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Abstract
We present a model for multicomponent diffusion in ionic crystals. The model accounts for vacancy-mediated diffusion on a 
sub-lattice and for diffusion due to binary exchange of different ionic species without involvement of vacancies on the same 
sub-lattice. The diffusive flux of a specific ionic species depends on the self-diffusion coefficients, on the diffusion coefficients 
related to the binary exchanges, and on the site fractions of all ionic species. The model delivers explicit expressions for these 
dependencies, which lead to a set of coupled non-linear diffusion equations. We applied the model to diffusion of 23Na, 39 K, 
and 41 K in alkali feldspar. To this end, gem-quality crystals of alkali feldspar were used together with 41 K doped KCl salt 
as diffusion couples, which were annealed at temperatures between 800◦ and 950◦ C. Concentration-distance data for 23Na, 
39 K, and 41 K were obtained by Time of Flight Secondary Ion Mass Spectrometry. Over the entire investigated temperature 
range the Na self-diffusion coefficient is by a factor of ≥ 500 higher than the K self-diffusion coefficient. Diffusion mediated 
by binary 39K–41 K exchange is required for obtaining satisfactory fits of the model curves to the experimental data, and the 
respective kinetic coefficient is well constrained.

Keywords Multicomponent diffusion · Ionic crystals · Theoretical model · Application to alkali diffusion in alkali feldspar

Introduction

Many rock-forming minerals are ionic crystals, and under-
standing intracrystalline diffusion in ionic crystals is of 
pivotal importance for interpreting composition patterns in 
minerals. If the initial- and boundary conditions for diffu-
sion in a mineral are known, the duration of a geochemical 
perturbation or the thermal history of a rock can be inferred 
from the secondary compositional zoning attained during 
diffusion-mediated re-equilibration. Inverse diffusion mod-
elling is at the core of geo-speedometry or diffusion chro-
nometry (Chakraborty 2008) with numerous applications in 

magmatic (Costa et al. 2008, 2010; Dohmen et al. 2017) and 
metamorphic (Spear and Parrish 1996) systems as well as in 
meteorites (Pogge von Strandmann et al. 2011). Moreover, 
diffusion-mediated re-equilibration may lead to the resetting 
of geo thermo-barometers (Carlson 2002; Kohn et al. 2016; 
Bussolesi et al. 2019) and of isotope chronometers (Bogard 
1995; Cherniak and Watson 2001; Ito and Ganguly 2006).

For a quantitative assessment of diffusion-mediated re-
equilibration in minerals, it is mandatory that the under-
lying diffusion process is calibrated. One approach is to 
employ stable- or radioactive isotope tracers for determin-
ing tracer diffusion coefficients, which can then be inserted 
into appropriate interdiffusion models (Manning 1968). 
Alternatively, interdiffusion can be quantified directly from 
dedicated interdiffusion experiments, where two phases with 
different chemical compositions are used as diffusion cou-
ples (Christoffersen et al. 1983; Chakraborty and Ganguly 
1992). The tracer diffusion coefficients obtained from dedi-
cated tracer diffusion experiments are regarded to closely 
reflect the intrinsic mobility of the diffusing species. In 
contrast, in interdiffusion experiments, the diffusive fluxes 
of the major components are necessarily coupled (Onsager 
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1931), and the analysis of interdiffusion experiments may be 
complicated by associated thermodynamic (Lasaga 1979) 
and mechanical (Larche and Cahn 1982) effects. Moreo-
ver, if the self-diffusion coefficients of the diffusing species 
are different, the interdiffusion coefficients are predicted to 
be compositionally dependent (Manning 1968). Accord-
ingly, semi-scale solutions such as the Boltzmann–Matano 
method (Boltzmann 1894; Matano 1933) or the Sauer–Fre-
ise method (Sauer and Freise 1962) need to be employed 
for the analysis of concentration-distance data from binary 
interdiffusion experiments (Petrishcheva and Abart 2017). 
Only in special situations, effective binary diffusion coeffi-
cients were employed for a simplified treatment of interdif-
fusion (Chakraborty and Ganguly 1992). In the light of these 
complications, linking tracer- and interdiffusion coefficients 
determined in different experiments is generally difficult.

Recently, Belova et al. (2013, 2014, 2015) combined 
tracer- and interdiffusion experiments and presented an 
extended Boltzmann–Matano analysis by which the tracer 
diffusion coefficients of the different species, including 
their compositional dependence, can be determined. In this 
communication, we present an alternative approach, which 
is also based on the analysis of combined interdiffusion 
and tracer diffusion experiments. To this end, we derive a 
model for multicomponent diffusion in ionic crystals, which 
accounts for vacancy-mediated self-diffusion on a sub-lattice 
and for diffusion due to binary exchange of different ionic 
species on the same sub-lattice without the involvement of 
vacancies. We apply the model to the diffusion of 23Na, 39 K, 
and 41 K in potassium-rich alkali feldspar. The model is gen-
erally applicable to diffusion in ionic crystals that occurs by 
a combination of vacancy mediated diffusion and diffusion 
due to binary exchange. In the following, we first derive the 
multicomponent diffusion model and then present the results 
from the analysis of combined inter- and tracer diffusion 
experiments on alkali feldspar.

Multicomponent diffusion in ionic crystals

Problem posing

We consider multicomponent diffusion via ion migration 
in ionic solids. The diffusing ionic species are labeled 
� = 1…K  . The number of ions of a particular spe-
cies per unit volume is denoted as N�(�, t) . The index 
� = 0 is reserved for vacancies. We make the following 
approximations:

• The ions diffuse either due to binary exchanges with each 
other or due to exchanges with vacancies in an otherwise 
fixed sub-lattice. There is only one type of vacancies.

We naturally imply that

where Nt is the volume density of sites in the sub-lattice.

• There are no reactions consuming or liberating ions 
within the crystal.

As a consequence, K + 1 continuity equations for N�(�, t) are 
free of source terms, so that

where �� denotes fluxes. The total flux is assumed to vanish 
in the frame of reference fixed to the crystal,

which is consistent with Eq. (1).

• The diffusion fluxes are driven by the generalized forces 
�� through Onsager’s matrix of the transport coefficients 
L��

 The matrix of the transport coefficients will be specified 
in what follows.

For the conditions (3) and (4) to be satisfied for any set of 
�� , the columns of L must have zero sum, in which case

The reciprocal relation requires that L�� = L�� implying that 
also the rows of L have zero sum. One can then eliminate the 
diagonal elements of L from Eq. (4) by writing

Each of the sub-fluxes L��(�� − ��) is related to a binary 
exchange � ↔ �.

• The system evolves under constant pressure and tempera-
ture.

• Making use of the fact that the frequency of � ↔ � 
exchanges is proportional to N�N� , the off-diagonal ele-
ments of the Onsager matrix are modeled by the expres-
sion 

(1)Nt =

K∑
�=0

N� = const,

(2)�tN� + ∇�� = 0,

(3)�t =

K∑
�=0

�� = 0,

(4)�� =

K∑
�=0

L���� , � = 0, 1…K.

�t =

K∑
�=0

(
K∑

�=0

L����

)
=

K∑
�=0

(
K∑

�=0

L��

)
�� = 0.

(5)�� =

K∑
�=0

L��(�� − ��).
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The coefficients D�� will be related to the diffusivities in 
what follows. The generalized forces are related to the elec-
trochemical potentials ��

where ��(P,T) is the chemical potential of a pure compo-
nent, the second term appears due to the entropy of mixing, 
and q�� is the electrostatic energy per ion. For simplicity we 
assume that the activity coefficient �� = 1 such that Eq. (7) 
reads

where the electric field � = −∇� . As to � = 0 , �0 is the free 
energy that is required to create a vacancy, and q0 = 0.

• Charge separation, which may arise from differences in 
the migration rates of ions, yields some electrical field 
�(�, t) . The field self-organizes to inhibit further charge 
separation. Thereafter the system evolves in such a way 
that the total electric current vanishes 

 In what follows, all ions have the same charge q.
The above assumption has two important consequences. 
First, binary exchanges of two ions are not affected by the 
electric field because

If only these two components are present in some elementary 
volume, the sub-flux L��(�� − ��) reduces to −D��∇N� , 
indicating that D�� is the diffusion coefficient describing dif-
fusion due to binary �-� exchanges. Accordingly, we refer to 
D�� as the binary diffusion coefficient. Note that the binary 
diffusion coefficient does not imply a specific microscopic 
diffusion mechanism, but refers to any process leading to the 
exchange of the positions of two ionic species that proceeds 
without a net movement of vacancies. The second conse-
quence is that Eqs. (3) and (9), in which ion charges are 
taken identical, yield

(6)L�� = −D��

N�N�

Nt

, D�� = const, � ≠ �.

(7)

�� = −
∇��

kBT
, �� = ��(P,T) + kBT ln

��N�

Nt

+ q��,

(8)�� = −
∇N�

N�

+
q��

kBT
,

(9)
K∑

�=1

q��� = 0.

L��(�� − ��) = D��

N�∇N� − N�∇N�

Nt

.

�0 = 0 ⇒ N0 = const ⇒ �0 = −
∇N0

N0

+
q0�

kBT
= 0.

There is no vacancy wind, because, if in an exemplary 
elementary volume some vacancies are filled by diffusing 
ions, the same number of vacancies must be freed to avoid 
accumulation of space charge. Writing Eq. (5) for � = 0 and 
making use of the fact that �0 and �0 vanish, and employing 
Eqs. (6) and (8), we obtain

and we derive the self-organized field

where we introduced the notation

Therefore, the sub-flux of component � that results from 
exchanges with vacancies

reads

The first term describes self-diffusion and D∗
�
 in Eq. (10) is 

then recognized as the self-diffusion coefficient. The second 
term is related to the drift of ions in the electric field.

Derivation of the diffusion model

According to the previous section, the ion fluxes are given by

where the coefficient D∗
�
 refers to self-diffusion, and D�� 

refers to the diffusion due to binary �-� exchange. It is con-
venient to change to the relative concentrations

K∑
�=1

L0��� = 0 ⇒

K∑
�=1

D0�

N0N�

Nt

(
−
∇N�

N�

+
q�

kBT

)
= 0,

q�

kBT
=

∑K

�=1
D∗

�
∇N�

∑K

�=1
D∗

�
N�

,

(10)D∗
�
= D0�

N0

Nt

.

L�0(�0 − ��) = −D∗
�
N�

(
∇N�

N�

−
q�

kBT

)

L�0(�0 − ��) = −D∗
�
∇N� + D∗

�
N�

∑K

�=1
D∗

�
∇N�

∑K

�=1
D∗

�
N�

.

�� = − D∗
�
∇N� + D∗

�
N�

∑K

�=1
D∗

�
∇N�

∑K

�=1
D∗

�
N�

+

K�
�=1

D��

N�∇N� − N�∇N�

Nt

,
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and to write Eqs. (1), (2), and (3) in the form

with

where it is safe to replace � = (Nt − N0)∕Nt by 1. Further-
more, it is instructive to introduce the notation

cf. Eq. (6), and to write Eq. (12) in the form

which is the most compact representation of our theory. For 
instance, for K = 3 Eq. (14) yields

Note that ∇c�∕c� is the driving force for diffusion and the 
above matrix is subject to the reciprocal relations.

Summary of the diffusion model

For the assumptions made, the effect of vacancy-mediated 
self-diffusion on diffusion due to binary exchanges without 
the involvement of vacancies is described by the rule

The complicated-looking Eq. (12) for the diffusive current 
has Onsager’s structure, c.f. Eq. (14), in terms of ∇c�∕c� . 
The off-diagonal transport coefficients d�� have a universal 
shape (13), the modified D�� is multiplied by c�c� in analogy 
with Eq. (6). The diagonal elements are obtained from the 
zero sum rule, like in Eq. (15). The evolution of the system 
is described by K coupled nonlinear diffusion equations

c� =
N�∑K

�=1
N�

=
N�

Nt − N0

,

�� =
��

Nt − N0

, � = 1, 2,…K,

(11)�tc� + ∇�� = 0,

K∑
�=1

c� = 1,

K∑
�=1

�� = 0,

(12)

�� = −D∗
�
∇c� + D∗

�
c�

∑K

�=1
D∗

�
∇c�

∑K

�=1
D∗

�
c�

+ �

K�
�=1

D��(c�∇c� − c�∇c�),

(13)d�� =

�
D∗

�
D∗

�∑K

�=1
D∗

�
c�

+ D��

�
c�c� ,

(14)�� =

K∑
�=1

d��

(
∇c�

c�
−

∇c�

c�

)
,

(15)

⎛⎜⎜⎝

�1
�2
�3

⎞⎟⎟⎠
=

⎛⎜⎜⎝

−d12 − d13 d12 d13
d12 − d12 − d23 d23
d13 d23 − d13 − d23

⎞⎟⎟⎠

⎛⎜⎜⎝

∇c1∕c1
∇c2∕c2
∇c3∕c3

⎞⎟⎟⎠
.

D�� ↦

D∗
�
D∗

�∑K

�=1
D∗

�
c�

+ D�� .

K − 1 of which are independent.

Applications of the diffusion model

For K = 2 we take the first component and derive from 
Eq. (16) a single self-consistent nonlinear diffusion equation

If D12 vanishes, we obtain Manning’s expression for two 
coupled vacancy-mediated self-diffusion processes (Man-
ning 1968)

For K = 3 we take the first and the second component and 
reduce Eq. (16) to two coupled nonlinear diffusion equations

It is convenient to introduce a short notation for the average 
self-diffusion coefficient

and to introduce diffusivities �ij such that

where

Note that �12 ≠ �21 . If all D�� vanish, Eq. (19) reduces to 
the expression for ternary diffusion of Lasaga (1979), their 
Eq. (18a,b). The presented model quantifies vacancy-medi-
ated diffusion of ions and, in addition, it accounts for the 
diffusion due to binary exchange without the involvement 
of vacancies.

(16)

�tc� + ∇

[
K∑

�=1

d��

(
∇c�

c�
−

∇c�

c�

)]
= 0, � = 1…K,

(17)�tc1 = ∇

[(
D∗

1
D∗

2

D∗
1
c1 + D∗

2
(1 − c1)

+ D12

)
∇c1

]
.

(18)

�tc1 = ∇

[(
d13

c3
+

d12 + d13

c1

)
∇c1 +

(
d13

c3
−

d12

c2

)
∇c2

]
,

�tc2 = ∇

[(
d23

c3
−

d12

c1

)
∇c1 +

(
d23

c3
+

d12 + d23

c2

)
∇c2

]
.

D∗
m
=

K∑
�=1

D∗
�
c� ,

(19)�tci =
∑
j

∇(�ij∇cj), i, j = 1, 2,

(20)

�11 =

(
D∗

1
D∗

2

D∗
m

+ D12

)
c2 +

(
D∗

1
D∗

3

D∗
m

+ D13

)
(1 − c2),

�12 =

(
D∗

1
(D∗

3
− D∗

2
)

D∗
m

+ D13 − D12

)
c1,

�21 =

(
D∗

2
(D∗

3
− D∗

1
)

D∗
m

+ D23 − D12

)
c2,

�22 =

(
D∗

1
D∗

2

D∗
m

+ D12

)
c1 +

(
D∗

2
D∗

3

D∗
m

+ D23

)
(1 − c1).
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Let us now consider the special case, where 23Na, 39 K, 
and 41 K diffuse on the alkali sublattice of alkali feldspar. 
Experimental data for this scenario are presented and ana-
lyzed further down. When � = 1, 2, 3 are assigned to 23
Na, 39 K, and 41 K, respectively, we may safely assume that 
D∗

2
= D∗

3
 and D12 = D13 , and we have

and

In particular, Na transport is subject to an independent self-
consistent equation

which can be employed to quantify D∗
1
 , D∗

2
 , and D12 . There-

after the transport equation for c2 can be used to quantify 
D23. Note that, the reconstruction of the diffusivities is non-
trivial. If, for instance, the concentration of Na is small and 
subject to small changes, we have

and it would be difficult to extract all three unknown diffu-
sivities by modeling with Eq. (23). In such a case, additional 
information is required for constraining all diffusivities.

23Na–39K–41 K diffusion in sanidine

Experiment

Single crystals of gem-quality sanidine from Volkesfeld 
(Eifel, Germany) with the sum formula ( K0.84 Na0.15 Ba0.01)

(21)D∗
m
= D∗

1
c1 + D∗

2
(1 − c1),

(22)

�11 =
D∗

1
D∗

2

D∗
m

+ D12,

�12 = 0,

�21 =

(
D∗

2
(D∗

2
− D∗

1
)

D∗
m

+ D23 − D12

)
c2,

�22 =

(
D∗

1
D∗

2

D∗
m

+ D12

)
c1 +

((
D∗

2

)2
D∗

m

+ D23

)
(1 − c1).

(23)�tc1 = ∇

[(
D∗

1
D∗

2

D∗
1
c1 + D∗

2
(1 − c1)

+ D12

)
∇c1

]
,

D∗
1
D∗

2

D∗
1
c1 + D∗

2
(1 − c1)

+ D12 ≈ D∗
1
+ D12

[Al1.01 Si2.99 ] corresponding to Orthoclase84 Albite15 Celsian01 
(Demtröder 2011) were used for combined tracer- and binary 
diffusion experiments. A representative mineral chemical 
analysis is given in Table 1. According to Hofmeister and 
Rossman (1985) sanidine from Volkesfeld has an OH con-
tent of 0.018 wt%. The Al-Si distribution on the tetrahedrally 
coordinated sub-lattice of the sanidine is highly disordered, 
with Σt1 = 0.61. The sanidine has monoclinic symmetry 
with space group C2/m and is homogenous down to the 
nanometer scale (Neusser et al. 2012). The crystals are opti-
cally clear and devoid of cracks or any other flaws. Centi-
metre-sized transparent sanidine crystals were oriented on a 
four circle single crystal X-ray goniometer and machined to 
3 × 3 × 2 millimetre cuboid plates with the (001) end-faces 
polished with diamond paste down to 0.25 μm.

Whereas sodium has only one stable isotope, 23Na, 
potassium has two stable isotopes, 39 K, and 41 K with natu-
ral abundances of 93.26 atom% 39 K and 6.73 atom% 41 K. 
As in nature the K isotope fractionation between different 
phases is negligible, this also corresponds to the relative 
abundances of 39 K, and 41 K in the original sanidine. A KCl 
salt enriched in 41 K with 5 atom% 39 K and 95 atom% 41 K 
was used as the second phase in the diffusion couple. The 
salt was deposited on the polished (001) end-faces of the 
crystal plates as a saturated aqueous KCl solution using a 
micropipette. The tracer was applied in excess to ensure con-
stant concentration boundary conditions during the diffusion 
anneal. A schematic drawing of the experimental setup is 
shown in Fig. 1. The assemblies were dried gently to ensure 
that the salt residue remained on the polished surfaces of the 
feldspar plates. The diffusion couples were then sealed into 
quartz glass tubes with an inner diameter of 7 mm and 2 mm 

Table 1  Representative EPMA analysis given in wt% oxides of sanidine from Volkesfeld, Eifel, Germany; c
K

 is the site fraction of K on the 
alkali sub-lattice

SiO
2

TiO
2

Al
2
 O

3
FeO MgO CaO BaO Na

2
O K

2
O c

K

SAN 64.30 0.00 18.56 0.14 0.00 0.01 0.55 1.54 14.47 0.84

sanidine
Xor=0.85

K 
en

ric
he

d 
 K

Cl
 s

al
t 

K

K

Na

Fig. 1  Schematic drawing of experimental setup. The 41K-enriched 
salt was applied on the polished (001) face
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wall thickness under vacuum. Subsequently, the feldspar-salt 
assemblies were annealed in a muffle furnace at tempera-
tures of 800 to 950 ◦ C for run durations between 1 to 12 h 
(see Table 2). After annealing the samples were quenched 
in cold water. The tubes were opened, the feldspars were 
retrieved, and the salt was rinsed off with deionized water. 
The feldspar surfaces were shiny as before the experiment, 
no signs of reaction between the salt and the feldspar were 
detected.

The cleaned feldspar plates were analyzed for their 39 K, 
41 K, and 23 Na concentrations using time-of-flight secondary-
ion-mass-spectrometry (ToF-SIMS) in depth profiling mode. 
With this method, the concentration of 39 K, 41 K, and 23 Na 
could be determined to within about 0.1% of their concentra-
tion and with a depth resolution of about 10 nm. To avoid 
analytical complications that may arise from deep profiles, 
the annealing times were chosen so that the background con-
centrations were reached at a profile depth of ≤ 10 μ m. To 
correct for machine drift, the raw intensities were divided 
by the raw intensity of Al, which can safely be assumed to 
have been immobile during the diffusion anneal. The rela-
tive intensities of 39 K, 41 K, and 23 Na measured in the deep, 
unaltered portions of the crystal were then normalized to the 
composition of the original feldspar as obtained from EPMA 
analysis and natural K-isotope abundances. The intensities 
were assumed to increase linearly with concentration. This 
assumption was proven sensible ex post by the compositions 
obtained from the outermost portions of the crystals, which 
reflected the expected equilibrium compositions with the 
isotopically labelled KCl salt.

Concentration‑distance data

Given the predominance of 39 K in natural alkali feldspar 
and the reversed relative K isotope abundances in the KCl 
salt, where 41 K is the majority K isotope, the salt acted 
as a source for the in-diffusion of 41 K from the salt into 
the feldspar and as a sink for 39 K and 23 Na driving the 
out-diffusion of these two species from the feldspar into 
the salt. A typical set of 39 K, 41 K, and 23 Na concentration-
distance data resulting from a diffusion anneal at 950◦ C 
for 1 h is shown in Fig. 2. Although the penetration depth 
is different for different experiments, depending on anneal-
ing temperature and run duration, there are several fea-
tures that are common to all profiles. The concentration 

of 23 Na is 14 atom% in the inner domains of the feldspar, 
which have not been affected by the cation exchange. The 
23 Na concentration shows a smooth outwards decrease to 
< 0.1 atom%, which is the composition in equilibrium with 
the KCl salt on the surface of the crystal. The transition 
has a sigmoidal shape with an inflection point at about 
half way between the background concentration and the 
concentration at the surface. The transition is localized to 
within a few micrometers, and it is flanked by plateaus on 
either side, an inner plateau at the background concentra-
tion and an outer plateau at the equilibrium concentration 
with the salt. The 41 K concentration is about 6 atom% in 
the original feldspar. Towards the surface, the 41 K concen-
tration is quite constant up to a position somewhat outside 
the inflection point of the 23 Na profile. Further outwards, 
the 41 K profile steepens up over an about 1 μ m wide tran-
sition zone and then rises to about 95 atom% 41 K at the 
surface with relatively constant slope. The background 
concentration of 39 K is about 80 atom% in the unaltered 
internal portions of the feldspar and together with the 
6 atom% 41 K in this domain reflects the natural relative 41 K 
and 39 K abundances. Towards the crystal surface, the 39 K 
profile shows a peculiar maximum at a position between 
the inflection point of the 23 Na profile and the outwards 
steepening transition of the 41 K profile. This feature can 

Table 2  Run durations and temperatures for Na–K diffusion in sani-
dine perpendicular to (001)

All experiments were done at a pressure of ≤ 1 bar

Temperature 800 ◦C 850 ◦C 880 ◦C 900 ◦C 950 ◦C

Run duration 12 h 4 h 4 h 1.5 h 1 h

0 2 4 6 8
distance [ m]

0

0.2

0.4

0.6

0.8

1

m
ol

e 
fr

ac
tio

n

T=950°C, time = 1h, (001)

D*
K

=9.65e-17 m2/s

D*
Na

=4.83e-14 m2/s

D
KK

=1.10e-16 m2/s

D
KNa

=2.00e-17 m2/s

D*
Na

/D*
K

=500

D*
K

=5.40e-17 m2/s

D*
Na

=2.70e-13 m2/s

D
KK

=1.50e-16 m2/s

D
KNa

=6.00e-16 m2/s

D*
Na

/D*
K

=5000

39K41K

Na

Fig. 2  Concentration-distance data of 39K, 41K and 23 Na along a pro-
file taken perpendicular to (001) in Volkesfeld sanidine after a dif-
fusion anneal at 950◦ C for 1  h. The black and red solid lines refer 
to fitting of the multicomponent diffusion model accounting for 
vacancy-mediated diffusion and for diffusion resulting from binary 
exchange. The respective model parameters are indicated. Model 
curves producing satisfactory fits to the data are possible for a range 
of D∗

Na
∕D∗

K
 diffusivity ratios. The black and red lines represent the 

extreme scenarios of the range of feasible D∗
Na
∕D∗

K
 diffusivity ratios 

(see Fig. 3)
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be understood in the light of a relatively fast out-diffusion 
of 23 Na and a comparatively slow in-diffusion of 41 K. In 
the zone where the 23 Na concentration has already been 
lowered due to the rapid out-diffusion of 23 Na while the 
41 K concentration has not yet risen due to the compara-
tively sluggish in-diffusion of 41 K, a deficiency of cations 
is generated on the alkali sub-lattice of the feldspar, which 
is compensated by the supply of 39 K, the locally available 
majority component, leading to the peculiar maximum in 
the 39 K profile.

Diffusion coefficients

The peculiar features of the measured 39 K, 41 K, and 23 Na 
profiles could be reproduced satisfactorily, only when, in 
addition to the vacancy-mediated self diffusion of 39 K, 
41 K, and 23Na, the binary 39K–41 K, 39K–23Na, and 41K–23 Na 
exchanges were considered as diffusion mechanisms. It is 
safe to assume that 39 K and 41 K have similar intrinsic mobili-
ties, so that for the analysis of the concentration-distance 
data only the tracer diffusion coefficients D∗

Na
 and D∗

K
 and 

the binary interdiffusion coefficients DNaK and DKK need to 
be considered. The diffusion coefficients were determined 
by fitting numerical solutions of the coupled diffusion equa-
tions (19) to the experimental data, whereby the relations 
(21, 22) were employed. As mentioned earlier, it is diffi-
cult to constrain all diffusivities when the concentration of 
Na is low. In our experiments, cNa ≤ 14 atom%, and each 
measured profile can be fitted by a range of sets of diffu-
sion coefficients. As an example, the range of diffusivities 
that yield satisfactory fits to the concentration-distance data 
for 950◦ C (Fig. 2) is illustrated in Fig. 3. When the ratio of 
D∗

Na
∕D∗

K
 is specified, all diffusivities can be obtained from 

fitting the model (19) to the experimental data. The dif-
fusivity ratio D∗

Na
∕D∗

K
 was thus chosen as an independent 

variable, and its influence on the diffusivities obtained from 
the fitting procedure was investigated. The main effect of 
increasing D∗

Na
∕D∗

K
 is that the 23 Na model curve steepens 

around its inflection point and the transition zone between 
the two 23 Na plateaus becomes narrower. Below a value of 
D∗

Na
∕D∗

K
= 500 , the 23 Na model curve becomes too flat to 

yield satisfactory fits to the measured profiles. This defines 
the lower bound for the feasible range of the D∗

Na
∕D∗

K
 ratio. 

It is difficult to define an upper bound. Towards high values 

of D∗
Na
∕D∗

K
 the diffusivities obtained from fitting become 

successively less strongly dependent on D∗
Na
∕D∗

K
 (Fig. 3). 

At diffusivity ratios in excess of about D∗
Na
∕D∗

K
= 5000, 

the dependence is essentially negligible for all diffusivities 
except for D∗

Na
 , the increase of which then largely determines 

the increase of D∗
Na
∕D∗

K
 , while D∗

K
 and all other diffusivities 

remain practically constant. If the D∗
Na
∕D∗

K
 diffusivity ratio is 

varied over the entire range from 500 to 5000, the estimated 
values for D∗

K
 vary by a factor of ≤ 2 , D∗

Na
 varies by a factor 

of ≈ 5 , DKK varies by a factor of ≤ 1.5 , and DNaK is the least 
well constrained and varies by a factor of ≈ 30 . If independ-
ent information on D∗

Na
 and/or D∗

K
 is available, the remaining 

ambiguity can be reduced.
In Table 3 exemplary values of the diffusion coefficients 

obtained from applying the lower bound of the feasible range 
of the D∗

Na
∕D∗

K
 diffusivity ratios are presented. We recall 

that a further decrease of the diffusivity ratio reproduces 
unsatisfactory fits to the experimental data. The diffusivity 
ratio may, however, be increased with the above described 
implications for the calculated D∗

K
 , D∗

Na
 , DKK , and DNaK and 

still a good fit of numerics to the experiment is obtained.
The Na and K tracer diffusivities ⟂ (001) in Volkesfeld 

sanidine were determined experimentally by Wilangowski 
et al. (2015) and by Hergemöller et al. (2017). Using their 

Table 3  Diffusion coefficient 
for the smallest feasible 
D

∗
Na
∕D∗

K
 ratios

800 ◦C 850 ◦C 880 ◦C 900 ◦C 950 ◦C

D
∗
K

 ( m2∕s) 3.6 × 10
−18

1.8 × 10
−17

2.2 × 10
−17

4.0 × 10
−17

9.7 × 10
−17

D
∗
Na

 ( m2∕s) 1.4 × 10
−14

1.8 × 10
−14

1.5 × 10
−14

2.0 × 10
−13

4.8 × 10
−14

D
KK

 ( m2∕s) 1.0 × 10
−17

2.4 × 10
−17

6.5 × 10
−17

1.5 × 10
−16

1.1 × 10
−16

D
KNa

 ( m2∕s) 1.0 × 10
−18

1.0 × 10
−17

2.5 × 10
−16

1.0 × 10
−17

2.0 × 10
−17

500 1000 2000 3000 4000 5000
D*

Na
/D*

K

-17

-16

-15

-14

-13

lo
g 

D
/[m

2 /s
]

D*
K

D*
Na

D
KK

D
KNa

T=950°C,  (001)

Fig. 3  Range of diffusivity sets that yield satisfactory fits to the 
experimental data shown in Fig.  2. The diffusivity ratio D∗

Na
∕D∗

K
 

is the only free parameter. For fixed D∗
Na
∕D∗

K
 all diffusivities are 

obtained from fitting the model curves to the experimental data
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calibrations, a D∗
Na
∕D∗

K
 of about 1000 (see Fig. 4) is cal-

culated for a temperature of 950◦ C, which is well within 
the parameter range shown in Fig. 3. The calibration of D∗

K
 

by Hergemöller et al. (2017) is, however, rather uncertain, 
implying a considerable uncertainty also for the diffusivity 
ratio. The experimental data of Wilangowski et al. (2015) 
and Hergemöller et al. (2017) thus provide only weak addi-
tional constraints for the diffusivity ratio. In the absence of 
independent constraints on D∗

Na
∕D∗

K
 the diffusivities can only 

be determined to within the range given by the lower and 
upper bounds of the feasible parameter range.

The temperature-dependence of the D∗
Na

 and D∗
K

 self-dif-
fusion coefficients and of the DNaK and DKK binary exchange 
diffusion coefficients for diffusion ⟂ (001) in the tempera-
ture range of 800◦ C to 950◦ C are shown in the Arrhenius 
diagram of Fig. 4. Over the entire investigated temperature 
range, D∗

Na
 is by a factor of about 1000 larger than D∗

K
 , 

whereby the activation energy is somewhat larger for K dif-
fusion ( D0

K
= 1.5 × 10−7 m2/s, EA = 220 kJ/mol) than for 

Na diffusion ( D0

Na
= 2.5 × 10−6 m2/s, EA = 170 kJ/mol). 

The binary exchange diffusion coefficients DNaK and DKK 
are smaller than the self-diffusion coefficients. In Fig. 4 the 
diffusivities obtained from our experiments are compared 
with the calibrations for D∗

Na
 by Wilangowski et al. (2015) 

and for D∗
K

 by Hergemöller et al. (2017). Despite the fact 
that the experimental approach used by Wilangowski et al. 
(2015) and by Hergemöller et al. (2017) (tracer diffusion 
experiments) and our study are fundamentally different, the 
calibrations agree quite well. To make the calibrations for 
potassium tracer diffusion in K-rich feldspar comparable, the 

effects of vacancy-mediated K diffusion and of the binary 
39K-41 K exchange need to be combined, yielding the dash-
dotted blue line in Fig. 4. The combined coefficients match 
very well with the calibration for D∗

K
 of Hergemöller et al. 

(2017), which is shown as light blue line. With respect to 
D∗

Na
 , the agreement between our calibration and the cali-

bration of Wilangowski et al. (2015) is somewhat less sat-
isfactory, in that our estimate is by a factor of about 3 to 
5 slower. It must be noted that Wilangowski et al. (2015) 
used Volkesfeld sanidine with cK = 0.84 , whereby cK did 
not change during the experiment. In our experiments, the 
composition of the alkali feldspar assumes values in the 
range of 0.84 ≤ cK ≤ 1.00 , and the difference between our 
calibration and the one by Wilangowski et al. (2015) may 
reflect a reduced D∗

Na
 at high values of cK , a proposition that 

was already made by Hergemöller et al. (2017) based on 
Monte Carlo simulations of alkali diffusion in alkali feldspar 
and by El Maanaoui et al. (2016) based on measurements of 
ionic conductivity.

The relatively large difference between the D∗
Na

 and D∗
K

 
self-diffusion coefficients and the respective activation 
energies has been taken as an indication for the activation 
of different diffusion mechanisms for Na and K. Based on 
Monte Carlo simulations of vacancy mediated diffusion on 
a single sub-lattice Wilangowski et al. (2015) inferred that 
for the composition of Volkesfeld sanidine D∗

Na
∕D∗

K
< 3.12 

irrespective of the specific atomic jump frequencies, and 
additional diffusion pathways such as the interstitial and the 
interstitialcy mechanism (Mehrer 2007) were invoked to 
explain the observed, substantially higher diffusivity ratio. 
Based on ionic conductivity measurements El Maanaoui 
et al. (2016) showed that in the composition range of interest 
the concentration of Na self-interstitials is orders of magni-
tude higher than the concentration of K self-interstitials. It 
was argued by Wilangowski and Stolwijk (2017) based on 
the relation between ionic conductivity and Na-tracer diffu-
sion that a direct interstitial (I–I) jump mechanism of Na is 
unlikely and an indirect interstitialcy mechanism with (I–S, 
S–I) jumps was invoked. A contribution of interstitial Na to 
Na tracer diffusion in plagioclase was already suggested by 
Behrens et al. (1991). Although not explicitly formulated 
the binary diffusion coefficients in our model account for an 
interstitialcy mechanism.

Our model delivers an explicit expression for the com-
positional dependence of an effective Na–K diffusion coef-
ficient that may be defined based on Eq. (23)

The compositional dependence of the effective Na-K diffu-
sion coefficient in alkali feldspar was investigated by Petrish-
cheva et al. (2014) and by Schäffer et al. (2014) using a 

Deff

NaK
=

D∗
Na
D∗

K

D∗
Na
cNa + D∗

K
(1 − cNa)

+ DNaK.

8 8.5 9 9.5

1/T° C 10-4

-18

-17

-16

-15

-14

-13

-12

lo
g(

D
/m

2  s
-1

)

KK

D*
Na

D*
K

D

D
KNa

D*
K

+D
KK

D*
Na

 W

D*
K

  H

T° C
900 880 850 800950

Fig. 4  Arrhenius diagram for diffusion of Na and K ⟂ (001). The 
data for D∗

Na
 W are from Wilangowski et al. (2015) and for D∗

K
 H from 

Hergemöller et al. (2017); the different data points at a given temper-
ature correspond to different values of D∗

Na
∕D∗

K
 within the range of 

feasible diffusivity ratios
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semi-scale solution (Boltzmann 1894) for analysing compo-
sition-distance data in an inverse approach. A comparison 
between the calibrations of Schäffer et al. (2014) and our 
analysis is presented in Fig. 5. The models agree in that an 
increase of the effective Na-K diffusion coefficient is pre-
dicted with increasing cK over the entire compositional range 
of 0.85 ≤ cK ≤ 1.00 that was investigated by Petrishcheva 
et al. (2014) and by Schäffer et al. (2014), and the absolute 
values of the inferred Deff

NaK
 agree to within a factor of about 

2. The two models differ slightly in that the increase of Deff

NaK
 

is more gradual for the predictions from the calibration of 
Petrishcheva et al. (2014) and Schäffer et al. (2014) than 
obtained from our model. We suppose that this difference 
is an artefact related to the different data reduction proce-
dures applied by Petrishcheva et al. (2014) and by Schäffer 
et al. (2014) and the model fit used in the present study. 
Application of the semi-scale solution after Boltzmann 
(1894) requires smoothing of the raw data so that a strictly 
monotonically increasing/decreasing function is obtained, 
which can be integrated to yield meaningful compositionally 
dependent diffusion coefficients. The smoothing procedure 
tends to artificially flatten the concentration-distance curves. 
No such smoothing was applied in the present study, which 
may contribute to the observed difference.

Summary and conclusions

We derived a theoretical model for describing multicom-
ponent diffusion in an ionic crystal. Our considerations are 
restricted to the case of thermodynamically ideal mixing 
behavior and to the migration of only homo-valent ions, and 
we have excluded potential mechanical effects of compo-
sition change. Within this frame, the model accounts for 
vacancy-mediated diffusion of ionic species and for the dif-
fusion resulting from binary exchange of the different ionic 
species on the same sub-lattice without the involvement of 
vacancies. It is shown that the diffusive flux of an ionic spe-
cies depends on its self-diffusion coefficient as well as on the 
self-diffusion coefficients of all other diffusing species, on 
the binary diffusion coefficients related to binary exchanges 
of ionic species without the involvement of vacancies and 
on all species concentrations. The model delivers an explicit 
expression for these dependencies and yields a set of non-
linear diffusion equations. If, in a binary case, the binary 
diffusion coefficients related to binary exchanges vanish, 
the expression reduces to Manning’s expression and in the 
multicomponent case it reduces to Lasager’s equations. The 
model was applied to the diffusion of 39 K, 41 K, and 23 Na in 
alkali feldspar. From our analysis of measured 39 K, 41 K, and 
23 Na profiles we infer that apart from vacancy-mediated dif-
fusion of Na and K, diffusion by binary exchanges without 
the involvement of vacancies contributed substantially to 
alkali diffusion in alkali feldspar.
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