci 
37:253–268. https:// doi. org/ 10. 1007/ s00271- 019- 00634-6

Alfieri JG, Kustas WP, Prueger JH et al (2012) On the discrepancy 
between eddy covariance and lysimetry-based surface flux meas-
urements under strongly advective conditions. Adv Water Resour 
50:62–78. https:// doi. org/ 10. 1016/j. advwa tres. 2012. 07. 008

Alfieri JG, Kustas WP, Nieto H et al (2019) Influence of wind direc-
tion on the surface roughness of vineyards. Irrig Sci 37:359–373. 
https:// doi. org/ 10. 1007/ s00271- 018- 0610-z

Allen RG, Pereira LS, Raes D et al (1998) Crop evapotranspiration-
guidelines for computing crop water requirements—FAO irriga-
tion and drainage paper 56. Fao, Rome 300:D05109

Anapalli SS, Fisher DK, Reddy KN et al (2018) Quantifying soybean 
evapotranspiration using an eddy covariance approach. Agric 

Water Manag 209:228–239. https:// doi. org/ 10. 1016/j. agwat. 2018. 
07. 023

Anapalli SS, Fisher DK, Pinnamaneni SR, Reddy KN (2020) Quantify-
ing evapotranspiration and crop coefficients for cotton (Gossypium 
hirsutum L.) using an eddy covariance approach. Agric Water 
MAnag 233:106091. https:// doi. org/ 10. 1016/j. agwat. 2020. 106091

Anderson M, Gao F, Knipper K et al (2018) Field-scale assessment of 
land and water use change over the california delta using remote 
sensing. Remote Sensing. https:// doi. org/ 10. 3390/ rs100 60889

Barr AG, Morgenstern K, Black TA et al (2006) Surface energy balance 
closure by the eddy-covariance method above three boreal forest 
stands and implications for the measurement of the CO2 flux. 
Agric Forest Meteorol 140:322–337. https:// doi. org/ 10. 1016/j. 
agrfo rmet. 2006. 08. 007

Castellví F, Snyder RL, Baldocchi DD (2008) Surface energy-bal-
ance closure over rangeland grass using the eddy covariance 
method and surface renewal analysis. Agric Forest Meteorol 
148:1147–1160. https:// doi. org/ 10. 1016/j. agrfo rmet. 2008. 02. 
012

Charuchittipan D, Babel W, Mauder M et al (2014) Extension of the 
averaging time in Eddy-Covariance measurements and its effect 
on the energy balance closure. Bound-Layer Meteorol 152:303–
327. https:// doi. org/ 10. 1007/ s10546- 014- 9922-6

Chen JM, Liu J (2020) Evolution of evapotranspiration models using 
thermal and shortwave remote sensing data. Remote Sensing of 
Environ 237:111594

Chu H, Luo X, Ouyang Z et al (2021) Representativeness of Eddy-
Covariance flux footprints for areas surrounding AmeriFlux sites. 
Agric Forest Meteorol 301–302:108350. https:// doi. org/ 10. 1016/j. 
agrfo rmet. 2021. 108350

Dhungel R, Aiken R, Evett SR et al (2021) Energy imbalance and 
evapotranspiration hysteresis under an advective environment: 
evidence From Lysimeter, Eddy Covariance, and energy balance 
modeling. Geophys Res Lett 48:e2020GL091203. https:// doi. org/ 
10. 1029/ 2020G L0912 03

Eshonkulov R, Poyda A, Ingwersen J et al (2019) Evaluating multi-
year, multi-site data on the energy balance closure of eddy-
covariance flux measurements at cropland sites in southwestern 
Germany. Biogeosciences 16:521–540. https:// doi. org/ 10. 5194/ 
bg- 16- 521- 2019

Evett SR, Kustas WP, Gowda PH et al (2012) Overview of the Bush-
land Evapotranspiration and Agricultural Remote sensing EXperi-
ment 2008 (BEAREX08): A field experiment evaluating methods 
for quantifying ET at multiple scales. Adv Water Resour 50:4–19. 
https:// doi. org/ 10. 1016/j. advwa tres. 2012. 03. 010

Foken T, Napo CJ (2008) Micrometeorology. Springer, Berlin, 
Heidelberg

Foken T, Göockede M, M M, M L, A B, M W (2005) Post-field data 
quality control. In: Xuhui L, Massman W, L B (eds) Handbook 
of micrometeorology: a guide for surface flux measurement and 
analysis. Springer, Netherlands, Dordrecht, pp 181–208

Franssen HJH, Stöckli R, Lehner I et al (2010) Energy balance clo-
sure of eddy-covariance data: a multisite analysis for European 
FLUXNET stations. Agric Forest Meteorol 150:1553–1567. 
https:// doi. org/ 10. 1016/j. agrfo rmet. 2010. 08. 005

French AN, Alfieri JG, Kustas WP et al (2012) Estimation of surface 
energy fluxes using surface renewal and flux variance techniques 
over an advective irrigated agricultural site. Adv Water Resour 
50:91–105. https:// doi. org/ 10. 1016/j. advwa tres. 2012. 07. 007

García-Gutiérrez V, Stöckle C, Gil PM, Meza FJ (2021) Evaluation of 
penman-monteith model based on sentinel-2 data for the estima-
tion of actual evapotranspiration in vineyards. Remote Sensing. 
https:// doi. org/ 10. 3390/ rs130 30478

Geli HME, González-Piqueras J, Neale CMU et al (2020) Effects of 
surface heterogeneity due to drip irrigation on scintillometer 

https://doi.org/10.1007/s00271-022-00783-1
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s00271-019-00634-6
https://doi.org/10.1016/j.advwatres.2012.07.008
https://doi.org/10.1007/s00271-018-0610-z
https://doi.org/10.1016/j.agwat.2018.07.023
https://doi.org/10.1016/j.agwat.2018.07.023
https://doi.org/10.1016/j.agwat.2020.106091
https://doi.org/10.3390/rs10060889
https://doi.org/10.1016/j.agrformet.2006.08.007
https://doi.org/10.1016/j.agrformet.2006.08.007
https://doi.org/10.1016/j.agrformet.2008.02.012
https://doi.org/10.1016/j.agrformet.2008.02.012
https://doi.org/10.1007/s10546-014-9922-6
https://doi.org/10.1016/j.agrformet.2021.108350
https://doi.org/10.1016/j.agrformet.2021.108350
https://doi.org/10.1029/2020GL091203
https://doi.org/10.1029/2020GL091203
https://doi.org/10.5194/bg-16-521-2019
https://doi.org/10.5194/bg-16-521-2019
https://doi.org/10.1016/j.advwatres.2012.03.010
https://doi.org/10.1016/j.agrformet.2010.08.005
https://doi.org/10.1016/j.advwatres.2012.07.007
https://doi.org/10.3390/rs13030478


460 Irrigation Science (2022) 40:445–461

1 3

estimates of sensible, latent heat fluxes and evapotranspiration 
over vineyards. Water. https:// doi. org/ 10. 3390/ w1201 0081

Guderle M, Hildebrandt A (2015) Using measured soil water contents 
to estimate evapotranspiration and root water uptake profiles—a 
comparative study. Hydrol Earth Syst Sci 19:409–425. https:// doi. 
org/ 10. 5194/ hess- 19- 409- 2015

Hargreaves GH, Samani ZA (1982) Estimating potential evapotranspi-
ration. J Irrig Drain Div 108:225–230

Huang J, Lee X, Patton EG (2009) Dissimilarity of scalar transport 
in the convective boundary layer in inhomogeneous landscapes. 
Bound-Layer Meteorol 130:327–345. https:// doi. org/ 10. 1007/ 
s10546- 009- 9356-8

Jensen ME, Burman RD, Allen RG (eds) (1990) Evapotranspiration 
and irrigation water requirements.Engineering practice manual 
no. 70, American Society of Civil Engineers, p 332

Kaimal JC, Finnigan JJ (1994) Atmospheric boundary layer flows: their 
structure and measurement. Oxford University Press, Oxford

Knipper KR, Kustas WP, Anderson MC et al (2019a) Evapotranspi-
ration estimates derived using thermal-based satellite remote 
sensing and data fusion for irrigation management in Califor-
nia vineyards. Irrig Sci 37:431–449. https:// doi. org/ 10. 1007/ 
s00271- 018- 0591-y

Knipper KR, Kustas WP, Anderson MC et al (2019b) Using high-
spatiotemporal thermal satellite ET retrievals for operational 
water use and stress monitoring in a California vineyard. 
Remote Sensing. https:// doi. org/ 10. 3390/ rs111 82124

Knipper KR, Kustas WP, Anderson MC et al (2020a) Using high-
spatiotemporal thermal satellite ET retrievals to monitor water 
use over California vineyards of different climate, vine variety 
and trellis design. Agric Water Manag 241:106361. https:// doi. 
org/ 10. 1016/j. agwat. 2020a. 106361

Knipper KR, Kustas WP, Anderson MC et al (2020b) Using high-
spatiotemporal thermal satellite ET retrievals to monitor water 
use over California vineyards of different climate, vine variety 
and trellis design. Agric Water Manag 241:106361. https:// doi. 
org/ 10. 1016/j. agwat. 2020b. 106361

Kustas WP, Anderson MC, Alfieri JG et al (2018) The grape remote 
sensing atmospheric profile and evapotranspiration eXperiment 
(GRAPEX). Bull Am Meteorol Soc. https:// doi. org/ 10. 1175/ 
BAMS-D- 16- 0244.1

Kustas WP, Agam N, Ortega-Farias S (2019) Forward to the 
GRAPEX special issue. Irrig Sci 37:221–226. https:// doi. org/ 
10. 1007/ s00271- 019- 00633-7

Kutikoff S, Lin X, Evett S et al (2019) Heat storage and its effect on 
the surface energy balance closure under advective conditions. 
Agric Forest Meteorol 265:56–69. https:// doi. org/ 10. 1016/j. 
agrfo rmet. 2018. 10. 018

Leuning R, van Gorsel E, Massman WJ, Isaac PR (2012) Reflec-
tions on the surface energy imbalance problem. Agric Forest 
Meteorol 156:65–74. https:// doi. org/ 10. 1016/j. agrfo rmet. 2011. 
12. 002

Li S, Kang S, Zhang L et al (2008) A comparison of three methods 
for determining vineyard evapotranspiration in the arid desert 
regions of northwest China. Hydrol Process 22:4554–4564. 
https:// doi. org/ 10. 1002/ hyp. 7059

Lindroth A, Mölder M, Lagergren F (2010) Heat storage in forest 
biomass improves energy balance closure. Biogeosciences 
7:301–313. https:// doi. org/ 10. 5194/ bg-7- 301- 2010

Long D, Longuevergne L, Scanlon BR (2014) Uncertainty in evapo-
transpiration from land surface modeling, remote sensing, and 
GRACE satellites. Water Resour Res 50:1131–1151

Massman WJ (2000) A simple method for estimating frequency 
response corrections for eddy covariance systems. Agric Forest 
Meteorol 104:185–198. https:// doi. org/ 10. 1016/ S0168- 1923(00) 
00164-7

Mauder M, Desjardins RL, MacPherson I (2007) Scale analysis of 
airborne flux measurements over heterogeneous terrain in a 
boreal ecosystem. J Geophys Res: Atmos. https:// doi. org/ 10. 
1029/ 2006J D0081 33

Mauder M, Cuntz M, Drüe C et al (2013) A strategy for quality and 
uncertainty assessment of long-term eddy-covariance measure-
ments. Agric Forest Meteorol 169:122–135. https:// doi. org/ 10. 
1016/j. agrfo rmet. 2012. 09. 006

Mauder M, Foken T, Cuxart J (2020) Surface-energy-balance clo-
sure over land: a review. Bound-Layer Meteorol 177:395–426. 
https:// doi. org/ 10. 1007/ s10546- 020- 00529-6

Meyers TP, Hollinger SE (2004) An assessment of storage terms in 
the surface energy balance of maize and soybean. Agric For-
est Meteorol 125:105–115. https:// doi. org/ 10. 1016/j. agrfo rmet. 
2004. 03. 001

Paço TA, Ferreira MI, Conceição N (2006) Peach orchard evapotran-
spiration in a sandy soil: comparison between eddy covariance 
measurements and estimates by the FAO 56 approach. Agric 
Water Manag 85:305–313. https:// doi. org/ 10. 1016/j. agwat. 
2006. 05. 014

Parry CK, Shapland TM, Williams LE et al (2019) Comparison of a 
stand-alone surface renewal method to weighing Lysimetry and 
Eddy covariance for determining vineyard evapotranspiration 
and vine water stress. Irrig Sci 37:737–749. https:// doi. org/ 10. 
1007/ s00271- 019- 00626-6

Pastorello G, Trotta C, Canfora E et al (2020) The FLUXNET2015 
dataset and the ONEFlux processing pipeline for eddy 
covariance data. Sci Data 7:225. https:// doi. org/ 10. 1038/ 
s41597- 020- 0534-3

Poblete-Echeverría CA, Ortega-Farias SO (2013) Evaluation of 
single and dual crop coefficients over a drip-irrigated Merlot 
vineyard (Vitis vinifera L) using combined measurements of sap 
flow sensors and an eddy covariance system. Aust J Grape Wine 
Res 19:249–260. https:// doi. org/ 10. 1111/ ajgw. 12019

Sánchez JM, López-Urrea R, Valentín F et  al (2019) Lysimeter 
assessment of the simplified two-source energy balance model 
and Eddy covariance system to estimate vineyard evapotranspi-
ration. Agric Forest Meteorol 274:172–183. https:// doi. org/ 10. 
1016/j. agrfo rmet. 2019a. 05. 006

Schotanus P, Nieuwstadt FTM, de Bruin HAR (1983) Temperature 
measurement with a sonic anemometer and its application to 
heat and moisture fluxes. Bound-Layer Meteorol 26:81–93. 
https:// doi. org/ 10. 1007/ BF001 64332

Spano D, Snyder RL, Duce P, Paw UKT (2000) Estimating sensible 
and latent heat flux densities from grapevine canopies using 
surface renewal. Agric Forest Meteorol 104:171–183. https:// 
doi. org/ 10. 1016/ S0168- 1923(00) 00167-2

Stoy PC, Mauder M, Foken T et al (2013) A data-driven analysis of 
energy balance closure across FLUXNET research sites: The 
role of landscape scale heterogeneity. Agric Forest Meteorol 
171–172:137–152. https:// doi. org/ 10. 1016/j. agrfo rmet. 2012. 
11. 004

Tanner CB, Thurtell GW (1969) Anemoclinometer measurements of 
Reynolds stress and heat transport in the atmospheric surface 
layer

Tolk JA, Evett SR, Howell TA (2006) Advection Influences on 
Evapotranspiration of Alfalfa in a Semiarid climate. Agron J 
98:1646–1654. https:// doi. org/ 10. 2134/ agron j2006. 0031

Vendrame N, Tezza L, Pitacco A (2020) Comparison of sensible heat 
fluxes by large aperture Scintillometry and Eddy covariance 
over two contrasting−climate vineyards. Agric Forest Meteorol 
288–289:108002. https:// doi. org/ 10. 1016/j. agrfo rmet. 2020. 
108002

Volk J, Huntington J, Allen R et al (2021) flux-data-qaqc: a python 
package for energy balance closure and post-processing of Eddy 

https://doi.org/10.3390/w12010081
https://doi.org/10.5194/hess-19-409-2015
https://doi.org/10.5194/hess-19-409-2015
https://doi.org/10.1007/s10546-009-9356-8
https://doi.org/10.1007/s10546-009-9356-8
https://doi.org/10.1007/s00271-018-0591-y
https://doi.org/10.1007/s00271-018-0591-y
https://doi.org/10.3390/rs11182124
https://doi.org/10.1016/j.agwat.2020a.106361
https://doi.org/10.1016/j.agwat.2020a.106361
https://doi.org/10.1016/j.agwat.2020b.106361
https://doi.org/10.1016/j.agwat.2020b.106361
https://doi.org/10.1175/BAMS-D-16-0244.1
https://doi.org/10.1175/BAMS-D-16-0244.1
https://doi.org/10.1007/s00271-019-00633-7
https://doi.org/10.1007/s00271-019-00633-7
https://doi.org/10.1016/j.agrformet.2018.10.018
https://doi.org/10.1016/j.agrformet.2018.10.018
https://doi.org/10.1016/j.agrformet.2011.12.002
https://doi.org/10.1016/j.agrformet.2011.12.002
https://doi.org/10.1002/hyp.7059
https://doi.org/10.5194/bg-7-301-2010
https://doi.org/10.1016/S0168-1923(00)00164-7
https://doi.org/10.1016/S0168-1923(00)00164-7
https://doi.org/10.1029/2006JD008133
https://doi.org/10.1029/2006JD008133
https://doi.org/10.1016/j.agrformet.2012.09.006
https://doi.org/10.1016/j.agrformet.2012.09.006
https://doi.org/10.1007/s10546-020-00529-6
https://doi.org/10.1016/j.agrformet.2004.03.001
https://doi.org/10.1016/j.agrformet.2004.03.001
https://doi.org/10.1016/j.agwat.2006.05.014
https://doi.org/10.1016/j.agwat.2006.05.014
https://doi.org/10.1007/s00271-019-00626-6
https://doi.org/10.1007/s00271-019-00626-6
https://doi.org/10.1038/s41597-020-0534-3
https://doi.org/10.1038/s41597-020-0534-3
https://doi.org/10.1111/ajgw.12019
https://doi.org/10.1016/j.agrformet.2019a.05.006
https://doi.org/10.1016/j.agrformet.2019a.05.006
https://doi.org/10.1007/BF00164332
https://doi.org/10.1016/S0168-1923(00)00167-2
https://doi.org/10.1016/S0168-1923(00)00167-2
https://doi.org/10.1016/j.agrformet.2012.11.004
https://doi.org/10.1016/j.agrformet.2012.11.004
https://doi.org/10.2134/agronj2006.0031
https://doi.org/10.1016/j.agrformet.2020.108002
https://doi.org/10.1016/j.agrformet.2020.108002


461Irrigation Science (2022) 40:445–461 

1 3

flux data. J Open Sour Softw 6:3418. https:// doi. org/ 10. 21105/ 
joss. 03418

Webb EK, Pearman GI, Leuning R (1980) Correction of flux meas-
urements for density effects due to heat and water vapour trans-
fer. Q J Royal Meteorol Soc 106:85–100. https:// doi. org/ 10. 
1002/ qj. 49710 644707

Widmoser P, Wohlfahrt G (2018) Attributing the energy imbalance 
by concurrent Lysimeter and Eddy covariance evapotranspira-
tion measurements. Agric Forest Meteorol 263:287–291. https:// 
doi. org/ 10. 1016/j. agrfo rmet. 2018. 09. 003

Wilson K, Goldstein A, Falge E et al (2002) Energy balance closure 
at FLUXNET sites. Agric Forest Meteorol 113:223–243. https:// 
doi. org/ 10. 1016/ S0168- 1923(02) 00109-0

Xue J, Bali KM, Light S et al (2020) Evaluation of remote sensing-
based evapotranspiration models against surface renewal in 
almonds, tomatoes and maize. AgricWater Manag 238:106228. 
https:// doi. org/ 10. 1016/j. agwat. 2020. 106228

Zanotelli D, Montagnani L, Andreotti C, Tagliavini M (2019) Evapo-
transpiration and crop coefficient patterns of an apple orchard 
in a sub-humid environment. Agric Water Manag 226:105756. 
https:// doi. org/ 10. 1016/j. agwat. 2019. 105756

Zhang F, Zhou G, Wang Y et al (2012) Evapotranspiration and crop 
coefficient for a temperate desert steppe ecosystem using eddy 
covariance in Inner Mongolia, China. Hydrol Process 26:379–
386. https:// doi. org/ 10. 1002/ hyp. 8136

Publisher's Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.21105/joss.03418
https://doi.org/10.21105/joss.03418
https://doi.org/10.1002/qj.49710644707
https://doi.org/10.1002/qj.49710644707
https://doi.org/10.1016/j.agrformet.2018.09.003
https://doi.org/10.1016/j.agrformet.2018.09.003
https://doi.org/10.1016/S0168-1923(02)00109-0
https://doi.org/10.1016/S0168-1923(02)00109-0
https://doi.org/10.1016/j.agwat.2020.106228
https://doi.org/10.1016/j.agwat.2019.105756
https://doi.org/10.1002/hyp.8136

	Evapotranspiration uncertainty at micrometeorological scales: the impact of the eddy covariance energy imbalance and correction methods
	Abstract
	Introduction
	Approaches for daily ET calculations

	Materials and methods
	Study sites
	EC flux towers instrumentation
	Flux data processing
	Atmospheric stability and advection criteria
	Data processing and statistical analyses

	Results and discussion
	How large is the uncertainty of daily ET estimates from flux measurements?
	Energy balance closure
	Energy imbalance and meteorological conditions
	Energy imbalance and atmospheric stability conditions
	Energy imbalance and advection

	Conclusion
	Acknowledgements 
	References




