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Abstract

Purpose The purpose of this study is to evaluate the effi-

cacy of an artificial intelligence (AI) model designed to

identify active bleeding in digital subtraction angiography

images for upper gastrointestinal bleeding.

Methods Angiographic images were retrospectively col-

lected from mesenteric and celiac artery embolization

procedures performed between 2018 and 2022. This dataset

included images showing both active bleeding and non-

bleeding phases from the same patients. The images were

labeled as normal versus images that contain active

bleeding. A convolutional neural network was trained and

validated to automatically classify the images. Algorithm

performance was tested in terms of area under the curve,

accuracy, sensitivity, specificity, F1 score, positive and

negative predictive value.

Results The dataset included 587 pre-labeled images from

142 patients. Of these, 302 were labeled as normal

angiogram and 285 as containing active bleeding. The

model’s performance on the validation cohort was area

under the curve 85.0 ± 10.9% (standard deviation) and

average classification accuracy 77.43 ± 4.9%. For You-

den’s index cutoff, sensitivity and specificity were

85.4 ± 9.4% and 81.2 ± 8.6%, respectively.

Conclusion In this study, we explored the application of

AI in mesenteric and celiac artery angiography for

detecting active bleeding. The results of this study show

the potential of an AI-based algorithm to accurately clas-

sify images with active bleeding. Further studies using a

larger dataset are needed to improve accuracy and allow

segmentation of the bleeding.
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Introduction

Acute nonvariceal upper gastrointestinal bleeding (UGIB)

represents a critical emergency, requiring immediate and

accurate diagnosis and treatment. Early endoscopic evalu-

ation, following patient stabilization, is necessary for initial

UGIB management. However, for patients with ongoing

hemodynamic instability, imaging modalities such as CT

angiography (CTA) and catheter angiography become

crucial [1]. CTA plays a vital role in localizing the bleeding

source, especially when endoscopic methods are incon-

clusive or contraindicated. The integration of artificial

intelligence (AI) in CTA has further enhanced its utility in

accurately identifying bleeding sources [2–4].

In cases where endoscopy identifies the bleeding source

but fails to control the bleeding, catheter angiography is

recommended [5]. When endoscopy reveals bleeding

without a clear source or when endoscopy is negative,

catheter angiography or CTA can be used in guiding sub-

sequent management decisions [6–8].

With transcatheter angiography, extravasation of con-

trast material into the bowel is a key indicator of GIB. If no

signs of extravasation are observed, superselective

angiography is recommended. Based on endoscopic or

CTA findings that provide information about the likely

location of the bleeding source, superselective catheteri-

zation of the gastroduodenal artery or left gastric artery

may be performed [9]. Transcatheter arterial embolization

has demonstrated significant efficacy in controlling bleed-

ing in a substantial number of patients with GIB [10, 11],

However, the detection rate of extravasation via angiog-

raphy varies significantly, reported as ranging from 24%

[12] to 78% [13]. This variation is influenced not only by

the technical aspects of the procedure but also by the nature

of GIB itself, which may spontaneously resolve and thus

affect detection rates [14]. Acknowledging this complexity

provides a more accurate understanding of the challenges

in diagnosing GIB and the specific role of CTA in this

context.

To address this challenge and provide valuable support

to interventional radiologists during the procedure, we have

developed an artificial intelligence (AI) model capable of

identifying angiographic images with active bleeding. The
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The results of this study show the potential of AI based algorithm to accurately classify images with active bleeding.

123

Y. Barash et al.: Artificial Intelligence for Identification of Images…



aim of this study is to evaluate the diagnostic performance

of this AI model in detecting extravasation on digital

subtraction angiography (DSA) images in patients with

UGIB.

Methods

Patients and DSA Imaging

This retrospective study was approved by the local institu-

tional review board (IRB) with a waiver of informed con-

sent. Included in the study were patients who underwent

angiographic procedures in our tertiary medical center from

January 2018 to December 2022. Angiography was done to

identify and treat acute UGIB. DSA was performed as a

standard procedure to ascertain the status of the arterial

system, with particular attention given to the branches of the

celiac and SMA arteries for active bleeding.

The angiographic evaluation protocol for acute gas-

trointestinal (GI) hemorrhage is tailored to individual

patient needs while adhering to established general out-

lines. Access is achieved using a 5fr sheath, followed by

catheterization with a cobra catheter over a 0.35 glide wire.

For cases where extravasation is noted on endoscopy

within the celiac branches (left gastric and common hepatic

arteries), these areas are specifically targeted for selective

angiography. If bleeding is identified on preprocedural CT

scans, the corresponding visceral artery is catheterized.

Microcatheters are employed for more selective proce-

dures, particularly when extravasation is observed during

angiography. All contrast injections are manual, and bowel

stasis medications are not used in our protocol. Fluo-

roscopy are conducted initially on anterior–posterior (AP)

view, and subsequently appropriate angulated views are

used to better present the vasculature and the bleeding.

The angiographic approach begins with the selective

catheterization of the artery most likely to be the source of

bleeding, based on available clinical, endoscopic, and

imaging data. In suspected upper GI hemorrhage, this

typically involves evaluating the celiac artery first, fol-

lowed by the superior mesenteric artery (SMA) as needed.

The SMA and the inferior mesenteric artery (IMA) are

given attention in lower GI tract evaluations, especially

considering mesenteric circulatory variations. Aortography

is not conducted when a preprocedural or previous imaging

is present and used for procedural planning. If micro-

catheters are used, completion angiography is conducted

from the catheter. Regardless of the origin of the extrava-

sation, mesenteric arteries are assessed post-procedurally to

make sure no other sources of hemorrhage exist.

For each patient included in the study, two radiology

residents selected images displaying active bleeding and

images showing a normal arterial tree. This process

specifically excluded images with significant motion arti-

facts, ensuring high-quality data for our AI algorithm

analysis.

Image and Data Management

To compile the dataset for our study, DSA images were

manually downloaded from the Picture Archiving and

Communication System (PACS) server at our medical

center. Once compiled, this dataset was then uploaded to

our local AI server for further processing and analysis by

our AI algorithm.

Prior to computational processing, a senior interven-

tional radiologist (DR) and a senior abdominal radiologist

(EK) labeled the obtained DSA images. The images were

classified as normal arterial structures or images presenting

arterial extravasation. Discordance was resolved by con-

sensus. The dataset was partitioned into training and vali-

dation subsets with a ratio of 0.8 to 0.2, using fivefold

cross-validation. Patients were randomly chosen for the

training/validation datasets. In the study, stringent mea-

sures were implemented to prevent leakage bias, a crucial

step in maintaining the integrity of the AI model evalua-

tion. Strict patient-level differentiation was ensured

between the training and validation datasets. The images

included in the validation set were from different individ-

uals than those in the training set. This approach guaran-

teed that the model was tested on completely unfamiliar

data, thereby providing a true assessment of its perfor-

mance and generalizability.

Software and Hardware Specifications

The algorithms were developed using Python [version 3.9],

leveraging the open-source TensorFlow library [version

2.10]. The scikit-learn library [version 1.0.1] facilitated the

statistical analysis. Processing was executed on an AMD

Ryzen Threadripper PRO 3945 WX CPU @ 4.00 GHz,

RAM: 64.0 GB machine, complemented by an NVIDIA�
RTX A5000 Graphics Card.

Neural Network Model

We implemented the Efficient-Net B5 as our training

model, a specialized image classification algorithm [15]

recognized for being a state-of-the-art classification net-

work. We employed transfer learning from the ImageNet

repository to pre-train the model. After that, the weights of

the final layer were adjusted using DSA images. The DSA

images were preprocessed by reducing their size to a

456 9 456 9 3 matrix. The training of the model utilized

these settings by default: 5 epochs, a batch size of 2, and
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optimization using ADAM with a 10–5 learning rate. The

loss function was based on cross-entropy. The model dif-

ferentiated between normal images and those depicting

arterial extravasation, classifying them into binary

categories.

Class Activation Maps

Class activation maps (CAMs) were used to showcase the

region in each image most contributing to the model’s

classification decision [16]. For CAM generation, we

employed gradient-weighted class activation mapping

(Grad-CAM) [17]. This technique applies the gradients

entering the final convolutional layer to construct a local-

ization map (heatmap) that represents the maximum gra-

dient locations. GradCAM and attention maps were

produced with Jacob Gil’s ‘‘pytorch-grad-cam’’ project

[18] using the last layer of the customized Efficient-Net

B5model. The GradCAM and attention map were referred

to as ‘‘visualization’’ and ‘‘grayscale_cam’’, respectively.

Metrics

In evaluating the performance of our model, we followed a

structured and comprehensive approach detailed as

follows:

1. Operational Threshold Optimization: the initial step

involved fine-tuning the operational threshold using

the area under the receiver operating curve (AUC) as

the primary optimization metric. This process was

crucial for determining the most effective balance

between true-positive and false-positive rates.

2. Five-fold Cross-Validation for Standard Deviation: we

employed a fivefold cross-validation method to calcu-

late the standard deviation for precision and recall.

This approach provided a more robust and reliable

estimation of the model’s performance across different

subsets of the data.

3. Calculation of Additional Performance Metrics: Fol-

lowing the fivefold cross-validation, we calculated

other key performance metrics, including accuracy, F1

score, precision/positive predictive value (PPV), neg-

ative predictive value (NPV), recall/sensitivity, and

specificity.

4. Youden’s index computation: to encapsulate the

model’s discriminative power, Youden’s index was

computed. This index reflects the effectiveness of our

AI model in differentiating between images with and

without extravasation.

5. Evaluation at fixed Sensitivities: the final step involved

evaluating the model’s performance at fixed recall/

sensitivities of 90%, 95%, and 99%. This evaluation

was crucial to understand the model’s behavior under

various clinical sensitivity requirements.

In order to quantitatively assess the inter-rater reliability

of image labeling between the senior radiologists, we

employed Cohen’s kappa statistic. This measure was cal-

culated based on the initial independent labeling by the

residents and the subsequent consensus labeling.

Results

From January 2018 to December 2022, a total of 142

patients underwent angiographic procedures for diagnosing

and treating UGIB. From these procedures, we collected a

total of 587 DSA images. Discordance between the two

senior radiologists that labeled the images was observed in

55 images, which was resolved by consensus. Of these, 302

images were classified as normal, and 285 were flagged as

pathological images exhibiting arterial extravasation. The

calculated Cohen’s Kappa score for inter-reader variability

is 0.775.

After the model training and validation, the average time

taken to classify a single image was 166 ms. The model’s

AUC was 98.8 ± 0.3% for the training cohort, and

85.0 ± 10.9% for the validation cohort (Fig. 1). The average

classification accuracy was 87.6 ± 8.3% for the training

cohort and 77.3 ± 4.9% for the validation cohort. A confu-

sion matrix comparing all the validation cohort folds using

Youden’s index as cut off value is illustrated in Fig. 2.

Using Youden’s index, the model detected arterial

extravasation with a sensitivity of 85.4 ± 9.4% and a

specificity of 81.2 ± 8.6%. The negative predictive value

(NPV) is 85.6 ± 7.3%, the positive predictive value (PPV)

is 78.1 ± 10.8%, and the F1 score is 81.2 ± 8.3%.

Further analysis was performed to present the perfor-

mance across various predetermined sensitivity cutoff

values. When aiming for a maximum sensitivity of 99%,

the classification specificity is recorded at 45.1 ± 3.4%,

accompanied by an NPV of 85.4 ± 2.4%, PPV of

62.3 ± 3.4%, and F1 score of 75.3 ± 4.9%. Table 1 pro-

vides a concise summary of these findings for the valida-

tion cohorts. (Similar summary table for the training cohort

can be found as supplemental data.)

Class activation maps (CAMs, heatmaps) were utilized to

visualize the regions of interest that influenced the deep

learning algorithm’s decision-making process in categoriz-

ing images as normal or indicative of extravasation. Figure 3

presents examples of this visualization. Figure 3A shows a

DSA image with clear arterial extravasation, while Fig. 3B

illustrates the corresponding heatmap, where the ‘hot’ areas

highlight the pixels most influential to the algorithm’s

decision. These areas within the site of extravasation
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demonstrate the algorithm’s ability to accurately identify

significant regions for decision-making. Furthermore,

Fig. 3C displays a DSA image with subtle extravasation that

themodel failed to detect, and Fig. 3D shows the heatmap for

this image, indicating areas the algorithm focused on but

missed the subtle signs of extravasation. This contrast

between Figs. 3B andDprovides insight into the algorithm’s

performance across a spectrum of scenarios, from clear to

subtle, underscoring its capabilities and limitations in iden-

tifying active bleeding.

Fig. 1 Model classification

detection receiver operating

characteristic (ROC) curve with

five-fold analysis for confidence

interval calculation

Fig. 2 Confusion matrix

comparing all the validation

cohort folds using Youden’s

index as cut-off value and

illustrating classification results

between the two image groups
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Discussion

The detection and effective management of acute nonva-

riceal gastrointestinal bleeding (GIB) pose significant

challenges due to its diverse etiology and potential

severity. Interventional radiologists are pivotal in manag-

ing patients with UGIB when conservative medical treat-

ment or endoscopy fall short [19–23]. In this study, we

aimed to enhance the detection rate of extravasation during

Fig. 3 Class activation maps

(CAMs) [heatmaps] of active

bleeding DSA images. A: DSA
image displaying extravasation

from a branch of the celiac

trunk. B: Fusion of the IOUS

image and the final network

gradients producing the

heatmaps class activation map

(CAM) for image A. C: DSA
image with a subtle

extravasation that was not

detected by the model. D:
Heatmap class activation map

(CAM) for image C, illustrating

the model’s missed detection in

a challenging scenario

Table 1 Performance metrics

for detection of arterial bleeding

in the DSA images for

Youden’s index and for

different sensitivity values—

validation cohort.

Metric Youden’s index Sensitivity=90% Sensitivity=95% Sensitivity=99%

Sensitivity 85.4 ± 9.4% 90% 95% 99%

Specificity 81.2 ± 8.6% 59.4 ± 3.2% 52.5 ± 2.7% 45.1 ± 3.4%

PPV 78.1 ± 10.8% 69.4 ± 9.9% 66.4 ± 2.9% 62.3 ± 3.4%

NPV 85.6 ± 7.3% 76.3 ± 2.0% 82.7 ± 8.1% 85.4 ± 2.4%

Accuracy 77.3 ± 4.9% 71.8 ± 6.7% 71.3 ± 8.6% 69.0 ± 6.2%

F1 81.2 ± 8.3% 76.8 ± 6.1% 76.7 ± 8.9% 75.3 ± 4.9%
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angiographic procedures for acute UGIB using an AI

model.

Certain conditions like a hypervascular bowel mucosa

and bowel peristalsis or respiratory motion can lead to

artifacts causing misregistration on digital subtraction

angiography (DSA). Additionally, there are other angio-

graphic findings, beyond contrast extravasation, that can

provide insights into the underlying cause and source of

gastrointestinal (GI) bleeding in specific pathological

conditions. For instance, in cases of peptic ulcer disease,

contrast collections may be observed within an ulcer crater

or outlining the gastric or duodenal mucosa. In some

instances, extravasated contrast may pool within the gastric

rugae, bowel folds, or haustra, resembling a vein, known as

the ‘‘pseudo-vein sign’’ [24, 25].

The AI model utilized in this study was based on the

EfficientNet-B5 neural network model, which was pre-

trained on the ImageNet dataset and fine-tuned using dig-

ital subtraction angiography (DSA) images. The model

achieved promising results with an average validation

AUC of 85.0% and an average validation classification

accuracy of 77.3%.

Our findings demonstrate that the AI model, demon-

strating high sensitivity, can reduce false-negative rates and

assist interventional radiologists in identifying images with

active bleeding during angiographic procedures. This can

potentially enhance the success of transcatheter arterial

embolization for managing UGIB.

The use of class activation maps (CAMs) provided

valuable insights into the AI model’s decision-making

process [16]. The ‘‘hot’’ areas within the CAMs highlighted

the regions of interest that influenced the AI algorithm’s

classification, providing transparency and interpretability

to the model’s predictions. Notably, the contrasting

examples shown in our results—where the AI successfully

identified clear cases of extravasation and instances where

it failed to detect subtle signs—underscore the tool’s utility

and limitations. This visualization tool can aid interven-

tional radiologists in understanding the basis for the AI

model’s outputs and building trust in its performance.

The implementation of AI in Interventional Radiology

for GIB has the potential to streamline and optimize the

clinical workflow. Previously published studies have

evaluated AI models for classification of bleeding in CTA

images [2–4]. By automating the detection of active

bleeding sites at DSA images, interventional radiologists

can focus on performing the necessary embolization pro-

cedures promptly, thereby reducing procedural time and

improving patient outcomes. Additionally, the AI model’s

ability to quickly analyze images at an average time of

166 ms can expedite the decision-making process and

contribute to more efficient patient care.

This study has several limitations. First, the study’s

retrospective nature and reliance on a single medical cen-

ter’s data may introduce selection bias. Second, the AI

model’s performance could be further improved with

additional fine-tuning on a more extensive dataset,

including cases with subtle or atypical angiographic find-

ings. Another important issue is the exclusion of images

with significant motion artifacts. While this decision was

made to ensure the clarity and quality of the data used for

our AI algorithm, we recognize that it may impact the

generalizability of our findings to all clinical scenarios. In

real-world settings, DSA images with motion artifacts are

not uncommon, and their exclusion could limit the appli-

cability of our AI model in routine clinical practice.

Therefore, we emphasize the importance of future studies

to test and potentially adapt our AI model for use with a

broader spectrum of image qualities, including those

compromised by motion artifacts. This will be crucial for

developing an AI tool that is robust and effective in a wide

range of clinical situations. Finally, the model’s external

validity was not assessed, as it was trained and evaluated

exclusively on images from one medical center and in a

single clinical setting, potentially limiting its real-world

applicability.

In conclusion, the development of an AI model for

detecting arterial extravasation during angiographic pro-

cedures represents a significant step toward enhancing the

management of acute nonvariceal UGIB. Our study

demonstrates the potential of AI as a supportive tool for

interventional radiologists, aiding in accurate and timely

diagnosis, and subsequent successful embolization. As the

field of AI in Interventional Radiology continues to evolve,

it holds the promise of improving patient care and out-

comes in a wide range of clinical scenarios. Prospective

studies and real-world clinical implementation are war-

ranted to validate and refine the AI model’s performance

before its widespread adoption in clinical practice.
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