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Abstract We use a lattice vibrational technique to derive

thermophysical and thermochemical properties of fayalite,

Fe2SiO4. This semi-empirical technique is based on an

extension of Kieffer’s model to incorporate details of the

phonon spectrum. It includes treatment of intrinsic anhar-

monicity and electronic effects based on crystal field

theory. We extend it to predict thermodynamic mixing

properties of olivine (Mg,Fe)2SiO4 solid solutions by using

results of our previous work on the system MgO–SiO2.

Achieving this requires a relation between phonon fre-

quency and composition and a composition relation for the

energy of the static lattice. Directed by experimental

Raman spectroscopic data for specific optic modes in

magnesium–iron solid solutions of olivine and pyroxene

we use an empirical relation for the composition depen-

dence for phonon frequencies. We show that lattice

vibrations have a large effect on the excess entropy and that

the static lattice contribution and lattice vibrations have a

large impact on excess enthalpy and excess Gibbs energy.

Our model indicates that compositional effects in elec-

tronic and magnetic properties are negligible. The

compositional variation the Néel temperature has a large

impact on excess heat capacity for temperatures below

100 K.

Keywords Excess properties � Anharmonicity �
Equation of state � Crystal field � Lattice vibrations

Introduction

Matching acoustic velocities with material properties of

crust and mantle is the principal goal in the study of the

solid Earth. These material properties are increasingly

more determined by detailed experimentation at elevated

temperature and pressure. They place constraints on phase

transitions, their Clapeyron slopes, and acoustic speeds,

thus enabling a precise characterization of the constitution

of crust and mantle. The MgO–SiO2 system with some

admixture of FeO is the canonical system thought to

describe the earth crust and mantle as inferred from the

study of chronditic meterorites. To go from inference to

unequivocal determination requires a detailed analysis of

the physical properties of the phases present in this system.

In an earlier study (Jacobs and de Jong 2007) we have

shown that multiple-phase transitions in the system MgO–

SiO2, at pressure–temperature conditions prevailing in the

transition zone of Earth’s mantle, are visible in sound wave

velocities commensurate with a recent study of Deuss et al.

(2006) based on global seismic observations. However,

sound wave velocities and densities calculated along

plausible adiabatic paths do not match those of PREM

(Dziewonski and Anderson 1981) within tomographic

accuracy, indicating that at least iron is lacking in the

model description. Therefore, our current goal is to include

magnesium–iron silicate solid solution phases in our ther-

modynamic description.

In the present work we focus on the application of the

vibrational model to the olivine (Mg,Fe)2SiO4 solid solution

phase, a major constituent material in Earth’s transition
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zone and upper mantle, for which thermophysical properties

and thermodynamic mixing data are available to validate

the model description. We have achieved a thermodynamic

description for this phase in two steps. In the first step, we

applied the vibrational technique to the endmember faya-

lite, a-Fe2SiO4. In the second step, we combined the results

with our previous description for forsterite a-Mg2SiO4

(Jacobs and de Jong 2005a, 2007) to derive thermodynamic

mixing properties of olivine, a-(Mg1-x,Fex)2SiO4. We

realize this by using available Raman and infrared spec-

troscopic data for the compositional dependence of phonon

frequencies. Figure 1 illustrates that these frequencies

depend nearly linear on the composition for a number of

solid solution phases. According to Huang et al. (2000) and

Mernagh and Hoatson (1997) a similar trend is present in

pyroxenes and according to Hofmeister and Mao (2001) in

silicates with the spinel structure.

Guyot et al. (1986) have shown that a quantitative

theoretical interpretation of the substitutional effect of

magnesium by iron is not straightforward. We follow an

empirical approach to describe the phonon frequencies as

function of composition. By applying the frequency–

composition relation we predict the vibrational contribu-

tion to thermodynamic mixing properties for the excess

Gibbs energy. For the static lattice contribution to the

mixing properties we took the Helmholtz energy to be a

linear combination of the Helmholtz energies for the end-

members at the volume of the mixture. Here, we shall

explore the behavior of excess properties in P–T space

and investigate if the results are significantly different

from those derived by Jacobs and de Jong (2005b) where

excess properties were parameterized using polynomial

functions.

Two new databases meeting similar requirements have

been developed recently: one by Piazzoni et al. (2007) the

other by Stixrude and Lithgow-Bertelloni (2005). Ther-

mophysical properties including shear moduli and phase

diagrams may be obtained from them. Both data bases use

a Debye model to calculate the thermal pressure, but

polynomial expressions for thermal expansivity and heat

capacity are used in the database of Piazonni et al. (2007).

For the shear modulus a formalism developed by Stixrude

and Lithgow-Bertelloni (2005) is used. The database of the

last investigators combines a Debye model for the vibra-

tional density of states (VDoS) with an advanced model for

calculating elastic moduli.

There are four differences between our formalism and

that employed by Piazzoni et al. (2007) and Stixrude and

Lithgow-Bertelloni (2005). First our formalism incorpo-

rates more details of the phonon spectrum. Such details are

essential because we noticed the insufficient accuracy of the

Debye model to represent heat capacity data from 0 K up to

the melting point in our thermodynamic analysis of forste-

rite (Jacobs and de Jong 2005a). It compelled us to employ

Kieffer’s (1979) model to describe experimental data

associated with the VDoS, such as frequency–pressure–

temperature measurements derived from Raman and infra-

red spectroscopy. In Jacobs and de Jong (2007) we noticed

that Kieffer’s model is also required for other minerals, such

as for MgSiO3 perovskite. Infrared and Raman experi-

mental data, which constrain our formalism, have become

increasingly available through the work of among others

Hofmeister and Ito (1992), Wang et al. (1992), Chopelas

(2000) and Chaplot et al. (2002). Second, our vibrational

technique incorporates intrinsic mode anharmonicity.

Experimental data on mode anharmonicity are scant. They

a bFig. 1 Vibrational frequency of

modes at 300 K and 1 bar

pressure calculated using

Eq. 13, solid curves are not

significantly different from a

linear behavior (dashed curves).

Experimental data for olivine

are from Guyot et al. (1986),

circle, Besson et al. (1982),

triangle. Data for pyroxene are

from Huang et al. (2000):

synthetic crystals: circle, natural

specimens, triangle, Chopelas

(1999), square
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have become available for a number of minerals, such as

forsterite, perovskite and akimotoite through the work of

Gillet et al. (1991), Gillet et al. (2000) and Reynard and

Rubie (1996), respectively. Incorporation of mode anhar-

monicity is important because as demonstrated in Jacobs

and de Jong (2005a) and Jacobs and de Jong (2007), it

significantly affects the location and Clapeyron slope of

phase boundaries in the magnesium–olivine and magne-

sium–pyroxene system. Third, we have constructed our

formalism such that static lattice properties at 0 K are key

properties, which can be constrained by or compared with

0 K static ab initio calculations, thus enabling validation of

calculation-based properties with experimentally deter-

mined ones. This is a profound achievement because it

couples molecular calculations, the microscopic world with

thermodynamic macroscopic observables. The fourth dif-

ference is addressed in this paper in the construction of the

thermodynamic model for fayalite. Contrary to forsterite, a

model for fayalite, i.e., consideration of iron in the olivine

structure requires details of the electronic and magnetic

properties to be incorporated. These details involve changes

in the thermodynamic properties associated with a change

in magnetic ordering at the antiferromagnetic–paramag-

netic transition. To model these properties we have used

crystal field theory to derive electronic and magnetic

properties. An empirical model incorporating the change of

magnetic ordering has been included as well.

Because our vibrational model incorporates more

physical properties relative to polynomial models used by,

e.g., Fabrichnaya (1998), Holland and Powell (1998),

Saxena (1996) and used in our previous work Jacobs and

de Jong (2005b), the thermodynamic description of sub-

stances is more unambiguously constrained. For instance,

in Jacobs et al. (2006) we have shown for c-Mg2SiO4

that this results in a better discrimination of the quality

of different experimental data sets. Another example is

MgSiO3 perovskite for which a description based on lattice

vibrations results in a more reliable extrapolation of ther-

modynamic properties to regions in pressure–temperature

space, which are difficult to access experimentally. These

details in our model make a convincing case for the con-

stitution of the crust and upper mantle.

This paper is structured as follows: in the next section

we give a brief theoretical background of the vibrational

method applied to solid solutions. In ‘‘Results’’, we present

our results for fayalite and olivine. In ‘‘Discussion’’ we

discuss our results.

Theoretical background

In Jacobs and de Jong (2007) we applied a vibrational

method to the endmembers in the system MgO–SiO2. The

fitting parameters in this method are thermophysical

properties obtained by a least-squares optimization.

Because we have discussed the method in detail in previous

work, Jacobs and de Jong (2005a, 2006, 2007), we only

briefly discuss these properties in Appendix 1. Contrary to

the endmembers in MgO–SiO2, electronic and magnetic

effects are important in Fe2SiO4 (fayalite) and we treat

these effects in ‘‘Electronic and magnetic contributions to

the Helmholtz energy in Fe2SiO4’’. In ‘‘Static lattice and

vibrational contribution to the Helmholtz energy for a

mixture’’ and ‘‘Relation between vibrational frequencies

and composition’’ we extend our vibrational method to a

solid solution phase for which the Helmholtz and Gibbs

energy are composition dependent.

Electronic and magnetic contributions to the Helmholtz

energy in Fe2SiO4

Our thermodynamic framework is based on the expression

of the Helmholtz energy, from which all thermodynamic

properties can be derived including the equation of state

and the Gibbs energy. Because electronic and magnetic

effects are present in Fe2SiO4, the Helmholtz energy

expression given in Appendix 1 is extended to

AðT ;VÞ ¼ UrefðV st
0 Þ þ UstðVÞ þ AvibðT;VÞ þ Ael�mgðT ;VÞ

þ AkðT ;VÞ ð1Þ

The fourth term on the right-hand side of Eq. 1

represents the electronic and magnetic contributions. The

last term represents the change in Helmholtz energy due to

the antiferromagnetic–paramagnetic transition.

In a recent investigation Aronson et al. (2007) used

inelastic neutron scattering experiments to determine the

magnetic and electronic contributions to the heat capacity

of fayalite. They concluded that the behavior of the M1

site is responsible for the Schottky anomaly appearing in

the heat capacity at around 20 K whereas the M2 site

contributes to the lambda behavior in the heat capacity.

We followed their crystal-field scheme in which the T2g

energy levels are split into a ground state and two energy

levels d1 and d2, respectively, above it. Spin–orbit coupling

further splits the ground state. For completeness we have

included the Eg energy levels although their contribution to

the heat capacity is less than 0.1% at 1,400 K. The parti-

tion function Zel-mg for a system with m energy levels is

given by

Zel�mg ¼
Xm

i¼1

gi exp
ei

kT

� �
ð2Þ

where ei represents the energy of level i having a degeneracy

of gi. The Helmholtz energy contribution is derived from it
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by using statistical mechanics as Ael-mg = -kT ln(Zel-mg).

From Eq. 2 electronic and magnetic contributions to

thermodynamic properties are derived using classical ther-

modynamics. A summary of the expression for these

properties is given in Appendix 2. In our calculations we

assume that the number of M1 sites equals the number of

M2 sites and that there is no site preference of the Fe2?

ion for one of these sites. This is commensurate with a

study of Burns and Sung (1978) concluding that the ambi-

ent crystal field stabilization enthalpies for the octahedra

in the M1 and M2 sites differ by less than 2%. The

assumption also enhances a direct comparison with results

derived by Aronson et al. (2007). Because two moles of

Fe atoms per molecular formula of Fe2SiO4 are present we

add the contributions of the thermodynamic properties for

each site.

The sharp critical lambda phenomenon in the heat

capacity at the Néel temperature (64.88 K) corresponds to

the change in the ordering of the electronic spins when

fayalite changes from the antiferromagnetic state to the

paramagnetic state with increasing temperature. This phe-

nomenon cannot be described by Eq. 2. We modeled it by

making use of an expression for the Gibbs energy compiled

by Dinsdale (1991), which is frequently used in the

Scientific Group Thermodata Europe (SGTE, http://www.

sgte.org) community. This expression only depends on the

temperature and we used it to express the Helmholtz

energy as

AkðTÞ ¼ const � nFe � RTðgðsÞ � 1Þ ð3Þ

where nFe denotes the number of Fe atoms per molecular

formula Fe2SiO4, nFe = 2, R the gas constant and s = T/TN,

with TN the Néel temperature. In Eq. 3 we have assumed

that the Helmholtz energy contribution is independent of

volume. In ‘‘Effect of volume on electronic and magnetic

properties of fayalite’’ we demonstrate that the effect of

volume on the Helmholtz energy is quite small. It follows

from this assumption that the magnetic contribution to the

Gibbs energy equals that for the Helmholtz energy. The

function g(s) is expressed as

gðsÞ ¼ 1� 0:86034

s
þ 1:04695

s3

6
þ s9

135
þ s15

600

� �� �

for s� 1 ð4aÞ

gðsÞ ¼ �0:42690
s�5

10
þ s�15

315
þ s�25

1; 500

� �
for s[ 1 ð4bÞ

The constant ‘const’ results from an optimization process

as discussed in ‘‘Fayalite’’. Equation 3 results in zero

entropy at 0 K. We do not intend to associate a physical

interpretation of the critical lambda effect with Eq. 3, but

merely use it as a means to parameterize the energy,

entropy and heat capacity.

Static lattice and vibrational contribution

to the Helmholtz energy for a mixture

In Jacobs and de Jong (2005b) we used the Gibbs energy to

derive element partitioning and phase diagrams for the

olivine, wadsleyite and ringwoodite forms of (Mg,Fe)2SiO4

solid solutions. The Gibbs energy of olivine was expressed

on a one-site mixing basis, (Mg,Fe)Si1/2O2, as:

GðP; T; y~Þ ¼
X2

i¼1

yiGiðP; TÞ

þ RT
X2

i¼1

yi lnðyiÞ þ GExðP; T; y~Þ ð5Þ

where Gi(P, T) represents a polynomial expression for the

Gibbs energy of endmember i typically containing about 16

terms to describe heat capacity, thermal expansivity and

bulk modulus. Throughout this paper we denote MgSi1/2O2

as the first endmember and FeSi1/2O2 as the second one. In

Eq. 5 we use y~¼ ðy1; y2Þ to represent the composition of

the mixture to avoid confusion with the variable x related

to vibrational frequencies which we used in previous work

and in the appendices. The first term in Eq. 5 represents the

Gibbs energy of the so-called mechanical mixture in which

the endmembers are present in an unmixed state. The

second term represents the Gibbs energy contribution due

to random (ideal) mixing of the Mg and Fe atoms. The last

term is the excess Gibbs energy representing the deviation

from ideal mixing of these atoms, which is expressed as a

polynomial function in composition in Jacobs and de Jong

(2005b). In the present work, we attempt to partition this

contribution due to changes in the static lattice and lattice

vibrations when mixing occurs.

We showed previously (Jacobs and de Jong 2007) the

advantage of using the Helmholtz energy in expressing the

Gibbs energy of the endmembers in terms of lattice

vibrations. The reason for this is that the Helmholtz energy

is linked to the partition function and amenable to statis-

tical mechanical treatment. From the Helmholtz energy we

derived the equation of state, partitioned in a static lattice

and a vibrational part as is summarized in Appendix 1 for

pure endmembers. That results in the volume of the static

lattice, which enables the comparison of our results with

static ab initio results as was done for perovskite in Jacobs

et al. (2006). Rewriting Eq. 5 in terms of the Helmholtz

energy leads to

GðP; T; y~Þ ¼
X2

i¼1

yiAiðT ;ViÞ þ RT
X2

i¼1

yi lnðyiÞ

þ AExðT;V ; y~Þ þ PV ð6Þ

where Vi in the first term, describing the mechanical

contribution, denotes the volume of endmember i at (P, T).
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The excess Helmholtz energy of the mixture represents the

change in Helmholtz energy resulting from changes of

vibrational frequencies, the volume change due to the

difference in size of the Mg and Fe atoms, and electronic

and magnetic effects relative to the endmembers in the

unmixed state. The Helmholtz contribution of the static

lattice depends only on the volume and we write the

expression for the Helmholtz energy of the mixture as

AðT ;V; y~Þ ¼
X2

i¼1

yiA
st
i ðViÞ þ

X2

i¼1

yiA
vib
i ðT ;ViÞ

þ
X2

i¼1

yiA
el�mg
i ðTÞ þ AkðT; y~Þ

þ RT
X2

i¼1

yi lnðyiÞ þ A0ExðT;V ; y~Þ ð7Þ

Two restrictions are associated with Eq. 7. The first

restriction is that we have assumed that the Helmholtz

energy contributions of the three effects can be partitioned

in an additive manner. The second one is that for olivine

no experimental data are available for volume- and

compositional effects on the electronic and magnetic

contributions to the Helmholtz energy. We therefore

assume that these contributions are solely temperature

dependent. The linear composition dependence of the third

term as a consequence does not contribute to the excess

Helmholtz energy. In ‘‘Effect of volume on electronic and

magnetic properties of fayalite’’ we discuss the effect of

volume-dependent Ael�mg
i on thermodynamic properties.

Because Mg2SiO4 is an insulator material, only Fe2SiO4

(i = 2) contributes to this term. For the lambda anti-

ferromagnetic–paramagnetic transition Dachs and Geiger

(2007) and Dachs et al. (2007) showed that the Néel

temperature depends on composition and therefore Ak may

contribute to the excess Helmholtz energy. This excess

contribution is therefore not included in A0ExðT;V ; y~Þ: The

calculation of the excess contribution due to this transition

is detailed in Appendix 3.

In ‘‘Relation between vibrational frequencies and com-

position’’ we introduce a relation between vibrational

frequency and composition. We use this relation to replace

the second term on the right-hand side of Eq. 7 by

AvibðT;V ; y~Þ: This implies the incorporation of a vibra-

tional excess Helmholtz energy expressed as

AExvibðT ;V; y~Þ ¼ AvibðT;V ; y~Þ �
X2

i¼1

yiA
vib
i ðT;ViÞ ð8Þ

In ‘‘Olivine solid solutions’’ we demonstrate that this

replacement requires the introduction of an excess

contribution to the static lattice part of the Helmholtz

energy. Due to substitution of Mg by Fe, bonds such as

Mg–O and Si–O change in length, but the topology of the

structure remains unchanged. Instead of pursuing a

microscopic description of the energy changes in these

bonds associated with the iron–magnesium substitution, we

approach it phenomenologically by treating the solid

solution as being composed of the two endmembers that

mix at the volume V of the mixture. In Eq. 7 the first term

on the right-hand side is replaced by a term expressing the

Helmholtz energy of the endmembers at this volume. That

results in the incorporation of an excess contribution to the

static lattice

AExstðVÞ ¼
X2

i¼1

yi Ast
i ðVÞ � Ast

i ðViÞ
� �

ð9Þ

with the restrictions and assumptions mentioned above,

Eq. 7 is rewritten as

AðT ;V; y~Þ ¼
X2

i¼1

yiA
st
i ðVÞ þ AvibðT ;V; y~Þ þ y2Ael�mg

2 ðTÞ

þ AkðT ; y~Þ þ RT
X2

i¼1

yi lnðyiÞ

þ A00ExðT ;V; y~Þ ð10Þ

In the present work we have put the last term in Eq. 10

to zero and we investigate the effects on excess properties

associated with the first, second, and fourth term on the

right-hand side of Eq. 10. The volume of the solid solution

is derived from the expression for the total pressure, which

follows from Eq. 10, by differentiation to volume as

P ¼
X2

i¼1

yiP
st
i ðVÞ þ PvibðT;V ; y~Þ ð11Þ

where Pst
i ðVÞ represents the contribution due to the static

lattice of component i and Pvib the thermal pressure. The

first term in Eq. 11 is calculated using the static lattice

properties given in Table 1. The last term in Eq. 11 is

predicted using the relation between vibrational frequencies

and composition. Appendix 4 gives a summary of the

partitioning of excess properties in contributions of the

static lattice, lattice vibrations, and electronic and magnetic

properties. The volume of the endmembers is calculated

with Eq. 22. Excess volume is calculated by computing the

volume of the mixture and the volumes of the endmembers

at the selected condition of pressure and temperature and

applying

VEðP; T ; y~Þ ¼ VðP; T ; y~Þ �
X2

i¼1

yiViðP; TÞ ð12Þ

Relation between vibrational frequencies

and composition

Vibrational frequencies decrease for (Mg1-y,Fey)2SiO4

mixtures with increasing iron content as illustrated in
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Table 1 Optimized properties at zero Kelvin and zero pressure

Mode type Fraction of

oscillators

Motion type Frequency range (cm-1) cj,0 q1,j0 aj 9 105 K-1

a-Mg2SiO4

AC1 1/84 TA 0.00–101.4 (2) 1.05 (5) 1.70 (90) -4.94 (5)

AC2 1/84 TA 0.00–102.4 (2) 1.05 (5) 1.70 (90) -4.94 (5)

AC3 1/84 LA 0.00–172.7 (1) 1.66 (2) 0.78 (30) -1.55 (5)

OC1 2/84 T(SiO4) 106.4 (60)–147.6 (60) 1.02 (4) 2.33 (17) 0.00

OC2 7/84 T(SiO4) 167.9 (63)–229.1 (63) 2.21 (9) 0.80 (16) 0.00

OC3 12/84 T[M(2)O6] 229.2 (30)–355.1 (30) 1.76 (6) 2.49 (5) -2.31 (6)

OC4 12/84 T[M(1)O6] 279.7 (30)–414.2 (30) 1.22 (6) 2.49 (5) -1.59 (6)

OC5 12/84 R(SiO4) 305.8 (30)–474.1 (30) 1.42 (6) 2.49 (5) -0.84 (6)

OC6 8/84 m2(SiO4) 409.7 (34)–510.7 (34) 0.56 (9) 2.49 (5) -2.95 (6)

OC7 12/84 m4(SiO4) 507.0 (34)–647.2 (34) 0.56 (8) -2.78 (6) -0.84 (8)

OC8 4/84 m1(SiO4) 841.5 (34)–842.5 (34) 0.41 (9) -3.83 (4) -0.84 (8)

OC9 3/84 m3(SiO4) 871.5 (34)–872.5 (34) 0.39 (9) -3.83 (4) -0.84 (8)

OC10 4/84 m3(SiO4) 919.5 (34)–920.5 (34) 0.32 (9) -3.83 (4) -0.84 (8)

OC11 5/84 m3(SiO4) 978.5 (34)–979.5 (34) 0.56 (9) -3.83 (4) -0.84 (8)

Kst
0 =GPa K 0st

0 V0=cm3=mol V st
0 =cm3=mol Uref=MJ=mol Z

134.8 (1) 4.74 (3) 43.476 (48) 43.093 (48) -2.2533 (40) 4

a-Fe2SiO4 based on experiments of Graham et al. (1988), model G

AC1 1/84 TA 0.00–67.46 (20) 1.88 (5) 0.05 (90) -7.00 (5)

AC2 1/84 TA 0.00–68.46 (20) 1.88 (5) 0.05 (90) -7.00 (5)

AC3 1/84 LA 0.00–133.26 (10) 2.12 (2) 0.05 (30) -3.95 (5)

OC1 2/84 T(SiO4) 100.5 (60)–114.3 (60) 2.13 (4) 4.59 (15) 0.00

OC2 7/84 T(SiO4) 114.3 (63)–162.9 (63) 1.62 (9) 4.59 (15) 0.00

OC3 12/84 T[M(2)O6] 162.9 (30)–244.9 (30) 1.27 (6) 4.59 (15) 0.00

OC4 12/84 T[M(1)O6] 174.9 (30)–304.9 (30) 1.11 (6) 4.59 (15) 0.00

OC5 12/84 R(SiO4) 244.9 (30)–374.9 (30) 1.70 (6) 4.59 (15) 0.00

OC6 8/84 m2(SiO4) 380.9 (34)–477.4 (34) 0.29 (9) -4.31 (5) 0.00

OC7 12/84 m4(SiO4) 480.9 (34)–608.9 (34) 0.43 (8) -4.31 (6) 0.00

OC8 4/84 m1(SiO4) 826.9 (34)–827.9 (34) 0.42 (9) -4.31 (4) 0.00

OC9 3/84 m3(SiO4) 863.9 (34)–864.9 (34) 0.40 (9) -4.31 (4) 0.00

OC10 4/84 m3(SiO4) 890.9 (34)–891.9 (34) 0.39 (9) -4.31 (4) 0.00

OC11 5/84 m3(SiO4) 950.9 (34)–951.9 (34) 0.62 (9) -4.31 (4) 0.00

Kst
0 =GPa K 0st

0 V0=cm3=mol V st
0 =cm3=mol Uref=MJ=mol Z

136.3 (8) 5.20 (3) 46.035 (33) 45.749 (33) -1.5519 (14) 4

a-Fe2SiO4 based on experiments of Isaak (1993), model I

AC1 1/84 TA 0.00–67.71 (20) 1.91 (5) 0.03 (90) -7.00 (5)

AC2 1/84 TA 0.00–68.71 (20) 1.91 (5) 0.03 (90) -7.00 (5)

AC3 1/84 LA 0.00–135.47 (10) 2.07 (2) 0.05 (30) -4.52 (5)

OC1 2/84 T(SiO4) 101.1 (60)–115.0 (60) 2.10 (4) 4.62 (15) 0.00

OC2 7/84 T(SiO4) 115.0 (63) - 163.5 (63) 1.58 (9) 4.62 (15) 0.00

OC3 12/84 T[M(2)O6] 163.5 (30)–245.5 (30) 1.27 (6) 4.62 (15) 0.00

OC4 12/84 T[M(1)O6] 172.5 (30)–302.5 (30) 1.12 (6) 4.62 (15) 0.00

OC5 12/84 R(SiO4) 245.5 (30)–375.5 (30) 1.70 (6) 4.62 (15) 0.00

OC6 8/84 m2(SiO4) 379.7 (34)–476.2 (34) 0.38 (9) –0.45 (5) 0.00

OC7 12/84 m4(SiO4) 478.7 (34)–606.7 (34) 0.53 (8) -0.45 (6) 0.00

OC8 4/84 m1(SiO4) 827.2 (34)–828.2 (34) 0.51 (9) -0.45 (4) 0.00

OC9 3/84 m3(SiO4) 864.3 (34)–865.3 (34) 0.48 (9) -0.45 (4) 0.00

OC10 4/84 m3(SiO4) 891.1 (34)–892.1 (34) 0.47 (9) -0.45 (4) 0.00
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Fig. 1. The frequencies depend on the masses of the

vibrating atoms, as may be deduced qualitatively using a

simple harmonic oscillator model, which relates the fre-

quency, m, to the reduced mass of the oscillator, l, and its

force constant k as m = (1/2p)(k/l)1/2. In spite of the simple

frequency–composition behavior, Guyot et al. (1986)

showed that the interpretation of the substitutional effect of

magnesium by iron on Si–O band shifts is not straight-

forward and that it involves a three-body effect, such as

Fe–O–Si rather than a two-body effect, such as Fe–O.

Instead of attempting to relate vibrational frequencies to

atomic masses and the nature of the atomic interactions we

follow an empirical approach to describe the phonon fre-

quencies as function of composition. Figure 1a indicates

that for three internal vibrational modes in olivine these

frequencies show a near-linear behavior with composition.

According to Huang et al. (2000) and Mernagh and

Hoatson (1997) such a trend is also present in at least 17

internal- and lattice vibrational modes of pyroxenes and

Fig. 1b exemplifies that this is the case for a number of

these modes. In our empirical approach we follow Lawson

(1947) and write for the compositional dependence of a

particular vibrational mode

mðVÞ ¼
Yn

i¼1

myi

i ðVÞ ð13Þ

This expression has the advantage that the Grüneisen

parameter of each mode depends linearly on the

composition. Figure 1a shows that frequency data for

olivine calculated with Eq. 13 are not significantly

different from linearity. That also holds for enstatite–

ferrosilite and diopside–hedenbergite solid solution series

measured by Huang et al. (2000) as exemplified by the

vibrational modes in Fig. 1b. According to Guyot et al.

(1986) Raman and near-infrared data indicate that for

olivine no additional bands appear due to the iron–

magnesium substitution. However, according to Chopelas

(1991) some lattice modes having Ag symmetry in olivine

with composition (Mg0.88,Fe0.12)2SiO4 might show signs of

two-mode behavior. In this case the two modes, one for

each endmember, with the same band assignment are

visible in the spectra of the solid solution. Figure 1b

illustrates that the scatter in experimental data for

enstatite–ferrosilite measured by Huang et al. (2000) is

about 4 cm-1. We anticipate that a similar uncertainty will

be present in future measurements on olivine with different

compositions. Assuming such possible scatter reveals that

the majority of the vibrational modes for olivine measured

by Chopelas (1991) approaches linearity. For 7 out of the

34 measured Raman modes, the deviation from linearity is

larger than 4 cm-1 and we may have to modify our present

thermodynamic description in the future when more details

about the compositional dependence of these modes are

collected. In the present work we assume one-mode

behavior and the calculation of thermodynamic properties

proceeds by connecting the cut-off frequencies of each

vibrational mode having the same band assignment for the

endmembers Mg2SiO4 and Fe2SiO4 using Eq. 13. At a

specific composition, pressure and temperature the

Grüneisen, mode q and anharmonicity parameter of a

particular mode have one unique value. Experimental data

for the compositional dependence of the vibrational

frequencies in olivine and pyroxenes are limited to 300 K

and 1 bar pressure conditions. In the present work we

assume that relation (13) is valid at all pressures and

temperatures.

Results

For the thermodynamic analysis of properties of fayalite

we started from the different VDoS representations given

by Hofmeister (1987). We deviate from these by replacing

each motion assignment by an optical continuum. The

internal asymmetric stretch SiO4 motion, m3, is represented

by three Einstein continua as was also done by Chopelas

(1990) for forsterite. Following her mode assignment for

forsterite, we describe the translational T[SiO4] mode in

Table 1 continued

Mode type Fraction of

oscillators

Motion type Frequency range (cm-1) cj,0 q1,j0 aj 9 105 K-1

OC11 5/84 m3(SiO4) 952.1 (34)–953.1 (34) 0.73 (9) -0.45 (4) 0.00

Kst
0 =GPa K 0st

0 V0=cm3=mol V st
0 =cm3=mol Uref=MJ=mol Z

143.2 (9) 5.00 (3) 46.022 (26) 45.727 (26) -1.5518 (14) 4

Const = 0.67192 (Eq. 3)

Kst
0 represents the isothermal bulk modulus of the static lattice, K 0st

0 its isothermal pressure derivative, aj the anharmonicity, cj the Grüneisen

parameter of mode j and qj the mode q parameter in Eqs. (18, 24 and 25. Numbers in parentheses denote the uncertainty in the last digit(s)

Motion types are TA transverse acoustic, LA longitudinal acoustic, T translational, R rotational, m internal SiO4 vibrational. The fraction of

oscillators refers to one primitive unit cell in which four molecules are present. Vinet et al.’s (1987) equation of state is used for the static lattice.

AC denotes acoustic and OC optic continuum
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fayalite with two optic continua resulting in a total amount

of 11 optic continua, the same as for forsterite. The pres-

sure dependence of the vibrational frequencies measured

by Hofmeister et al. (1989) constrained our calculation of

mode Grüneisen and mode q parameters. We used our

method described by Jacobs and de Jong (2005a, 2007) as

an inversion technique to conduct analyses of thermody-

namic, vibrational and sound velocity data aiming at a

consistent description of these properties. Because the

adiabatic bulk modulus of fayalite measured by Graham

et al. (1988) and those by Isaak et al. (1993) deviate from

each other by about 10 GPa, we performed two analyses

directing the optimization to either of these two datasets.

Table 1 shows the result of two analyses obtained by a

least-squares optimization process. Table 2 indicates the

data constraining the optimization and compares the cal-

culated and experimental properties for the two analyses.

We investigate the effect of the resulting descriptions of

the mixing properties for olivine solid solutions in

‘‘Discussion’’.

Discussion

In the next two sections we discuss our results for Fe2SiO4

(fayalite). We combine these results with the results for

Mg2SiO4 and discuss the excess properties and thermo-

physical properties of the solid solution (Mg1-y,Fey)2SiO4

in ‘‘Olivine solid solutions’’, ‘‘Excess properties at low

temperature’’ and ‘‘Sound wave velocities of olivine’’.

Fayalite

Figure 2 indicates a difference of about 10 GPa between

the adiabatic bulk modulus for fayalite measured by

Sumino (1979) vis a vis Graham et al. (1988), static

compression measurements resulting in the lowest values

for this property. Isaak et al. (1993) performed a detailed

analysis of the source for this discrepancy in the acoustic

measurements. Their recommended values are based on

their own new measurements and those of Sumino (1979),

Graham et al. (1988) and Wang et al. (1989). Their con-

clusion is that the discrepancy arises from the different

ways in which the various experimental techniques sample

compositional and microstructural heterogeneities in the

probed specimen. How these heterogeneities propagate as

systematic errors in the different experimental techniques

could not be determined precisely.

Because of the much larger uncertainty in the bulk

modulus of fayalite vis a vis forsterite, about 1 GPa, we

performed two analyses. In analysis G we directed the

optimization towards the data of Graham et al. (1988) and

in analysis I we directed it towards the recommended data

of Isaak et al. (1993). Here we investigate the effect

of these analyses on the thermophysical properties of

fayalite.

We used in both analyses G and I the crystal-field for-

mulation for the electronic and magnetic effects given by

Aronson et al. (2007). The energy levels and their degen-

eracy are given in Table 3. Aronson et al. (2007) computed

the contributions of the M2 site to the electronic properties

by using a fivefold degenerate ground state together with

the energy differences d1 and d2 reported by Burns (1985).

According to Eq. 2 the expression for the entropy is

Sel�mg ¼ k ln
Xn

i¼1

gi exp � ei

kT

� � !

þ 1

T

Pn
i¼1 giei exp �ei=kT

� �
Pn

i¼1 gi exp �ei=kT
� � ð14Þ

Fivefold degeneracy in the ground state with e1 = 0 leads

to a non-zero value for the entropy, k ln(g1) at 0 K and zero

pressure. This is corrected for by dividing the partition

function by g1. This correction only affects the entropy and

Helmholtz energy.

The partitioning of the heat capacity and entropy in

electronic, magnetic, critical lambda, and lattice vibrational

contributions as depicted in Fig. 3 is not trivial. The heat

capacity is partitioned as

CP ¼ Cel�mg
V þ Ck

V þ Cvib
V þ a2KVT ð15Þ

where a represents thermal expansivity and K the isother-

mal bulk modulus. The first term on the right-hand side of

Eq. 15 is calculated with the values given in Table 3 and

Eq. 36 assuming that the transition energies are indepen-

dent of volume. Our analysis indicates that the last term in

Eq. 15 is about 0.17% of the total heat capacity at 100 K,

which is small compared to 3.7% of the first term. To

derive the heat capacity of the critical lambda effect,

Aronson et al. (2007) subtracted the contribution of the first

term and the lattice vibrational contribution from the

measured heat capacity. They estimated contributions of

the last term from values given by Hofmeister (1987).

Because the lattice vibrational heat capacity at constant

volume is not experimentally measurable, Aronson et al.

(2007) used their measured heat capacity at constant

pressure of monticellite, CaMgSiO4 and applied a proce-

dure recommended by Robie (1982). Their calculated

lattice vibrational contribution represents the heat capacity

(CP) data for c-Ca2SiO4 measured by King (1957), a sub-

stance previously used by Robie (1982) to derive the

magnetic contribution to the heat capacity of fayalite.

Figure 3 shows that our calculated lattice vibrational con-

tribution deviates from the contribution established by

Aronson et al. (2007). For comparison we have plotted the

heat capacity of Mg2SiO4. Because the atomic mass of
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Mg is smaller than that of Fe and Ca, the vibrational

frequencies of Mg2SiO4 are expected to be larger in

accordance with Fig. 1. As a consequence the heat capacity

values for Mg2SiO4 are smaller than those for Fe2SiO4. The

difference between our calculated heat capacity of Fe2SiO4

and that for c-Ca2SiO4 would be in line with these

considerations.

In our analysis we followed a different approach

involving two steps. In the first step we optimized the

properties in Table 1 by using all experimental data except

the heat capacity data below 300 K. We fixed the

description for the contribution C
el�mg
V by using the prop-

erties given in Table 3. The result of this step is that all

terms except the second term in Eq. 15 are known as a

Table 2 Representation of thermodynamic properties and mode frequencies for fayalite using model G and I, respectively

Property Maximum absolute

deviation in % G, I

Average absolute

deviation in % G, I

T-range in K P-range in GPa References

Fayalite

Volume 0.29, 0.24 0.18, 0.13 293–1,173 0.0 Smyth (1975)

0.39, 0.29 0.19, 0.16 296 0.0–7.3 Yagi et al. (1975)

0.39, 0.46 0.21, 0.23 296 0.0–4.2 Hazen (1977)

0.33, 0.25 0.30, 0.22 1,273 3.9–6.2 Yagi et al. (1987)

0.39, 0.46 0.15, 0.20 673 1.8–6.2 PlymateandStout (1990)

0.97, 1.24 0.58, 0.72 298 25.4–37.3 Williams et al. (1990)

0.40, 0.47 0.22, 0.29 298 0.1–26.1 Andrault et al. (1995)

0.19, 0.08 0.14, 0.05 293 0.0–9.72 Zhang (1998)

0.65, 0.84 0.29, 0.27 293 0.0–14.0 Kudoh and Takeda (1986)

Heat capacity 8.30, 8.20 2.92, 2.86 1.4–100 0.0 Aronson et al. (2007)

6.88, 6.90 1.50, 1.48 5–300 0.0 Dachs et al. (2007)

8.56, 7.99 2.97, 2.81 300–1,490 0.0 Barin (1989)

9.05, 9.07 1.14, 1.07 5–381 0.0 Robie et al. (1982)

7.63, 7.14 3.50, 3.29 395–1,406 0.0 Orr (1953)

2.97, 2.91 0.89, 0.92 350–700 0.0 Watanabe (1982)

15.60, 15.09 6.24, 6.39 373–1,473 0.0 Esser et al. (1933)

Enthalpy 0.00, 0.00 0.00, 0.00 298.15 0.0 Robie et al. (1982)

0.01, 0.01 0.006, 0.005 0–400 0.0 Robie et al. (1982)

0.62, 0.58 0.11, 0.10 395–1,406 0.0 Orr (1953)

Entropy 5.70, 5.48 0.98, 0.90 5–381 0.0 Robie et al. (1982)

Thermal expansivity 6.48, 7.73 2.43, 3.13 323–1,098 0.0 Suzuki (1981)

KS 0.99, 5.28 0.86, 5.14 273–313 0.0 Graham et al. (1988)

7.22, 3.36 6.89, 2.95 293–673 0.0 Sumino (1979)

2.40, 1.75 2.40, 1.75 298 0.0 Wang et al. (1989)

3.74, 0.45 3.67, 0.43 300–500 0.0 Isaak et al. (1993)

vL 0.21, 1.72 0.16, 1.68 273–313 0.0 Graham et al. (1988)

0.16, 1.69 0.15, 1.52 298 0.0–1.0 Graham et al. (1988)

3.35, 2.04 2.68, 1.26 293–673 0.0 Sumino (1979)

1.40, 0.10 1.38, 0.08 300–500 0.0 Isaak et al. (1993)

vT 0.18, 0.65 0.18, 0.62 273–313 0.0 Graham et al. (1988)

0.11, 0.55 0.09, 0.44 298 0.0–1.0 Graham et al. (1988)

2.11, 2.11 0.88, 0.82 273–673 0.0 Sumino (1979)

0.14, 0.20 0.13, 0.17 300–500 0.0 Isaak et al. (1993)

vB 0.22, 2.30 0.15, 2.23 273–313 0.0 Graham et al. (1988)

0.23, 2.27 0.21, 2.06 298 0.0–1.0 Graham et al. (1988)

3.96, 2.01 3.60, 1.62 273–673 0.0 Sumino (1979)

2.04, 0.04 2.01, 0.03 300–500 0.0 Isaak et al. (1993)

Mode frequencies 2.00, 2.00 0.53, 0.52 293 0.0–42.5 Hofmeister (1989)

Longitudinal, transverse and bulk sound velocity are represented by vL, vT, and vB
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function of temperature. In the second step we used these

contributions together with the experimental heat capacity

for temperatures below 300 K to derive the critical lambda

contribution. The resulting heat capacity for the critical

lambda effect was fitted with the one-parameter expression,

resulting from Eq. 3. Figure 3 demonstrates that as a result

of a different lattice vibrational contribution, the heat

capacity and entropy for the critical lambda effect is

slightly different from that established by Aronson et al.

(2007). The heat capacity and entropy calculated with

model G is not significantly different from that calculated

with model I.

Figure 4 shows that sound wave velocities of Graham

et al. (1988) and Isaak et al. (1993) are well represented by

models G and I, respectively. Figure 4 also indicates that

the transverse sound wave velocities given by Graham

et al. (1988) are not significantly different from that

reported by Isaak et al. (1993). The difference is significant

for the longitudinal sound wave velocity. Because the

adiabatic bulk modulus can be expressed in longitudinal

and transverse sound wave velocity, the difference is also

significant for the adiabatic bulk modulus as shown in

Fig. 2.

Jacobs et al. (2001) were not able to discriminate

between the thermal expansivity of Suzuki et al. (1981) and

that measured by Smyth (1975) and Plymate and Stout

(1990). Figure 5 shows that the vibrational analyses of

model G and I both prefer the thermal expansivity data

measured by Suzuki et al. (1981) and are compatible with

model A in the analysis of Jacobs et al. (2001). Table 4

indicates that our analyses prefer the ambient volume of

Zhang et al. (1998), Richard and Richet (1990), Hazen

(1977) and Smyth (1975). This value is lower than the

recommended value by Jeanloz and Thompson (1983) used

in the analysis by Jacobs et al. (2001). The V–P–T data of

Yagi et al. (1987), which are at the highest temperatures

relative to all other measurements given in Table 2, are

represented to within experimental uncertainty of about

0.3%.

Figure 6 and Table 2 demonstrate that the heat capacity

calculated from our analyses differs insignificantly from

the experimental data for temperatures up to about 700 K.

For temperatures above 700 K the only experimental data

are reported by Esser et al. (1933) on a natural fayalite

sample and by Orr (1953) on a synthetic sample. The data

of Orr (1953) are generally considered to be more accurate

and are used in data compilations such as those by Barin

(1989). From Eq. 36 and the data in Table 3, it can be

readily shown that the electronic heat capacity contribution

decreases for temperatures above 800 K, when the spin–

orbit and d energy levels become saturated. The contribu-

tion at 1,400 K is only about 4% of the total heat capacity.

Figure 6 indicates that this contribution is not sufficient to

explain the steep behavior of the heat capacity of Orr

(1953) at high temperatures. We tried to explain this

behavior by introducing intrinsic anharmonicity in our

formalism, although no experimental data are available for

it. Figure 6 indicates that this introduction leads to larger

deviations from the data of Watanabe (1982) located in the

temperature range between 350 and 700 K and that the

temperature derivative of the heat capacity at temperatures

larger than 1,000 K does not change significantly. In

another session of calculations we tried volume dependent

Fig. 2 Calculated adiabatic bulk modulus at 1 bar pressure using

model G and model I. Experimental ultrasonic data are from Sumino

(1979), star with points above 673 K extrapolated, Graham et al.

(1988), square with extrapolated dashed line, Isaak et al. (1993),

circle. Ultrasonic data at room conditions are from Akimoto (1972),

diamond, Wang et al. (1989), asterisk. Results from static compres-

sion: Plymate and Stout (1990), triangle, Takahashi (1970), cross,

Yagi et al. (1975), plus

Table 3 Electronic energy levels with their degeneracy in Fe2SiO4

Assignment Energy/

cm-1
Degeneracy Site References

Ground state 0 1 M1 Aronson et al. (2007)

Spin orbit 27 1 M1 Aronson et al. (2007)

Spin orbit 47 1 M1 Aronson et al. (2007)

Spin orbit 92 2 M1 Aronson et al. (2007)

d1 730 5 M1 Aronson et al. (2007)

d2 1,500 5 M1 Aronson et al. (2007)

eg 8,060 5 M1 Burns (1985)

eg 11,060 5 M1 Burns (1985)

Ground state 0 5 M2 Aronson et al. (2007)

d1 1,670 5 M2 Burns (1985)

d2 1,670 5 M2 Burns (1985)

eg 8,830 5 M2 Burns (1985)

eg 9,270 5 M2 Burns (1985)
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anharmonicity, aj = aj,0(V/V0)m, in which aj,0 represents the

anharmonicity parameter of a specific mode j at 0 K. That

results in the same unsuccessful effect on the heat capacity.

Presently, we are not able to resolve the discrepancy

between our calculations and the experimental data of Orr

(1953). One explanation for this discrepancy, suggested by

Hofmeister (1987), is that the electronic splittings are

temperature dependent at high temperatures. Due to a lack

of absorption spectral data at high temperatures, we did not

consider in our calculations the temperature dependence of

the electronic energy levels.

Models G and I produce a value for K 00 of 5.3 and 5.1,

respectively, consistent with the value 5.2(4) measured by

Graham et al. (1988) and Webb et al. (1984). The different

a b
Fig. 4 Calculated longitudinal

(vL) and transverse (vT) sound

wave velocities at 1 bar

pressure using model I and G.

Experimental data are from

Sumino (1979) with data above

600 K extrapolated using two

methods, triangle, Graham et al.

(1988), with extrapolated points

above T = 350 K, circle, and

Isaak et al. (1993), square

a b

Fig. 3 Left panel calculated heat capacity at 1 bar pressure. Exper-

imental data for the total heat capacity of fayalite are from Aronson

et al. (2007), plus, Robie et al. (1982), star. Heat capacity data for

forsterite are from Robie et al. (1982), star, Kelley (1943), cross. Heat

capacity data for Ca2SiO4 are from King (1957), triangle. They are

identical with those derived by Aronson et al. (2007), diamond. The

Schottky contribution to the heat capacity derived by Aronson et al.

(2007) is given by squares and that of the difference between the total

heat capacity and the sum of the Schottky and lattice contribution is

given by circles. The contributions denoted as ‘Schottky’, ‘difference’

and ‘lattice’ are heat capacities at constant volume and appear as

Cel�mg
V ;Ck

V and Cvib
V in Eq. 15, respectively. Right panel calculated

entropy corresponding to the heat capacity in the left panel. The total

entropy is derived from the experimental CP data from Robie et al.

(1982), star. The crosses represent the entropy derived from the

lattice heat capacity given by King (1957) and Aronson et al. (2007).

Squares represent the Schottky contribution to entropy and diamonds
the difference between the total entropy and the sum of the Schottky

and lattice contribution
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values calculated with model G and I indicate a trade-off

between bulk modulus and its pressure derivative.

Effect of volume on electronic and magnetic properties

of fayalite

Huggins (1974) investigated fayalite using Mössbauer

Spectroscopy and came to the conclusion that the transition

energy at 730 cm-1 for the M1 site decreases by approx-

imately 7 cm-1/GPa. Those at 1,500 and 1,670 cm-1 for

the M1 and M2 site, respectively, decrease by approxi-

mately 15 cm-1/GPa. This decrease is associated with the

decrease in distortion of M1 and M2 octahedra when

pressure increases. Using the definition for the electronic

Grüneisen parameter given by Eq. 31 it follows that a value

for these parameters can be calculated using the relation

a b

Fig. 5 a Calculated thermal expansivity at 1 bar pressure using

model G (solid curve) and model I (dashed curve). Experimental data

plotted as circles are from Suzuki et al. (1981). The dotted curve
labeled with cel is calculated using model G including electronic

Grüneisen parameters given in ‘‘Effect of volume on electronic and

magnetic properties of fayalite’’. The straight short dashed line is the

thermal expansivity established by Plymate and Stout (1990) and the

long dashed one that by Smyth (1975). b Calculated volume at 1 bar

pressure using model I. The dashed curve has been calculated with

model I and using electronic Grüneisen parameters given in ‘‘Effect

of volume on electronic and magnetic properties of fayalite’’.

Experimental data are from Smyth (1975), circle and Suzuki et al.

(1981), square. Experimental uncertainties are comparable with the

symbol size

Table 4 Ambient volume of Fe2SiO4, fayalite

References Method Volume

(cm3/mol)

Smyth (1975) Single crystal X-ray 46.222 ± 0.012

Yagi et al. (1975) Powder diffraction 46.350 ± 0.102

Hazen (1977) Single crystal X-ray 46.219 ± 0.045

Schwab and Küstner (1977) Powder diffraction 46.307 ± 0.012

Richard and Richet (1990) Powder diffraction 46.201 ± 0.082

Williams et al. (1990) Powder diffraction 46.341 ± 0.066

Zhang et al. (1998) Single crystal X-ray 46.206 ± 0.009

Jeanloz and Thompson

(1983)

Recommended value 46.27

Model G Calculated

(T = 293 K)

46.236

Model I Calculated

(T = 293 K)

46.217

Fig. 6 Calculated heat capacity, CP, resulting from model G and I at

1 bar pressure for values of the anharmonicity parameters, 0, -10-5

and -2 9 10-5 K-1. (CP increases in this sequence). Experimental

data are from Robie et al. (1982), star, Watanabe (1982), square, Orr

(1953), circle and Esser et al. (1933), triangle
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cel
i ¼

K

ei

oei

oP

� �

T

ð16Þ

with the ambient values 128 and 133 GPa for the ambient

isothermal bulk modulus for model G and I, respectively,

we derive approximate values of -1.25, -1.30 and -1.17

for the electronic Grüneisen parameters associated with the

730, 1,500 and 1,670 cm-1 transition energies, respec-

tively. Because in this case the contribution to the

Helmholtz energy, Ael-mg, is volume dependent we

investigated the additional effect of temperature through

volume on the thermodynamic properties. At temperatures

below room temperature the effect on thermodynamic

properties is not significant compared with the experi-

mental uncertainty in these properties. Although the effect

on the electronic heat capacity can be as large as 7% at

1,500 K, the effect on the total heat capacity is about

0.45% at this temperature, which is smaller than the

experimental uncertainty of about 2%. In addition to our

findings in ‘‘Olivine solid solutions’’, the volume depen-

dence of the energy transitions can also not explain the

steep behavior of the heat capacity data of Orr (1953).

However, Fig. 5 demonstrates that the effect of the elec-

tronic Grüneisen parameters on thermal expansivity and

volume is quite significant, 7 and 0.28%, respectively. The

effect on sound wave velocities in the temperature range of

the measurements of Graham et al. (1988) and Isaak et al.

(1993) is about 0.04% for VP and 0.27% for VS. At 1,500 K

and 1 bar pressure it is 0.5% for VP and 1.3% for VS. These

VP, VS values are not very different for conditions pre-

vailing at 400 km depth in the Earth, 1,500 K and 13 GPa.

The effect is 0.3 and 0.8% for VP and VS, respectively.

The effect of volume on the lambda contribution to the

Helmholtz energy, due to the antiferromagnetic–paramag-

netic transition, given by Eq. 3 can be estimated by using

the change of the Néel temperature with pressure as

measured by Hayashi et al. (1987) using Mössbauer spec-

troscopy, (dTN/dP)T = 2.2 ± 0.2 K/GPa. Differentiating

Eq. 3 with respect to volume results in the pressure

contribution

Pk ¼ �nFeRT � const � ogðsÞ
os

� �

T

TK

VT2
N

oTN

oP

� �

T

ð17Þ

Equation 17 shows for typical values, i.e., 130 GPa

for the isothermal bulk modulus and 46.2 cm3/mol for

the volume at 300 K, that at ambient conditions the

contribution to pressure is about 21,700 Pa, which is

about 10-3% of the static and vibrational contributions to

pressure. The effect of the change in Néel temperature with

pressure on volume is small compared to the experimental

uncertainty in volume, about 2 9 10-5%. The product PkV

is also small and therefore the assumption we have made in

‘‘Electronic and magnetic contributions to the Helmholtz

energy in Fe2SiO4’’ that the Helmholtz energy is

approximately equal to the Gibbs energy is quite

reasonable. A similar calculation at 100 K shows that the

effect on the calculated volume is about 2 9 10-3%. The

effect is larger at temperatures below the Néel temperature.

For instance, at 30 K the effect on volume is about 0.04%,

which is comparable with the uncertainty in the ambient

volume. Because the Néel temperature changes from 65 K

to about 100 K in the pressure range between 0 and

16 GPa, the effect on magnetic entropy and magnetic heat

capacity at temperatures between 0 and 100 K can be

considerable at higher pressures and can even reach values

of more than 100%. However, at temperatures above 100 K

this effect disappears with increasing temperature. Ignoring

the change in Néel temperature with pressure leads to a

difference in calculated total entropy of about 0.03% at

200 K and 3 9 10-3% at 300 K. For the total heat capacity

the difference is 0.18 and 0.02% at 200 and 300 K,

respectively.

In summary, we conclude that our formalisms, which we

used to calculate electronic, magnetic and lambda contri-

butions to the Helmholtz energy, suggest that at mantle-

relevant conditions the volume dependence of electronic

energy transitions has a larger effect on thermodynamic

properties than the change of the Néel temperature with

pressure. At temperatures below room temperature the

change in the Néel temperature with pressure is significant.

Olivine solid solutions

Our goal in this section is to calculate the vibrational and

static lattice contribution to the thermodynamic mixing

properties. Because magnetic and electronic contributions

in our model depend only on the temperature, the volume

derivative of the Helmholtz energy does not depend on

these contributions. In our calculations we have neglected

site preference for M1 and M2 of Mg2? and Fe2? ions,

which could affect the results of our calculations. Dachs

et al. (2007) give an overview of studies to the site pref-

erence of Fe2? ions as a function of temperature, and

indicate that a number of these studies produce incompat-

ible results. To our knowledge a theoretical model which

explains the temperature–composition behavior of the site

preference has not been presented to date. Ignoring the site

preference in olivine the volume is calculated from static

lattice and vibrational contributions only, as is expressed

by Eq. 11. Figure 7a shows an example of how the volume

of a (Mg0.5,Fe0.5)2SiO4 solid solution is determined from

Eq. 11. The steep curve labeled with Pst has been calcu-

lated with the first term on the right-hand side of Eq. 11.

The total pressure, denoted by Pst ? Pvib in Fig. 7a, mat-

ches the external pressure of 1 bar at a volume slightly

larger than that for the ideal mixture indicated by the

Phys Chem Minerals (2009) 36:365–389 377

123



triangle. The difference in volume indicated by the circle

and the triangle is the excess volume calculated using

Eq. 12. Our choice of the excess contribution to the static

lattice in the Helmholtz energy is rather arbitrary, but

Fig. 7b and Table 5 indicate that calculated excess vol-

umes of olivine mixtures are not significantly different

from the experimental data of Schwab and Küstner (1977)

and Fisher and Medaris (1969). The data of Schwab and

Küstner (1977) show the smallest experimental uncertainty

and model G represents them more accurately than model

I. This difference in accuracy is caused by the smaller bulk

modulus of fayalite at ambient conditions based on model

G relative to model I. Our model indicates that the bulk

modulus of fayalite should be closer to that of forsterite

than suggested by Isaak et al. (1993). Figure 7b shows that

excess volume decreases with temperature and increases

with pressure. According to models G and I the excess

volume at Earth’s mantle transition zone is not significantly

different from the 1-bar experimental data of Schwab and

Küstner (1977). The calculation of thermodynamic prop-

erties using our vibrational formalism is more compli-

cated than that used by Jacobs and de Jong (2005b), in

which we used polynomial functions to represent excess

properties. For transparency we have calculated excess

properties, including excess volume, in pressure–temperature-

composition space with our vibrational formalism and

subsequently fitted the results using polynomial functions.

The results of these fits are given in Table 6.

Figure 8 and Table 5 show that our formalism expres-

sed by Eq. 58 results in a calculated excess enthalpy,

which is not significantly different from experimental data

of Wood and Kleppa (1981) and those of Kojitani and

Akaogi (1994). Figure 8 indicates that the contributions of

the static lattice and lattice vibrations to the excess

enthalpy are quite substantial. We investigated these

contributions in detail by performing calculations of the

energy and pressure terms in Eqs. 59 and 60, neglecting

the electronic and magnetic terms contained in Eq. 61.

Because the excess volume is small, the total excess

enthalpy is mainly dominated by the total excess energy. A

more detailed calculation using Eq. 48 reveals that the

vibrational contribution to the excess energy is only -3%

at 50 mol% Fe2SiO4. Equation 59 reveals that at this

composition the value of the excess energy contribution of

the static lattice is 3% larger than that of the excess

enthalpy. The large differences of the static lattice and

vibrational contributions to excess enthalpy are therefore

dominated by the PV -
P

(yiPiVi) terms in Eqs. 59 and

60. Figure 8 demonstrates that the excess enthalpy does

not change significantly in the temperature and pressure

range of Earth’s lower mantle and transition zone. For

50 mol% Fe2SiO4 at 13 GPa and 1,500 K, it is about 42%

a b

Fig. 7 a Calculated pressure contributions for (Mg0.5,Fe0.5)2SiO4 at

300 K and an external pressure of 1 bar. Pvib represents the

vibrational and Pst the static lattice contribution. The volume is

calculated with Eq. 11 by Pst ? Pvib = 10-4 GPa. The circle repre-

sents the resulting volume of the mixture and the triangle the volume

of the ideal mixture, which is the average volume of Mg2SiO4 and

Fe2SiO4 at this condition. The vibrational pressure contribution of the

mixture changes by only 0.0024 GPa in the indicated volume range.

b Calculated excess volume at 1 bar pressure and 300 K. The solid
curve is calculated with model G and the dashed curve with model I.

The dotted curve labeled (1) represents the excess volume calculated

with model G at 1,473 K and 1 bar pressure and that labeled (2) at

1,473 K and 13 GPa. Experimental data are from Fisher and Medaris

(1969), circles at 1 bar and squares at 2 bar and Schwab and Küstner

(1977), triangles
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larger relative to the value at 975 K and 1 bar, which is

still within the uncertainty of the experiments.

Figure 9 demonstrates that the contributions of the

static lattice and lattice vibrations to the excess Gibbs

energy are also large. The static lattice contribution to

the excess Gibbs energy is completely determined by

the static lattice contribution to the excess enthalpy. The

vibrational contribution to the excess Gibbs energy at

50 mol% Fe2SiO4 is for 87% determined by the vibra-

tional contribution to excess enthalpy and for 13% by the

excess entropy multiplied by the temperature. Nafziger

and Muan (1967) carried out their experiments in a

temperature range between 1,423 and 1,473 K. This

temperature range combined with their uncertainty of

about 0.015 in the measured activities does not allow the

determination of excess entropy from their experiments

with sufficient accuracy. Therefore, Jacobs and de Jong

(2005b) did not make an attempt to derive an excess

contribution to entropy and based the excess Gibbs energy

solely on the experimental enthalpy data of Wood and

Kleppa (1981) and Kojitani and Akaogi (1994). The

resulting excess Gibbs energy of Jacobs and de Jong

Table 5 Comparison of experimental thermodynamic properties and those predicted with model G and I, respectively, for olivine (Mg1-x,

Fex)2SiO4

Property Maximum absolute

deviation in %, G, I

Average absolute

deviation in %, G, I

T-range in K P-range in GPa References

Fayalite

VE 112, 178 48.2, 67.5 298 0.0 Fisher and Medaris (1969)

314, 448 69.6, 112 298 0.0 Schwab and Küstner (1977)

HE 161, 163 57.5, 57.6 975 0.0 Wood and Kleppa (1981)

15.1, 14.5 10.0, 10.5 975 0.0 Kojitani and Akaogi (1990)

GE 125, 129 22.7, 22.9 1,473 0.0 Nafziger and Muan (1967)

aMg2SiO4
9.44, 9.44 2.39, 2.39 1,423–1,473 0.0 Nafziger and Muan (1967)

aFe2SiO4
26.2, 26.2 7.53, 7.52 1,423–1,473 0.0 Nafziger and Muan (1967)

aFe2SiO4
18.7, 18.6 9.28, 9.26 1,477 0.0 Kitayama and Katsura (1968)

KS 4.60, 4.70 1.99, 2.19 298 0.0–13.0 Zaug et al. (1993)

1.79, 1.97 0.91, 1.05 298 0.0–12.0 Abramson et al. (1997)

8.94, 8.94 4.04, 4.04 298 0.0–32.3 Zha et al. (1998)

3.88, 4.22 1.87, 2.13 298 0.0–7.1 Darling et al. (2004)

0.46, 0.24 0.20, 0.16 300–1,200 0.0 Isaak (1992)

vB 0.96, 1.05 0.49, 0.58 298 0.0–12.0 Abramson et al. (1997)

4.53, 4.55 2.07, 2.07 298 0.0–32.3 Zha et al. (1998)

0.81, 0.98 0.34, 0.37 298 0.0–7.1 Darling et al. (2004)

0.22, 0.13 0.10, 0.08 300–1,200 0.0 Isaak (1992)

0.97, 1.04 0.53, 0.52 300–1,600 0.0 Jackson et al. (2005)

vL 1.51, 1.56 0.65, 0.73 298 0.0–12.0 Abramson et al. (1997)

5.72, 5.72 2.37, 2.38 298 0.0–32.3 Zha et al. (1998)

0.90, 1.00 0.32, 0.36 298 0.0–7.1 Darling et al. (2004)

0.37, 0.46 0.28, 0.37 300–1,300 0.0 Isaak (1992)

1.09, 1.03 0.32, 0.36 300–1,600 0.0 Jackson et al. (2005)

vT 2.38, 2.39 0.92, 0.93 298 0.0–12.0 Abramson et al. (1997)

8.33, 8.36 2.90, 2.99 298 0.0–32.3 Zha et al. (1998)

1.02, 1.04 0.40, 0.41 298 0.0–7.1 Darling et al. (2004)

0.89, 0.88 0.78, 0.77 300–1,300 0.0 Isaak (1992)

1.41, 1.39 0.64, 0.63 300–1,600 0.0 Jackson et al. (2005)

Heat capacity 36.0, 33.0 4.10, 3.77 5–300 0.0 Dachs et al. (2007)

2.01, 1.85 0.55, 0.51 80–300 0.0 Dachs et al. (2007)

2.60, 2.08 0.79, 0.79 350–700 0.0 Watanabe (1987)

Volume 0.94, 0.98 0.23, 0.25 298 0.0–32.3 Zha et al. (1998)

0.17, 0.21 0.07, 0.10 298 0.0–12.0 Abramson et al. (1997)

0.31, 0.29 0.19, 0.17 298–1,073 0.0–8.2 Liu and Li (2006)
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(2005b) is at the edge of the uncertainty of the experi-

ments whereas the present prediction represents the data

of Nafziger and Muan (1967) to within experimental

uncertainty.

In ‘‘Effect of volume on electronic and magnetic prop-

erties of fayalite’’, we showed that the implementation of

electronic Grüneisen parameters in the description for

fayalite affects its calculated volume and thermal expan-

sivity. However, the effect on the excess properties is

negligible compared to the uncertainties in the experimental

data. These are about 1, 0.27, and 0.1% for excess Gibbs

energy, excess volume, and excess enthalpy, respectively.

Because the excess Gibbs energy is positive the system

Mg2SiO4–Fe2SiO4 has a miscibility gap. Figure 10 dem-

onstrates that the effect of lattice vibrations on the location

of the critical temperature of the predicted miscibility gap

is substantial. Figure 9 indicates that the total excess Gibbs

energy is smaller than that of the excess Gibbs energy

contribution of the static lattice. Therefore the critical

temperature of the miscibility gap calculated using the total

excess Gibbs energy is lower. Kojitani and Akaogi (1994)

performed calorimetric measurements to establish the heat

of mixing from which they derived a mixing parameter,

WH,Mg–Fe = 5.3 ± 1.7 kJ/mol, for a regular solution model

based on single site mixing. They calculated from the

available excess Gibbs energy data a value for the mix-

ing parameter of the excess entropy: WS,Mg–Fe = 0.6 ±

1.5 JK-1 mol-1. Table 6 indicates that this value agrees

well with our predicted value for this parameter. It also

agrees with the value -1.6 ± 1.7 JK-1 mol-1 established

experimentally by Dachs et al. (2007). Table 6 gives a

summary of excess properties represented by polynomial

functions, obtained by fitting results predicted with our

vibrational formalism.

Table 6 Parameterizations of excess properties of (Mg1 - y,Fey)2SiO4 solid solutions derived from results calculated with the vibrational

formalism

a b c d e

VE 0.1494 (6) -5.7 (5) 9 10-5 0 7.4 (6) 9 10-4 1.4 (7) 9 10-6

HE 4,770 (36) 0.8 (1) -7.3 (5) 9 10-4 164.8 (7) 0

SE 0.66 (60) 0 0 0.014 (2) 0

The excess property ZE is based on one-site mixing and is described with ZE = Z(P, T)y(1 - y), where Z(P, T) = a ? b 9 (T -

300) ? c 9 (T - 300)2 ? d 9 P ? e 9 (T - 300) 9 P with T in Kelvin and P in GPa. Excess volume is expressed in cm3/mol, excess

enthalpy in J/mol and excess entropy in J/K/mol

Fig. 8 Calculated excess enthalpy at 1 bar pressure, solid curves.

The dashed curves represent the contribution to the excess enthalpy

from the static lattice and lattice vibrations for model G, the dotted
ones for model I. The contribution of PVE to the excess energy at

1 bar pressure is less than 5 9 10-4%. Experimental data are from

Wood and Kleppa (1981), circle. For transparency the data Kojitani

and Akaogi (1994), square, are offset by 0.015 in composition

towards Fe2SiO4

Fig. 9 Calculated contributions to the excess Gibbs energy at 1 bar

pressure and 1,473 K. The solid curves are calculated with model G

and the dashed ones with model I. The total excess Gibbs energy

calculated with model I is insignificantly different from that

calculated with model G. Experimental data are from Nafziger and

Muan (1967), circles obtained from olivine pyroxene equilibria,

squares obtained from olivine and oxide equilibria, and Wiser and

Wood (1991), triangles
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Excess properties at low temperature

We have assumed in our calculations using Eq. 10 that

excess properties are determined by contributions due to

the static lattice, due to lattice vibrations, and due to the

antiferromagnetic–paramagnetic transition. As shown in

Appendix 3, excess energy and entropy due to the anti-

ferromagnetic–paramagnetic transition become significant

for temperatures below 100 K. Dachs and Geiger (2007)

and Dachs et al. (2007) demonstrated by calorimetric

measurements that at temperatures below 100 K excess

contributions occur in the heat capacity and that the Néel

temperature changes with composition. Figure 11 shows

that the excess heat capacity calculated by our formalism is

dominated by the antiferromagnetic–paramagnetic transi-

tion whereas lattice vibrations have a negligible effect.

Figure 11 demonstrates that our model for the lambda

transition captures the trends in the excess heat capacity,

but that the finer details cannot be represented. The posi-

tion of the downward and upward peaks in the heat

capacity determined by the Néel temperature of fayalite

and of the actual olivine composition are represented well,

but our model for the lambda transition is not sophisticated

enough to represent the shape and height of these peaks.

Additionally, the experimental data at 30 mol% fayalite

indicate that the Schottky effect contributes to the excess

heat capacity, whereas we have neglected its compositional

variation. Improving the description of the excess heat

capacity requires a more sophisticated model for the

compositional dependence of the electronic properties

combined with an improved model for the lambda

transition.

Sound wave velocities of olivine

Figure 12 and Table 5 show for a (Mg0.896,Fe0.104)2SiO4

mixture that our predicted longitudinal and bulk sound

velocities represent within experimental uncertainty the

experimental data on polycrystalline samples measured by

Jackson et al. (2005) and those of Isaak (1992) on a single-

crystal sample. The average deviation of our calculated

sound velocities from these two combined data sets is

comparable with the deviation obtained when these sound

velocities are fitted linearly. Figure 12 shows that our

predicted transverse sound velocity deviates from the linear

fit of the combined data sets of Jackson et al. (2005) and

Isaak (1992). According to Jackson et al. (2005) systematic

offsets in the measurements are especially apparent in the

transverse sound velocity and result from minor heteroge-

neity or a variable degree of microcracking in the

specimens. They preferred data obtained using a tapered

buffer rod because it gave cleaner echo interference and

traveltime–frequency patterns. We found that our predicted

velocities agree with the data of Jackson et al. (2005) for

the 3-mm sample for which a tapered buffer rod was

applied, the maximum and average deviation being 0.38

and 0.16%, respectively. Figure 13 and Table 5 indicate

for a (Mg0.892Fe0.108)2SiO4 mixture that the predicted

Fig. 10 Calculated miscibility gap in the system Mg2SiO4–Fe2SiO4

at 1 bar pressure. The calculations are based on one-site mixing

basis using a regular solution model: Sack and Ghiorso (1989)

squares, WG,Mg–Fe = 10.2 ± 0.3 kJ/mol, Dachs et al. (2007), trian-

gles, WH,Mg–Fe = 5.3 ± 1.7 kJ/mol and WS,Mg–Fe = -1.6 J/K/mol,

Kojitani and Akaogi (1994), circles, WH,Mg–Fe = 5.3 ± 1.7 kJ/mol

and WS,Mg–Fe = 0.6 J/K/mol, Jacobs and de Jong (2005b), diamonds,

WG,Mg–Fe = 4.9 ± 0.5 kJ/mol. Our present prediction of the misci-

bility gap is labeled with model I and G. The curves labeled with

static were calculated ignoring lattice vibrations

Fig. 11 Calculated excess heat capacity at 1 bar pressure. Experi-

mental data are from Dachs and Geiger (2007) and Dachs et al.

(2007). The difference between the result calculated with model G

and I is about 1.7% and cannot be distinguished on the scale of the

plot. The dashed curves close to CE
P ¼ 0 calculated with model I and

G are the vibrational contributions to the excess heat capacity
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sound velocities agree well up to 10 GPa with experi-

mental data of Darling et al. (2004), Abramson et al. (1997)

and Zha et al. (1998). Above 17 GPa, the last investigators

found a non-linear behavior of shear elastic moduli with

pressure, which may be associated with the onset of lattice

instability when the material is compressed outside its

stability field, resulting in amorphization of the material.

This effect is not present in forsterite; see Jacobs and de

Jong (2005a) and references therein. In our calculation we

did not attempt to include this effect for the olivine mix-

ture, just as we did not in Jacobs and de Jong (2005b).

As we have indicated in Jacobs and de Jong (2007a) the

application of our present model to realistic mantle com-

positions is exploratory because the effect of Al2O3 and

CaO on phase equilibria and thermo physical properties has

not been included. That also applies to the effect of grain

size variation, which de Jong and Jacobs (2001) have

shown to have a significant effect on sound wave veloci-

ties. In Jacobs and de Jong (2007) we presented predicted

sound wave velocities and densities along isentropic paths

for compositions between olivine and pyroxene in the

system MgO–SiO2. Figure 14 shows that sound wave

velocities along an isentropic path with an adiabatic foot

temperature of 1,420 K, commensurate with a petrological

study of Mercier and Carter (1975), are shifted to lower

values relative to those calculated for mixtures of the

magnesium endmembers of olivine and pyroxene in the

system MgO–SiO2. Figure 14 illustrates that at least iron

should be incorporated in the all other phases of the MgO–

SiO2 system. The calculated density along the adiabatic

path for (Mg0.9Fe0.1)2SiO4 resulting from our present

description is not significantly different from that calcu-

lated using the description of Jacobs and de Jong (2005b).

Fig. 12 Calculated sound wave velocities for (Mg0.896,Fe0.104)2SiO4.

Experimental data are from Isaak (1992) at 1 bar, diamond, and

Jackson et al. (2005) at 300 MPa: Circle 3 mm sample, tapered buffer

rod, square 3 mm sample, untapered buffer rod, cross 5 mm sample,

untapered buffer rod, cooling, plus 5 mm sample, untapered buffer

rod, heating. Results of analyses G and I are not significantly different

Fig. 13 Calculated sound wave velocities for (Mg0.892,Fe0.108)2SiO4

at 300 K. Experimental data are from: Abramson et al. (1997),

square, Darling et al. (2004), diamond, Zha et al. (1998), circle.

Results of analyses G and I are not significantly different

Fig. 14 Calculated longitudinal (VL), bulk (VB) and transverse (VT)

sound wave velocities. The gray fields represent sound velocities for

compositions ranging from Mg2SiO4 to MgSiO3 along adiabats with a

foot temperature of 1,420 K. The solid curves are calculated for a

mixture of 60 vol% Mg2SiO4 and 40 vol% MgSiO3. The solid curves
labeled ‘ol’ are predicted using the present description for olivine

(Mg0.9Fe0.1)2SiO4 solid solution phase. The dashed curve labeled

‘wa-ri’ represents the bulk sound velocity for the wadsleyite and

ringwoodite phases of (Mg0.9Fe0.1)2SiO4 calculated with the descrip-

tion of Jacobs and de Jong (2005b). Circles represent sound velocities

of PREM
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Conclusions

Because of the large difference in measured adiabatic bulk

modulus for fayalite we carried out two thermodynamic

analyses. One analysis is based on the sound velocity data

of Graham et al. (1988), the other on the recommended

sound velocity data of Isaak et al. (1993).

The difference in heat capacity, entropy and thermal

expansivity for fayalite at 1 bar pressure calculated with

either analysis is insignificant. Using new data of Aronson

et al. (2007) we described the low temperature heat

capacity and entropy, obtaining results in accordance with

their experimental data and those of Robie et al. (1982) and

Kelley (1943). Both analyses mimic heat capacity data of

Watanabe (1982) between 350 and 700 K. For tempera-

tures above 700 K only two significantly different data sets

are available, those of Esser et al. (1933) and those of Orr

(1953). The set of Orr (1953) is generally considered to be

the more accurate. However, our analyses do not agree

with these data for temperatures above 1,000 K. The dif-

ference between our calculated high temperature heat

capacity and the data of Orr (1953) cannot be explained by

including intrinsic anharmonicity, but may possibly be

explained by temperature dependent electronic splittings.

To check this requires additional electronic absorption

spectra at temperatures above 1,000 K.

Both analyses prefer the thermal expansivity of fayalite

by Suzuki et al. (1981) and not those by Smyth (1975)

and Plymate and Stout (1990). The use of electronic

Grüneisen parameters to incorporate the pressure depen-

dence of a number of electronic energy transitions has no

significant effect on thermodynamic properties except for

volume and thermal expansivity above room temperature.

Their effect on sound wave velocities at a mantle condi-

tion of 1,500 K and 13 GPa lies within the tomographic

uncertainty of about 0.5%. For a (Mg0.9Fe0.1)2SiO4 olivine

solid solution the effect on sound wave velocities is

negligible.

The effect of pressure on the Néel temperature of

fayalite significantly affects the heat capacity and entropy

for temperatures below 100 K. Above this temperature the

effect is insignificant.

Our analyses prefer the ambient volume of fayalite by

Zhang et al. (1998), Richard and Richet (1990), Hazen

(1977) and Smyth (1975), which is lower than the recom-

mended value given by Jeanloz and Thompson (1983). The

difference between calculated volumes in pressure–

temperature space produced by the two analyses is

insignificant.

For olivine solid solutions we used a simple model for

the static part of the Helmholtz by assuming that mixing

takes place at the volume of the mixture. We combined this

model with a phonon frequency–composition relation

given by Lawson (1947) assuming one-mode behavior.

Lack of experimental data compelled us to assume a linear

composition dependence of the electronic and magnetic

contributions to the Helmholtz energy. The combination of

this model with either of the two thermodynamic analyses

of fayalite predicts the excess volume, excess enthalpy and

excess Gibbs energy to within experimental uncertainty. It

indicates that within this model framework the excess

electronic and magnetic effects are small for temperatures

above room temperature in olivine solid solutions. Our

formalism does well in representing trends in the excess

heat capacity at temperatures below 100 K, but not in

representing the finer details of the experimental data. To

improve the excess heat capacity description requires a

more sophisticated model of the antiferromagnetic–para-

magnetic lambda transition and of the composition

dependence of electronic contribution to Helmholtz energy.

Our model predicts that lattice vibrations have a negligible

effect on excess heat capacity.

Although one-mode behavior produces satisfactory

results for excess properties, additional Raman and infrared

spectroscopic data are necessary to reveal the composition

dependence of vibrational frequencies to resolve more

details of two-mode behavior. This might necessitate a

modification of the present thermodynamic description for

olivine.

We found that lattice vibrations significantly affect the

excess enthalpy and excess Gibbs energy but not the excess

energy.

Our analysis based on the adiabatic bulk modulus data

of Graham et al. (1988) predicts excess volume more

accurately than the one based on the adiabatic bulk mod-

ulus data of Isaak et al. (1993).

We found that excess properties depend on pressure and

temperature, but do not differ significantly at conditions

prevailing at Earth’s transition zone from those established

by Jacobs and de Jong (2005b) using pressure and tem-

perature independent polynomial parameterizations of

excess entropy, enthalpy and volume.

Both analyses of fayalite result in predicted longitudinal

and bulk sound velocities for olivine not significantly dif-

ferent from the measurements of Isaak (1992) and Jackson

et al. (2005). Our predicted transverse sound velocity

prefers the experimental data of Jackson et al. (2005)

obtained for the 3-mm sample using a tapered buffer rod.

Sound velocities at 300 K are consistent with experimental

data up to about 17 GPa. Our calculations do not include

the non-linear behavior of shear elastic moduli with pres-

sure, which is indicative of lattice instability when olivine

is compressed outside its stability field.

A comparison between our calculations and PREM

shows that at least iron should be incorporated in the all

other phases of the MgO–SiO2 system.
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Appendix 1: Helmholtz energy of pure endmembers

The Helmholtz energy of an insulator material, such as

Mg2SiO4 is given by

AðT ;VÞ ¼ UrefðV st
0 Þ þ UstðVÞ þ AvibðT;VÞ: ð18Þ

The energy UrefðVst
0 Þ represents the energy contribution

at zero Kelvin and zero pressure for a substance in which

no vibrational motion of the atoms is present. It is adjusted

such that the enthalpy of formation at 298.15 K and 1 bar

pressure calculated from Eq. 18 represents the value

reported in, e.g., the JANAF thermochemical tables

compiled by Chase et al. (1985). The volume of this

static crystal lattice is denoted by V st
0 and the subscript ‘0’

denotes the condition of zero pressure and zero Kelvin.

The energy contribution Ust(V) represents the change of the

Helmholtz energy resulting from a change in volume of the

static crystal lattice from Vst
0 to V. In the present work we

prefer the equation of state derived by Vinet et al. (1987),

to calculate this contribution

PstðVÞ ¼ 3Kst
0

V

V st
0

� ��2=3

� V

Vst
0

� ��1=3
" #

� exp
3

2
K 0st

0 � 1
� �

1� V

V st
0

� �1=3
" #( )

; ð19Þ

Kst
0 represents the isothermal bulk modulus of the static

lattice and K 0st
0 its pressure derivative. For K 0st

0 6¼ 1 the

energy Ust(V) is given by integrating Eq. 19

UstðVÞ¼ 4Kst
0 V st

0

K 0st
0 �1

� �2
1þ 3

2
K 0st

0 �1
� �

1� V

Vst
0

� �1=3
 !

�1

" #(

�exp
3

2
K 0st

0 �1
� �

1� V

V st
0

� �1=3
 !" #)

ð20Þ

and for K 0st
0 ¼1 it is given by

UstðVÞ ¼ �9Kst
0 Vst

0

V

Vst
0

� �1=3

� 1

2

V

V st
0

� �2=3

� 1

2

" #
ð21Þ

The total pressure derived from Eq. 18 is

PðT ;VÞ ¼ PstðVÞ þ PvibðT;VÞ: ð22Þ

In the present work the properties V0, Kst
0 and K 0st

0 and

UrefðVst
0 Þ are fitting parameters obtained from a least-

squares optimization of available experimental data.

The vibrational contribution to the Helmholtz energy is

calculated using Kieffer’s (1979) model:

AvibðT;VÞ ¼ 3NA

Z

2

p

� �3X3

i¼1

Z xi

0

arcsin2 x=xi

� �

x2
i � x2ð Þ1=2

Avib
E;i dx

" #

þ 3n� 3

Z

� �
NA

XNoc

j¼1

Z xuj

xlj

fj
xuj
� xlj

Avib
E;j dx

" #

ð23Þ

where Avib
E;i represents the Helmholtz energy of an Einstein

oscillator for mode i, x = hm/kT with h Planck’s constant, k

Boltzmann’s constant and T temperature, Z is the number of

molecules in the primitive cell, NA represents Avogadro’s

number and n represents the number of atoms per molecule.

The total degree of vibrational freedom for one mole of

molecular formula unit is 3nNA and 3nZ represent the

number of vibrational normal modes. The first term on the

right-hand side of Eq. 22 represents the contributions due to

acoustic lattice vibrations and the second term represents

the optic modes of vibration. The total number of these

modes is NOC and fj is the fraction of the total number of

optic oscillators in mode j. These modes are represented by

Einstein continua with lower and upper cut-off frequencies,

respectively, determined by values for xlj and xuj
:

In the treatment of intrinsic anharmonicity we follow

Wallace (1972) in that the substitution of the volume and

temperature-dependent frequency into the quasi-harmonic

expression for the entropy is to first order correct. The

vibrational frequency of a particular mode is written as

mðT ;VÞ ¼ mðVÞð1þ aTÞ ð24Þ

Using Eq. 24 the Helmholtz energy of an Einstein

oscillator for a particular mode is expressed as

Avib
E ðT;VÞ ¼ kT

Xm

j¼0

aTð Þ j

1þ aTð Þjþ1
ln 1� expð�xÞð Þ

" #

þ kT
Xm

j¼1

j
aTð Þ jxjþ1

1þ aTð Þjþ1

Zx

1

dx

xjþ1 expðxÞ � 1ð Þ

2
4

3
5

þ 1

2
kT

x

1þ aT
ð25Þ

The integral expressions in the second term on the right-

hand side were tabulated as function of x. We demonstrated

in Jacobs and de Jong (2005a) that thermodynamic

properties calculated from this power series expression,
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when m C 4, do not differ significantly from those

calculated from Wallace’s theorem, i.e., in which the

Helmholtz energy is based on the numerical integration of

the entropy.

The logarithm of the frequency of a vibrational mode j is

expanded in a Taylor series of ln(V) resulting in the

expression

ln
mjðVÞ
mj;0

� �
¼ �cj;0 ln

V

V0

� �
� 1

2
q1j;0 � cj;0 ln2 V

V0

� �
ð26Þ

where mj,0 represents the cut-off vibrational frequency at

zero pressure and zero temperature. The Grüneisen and

mode q parameters are defined by

cj;0 ¼ �
o ln mj

o ln V

� �

T¼0;P¼0

; q1j;0 ¼
o ln cj

o ln V

� �

T¼0;P¼0

ð27Þ

The combination of Eqs. 24 and 26 expresses the

frequency of a vibrational mode j in temperature–volume

space. The cut-off frequencies mj,0, mode Grüneisen

parameters cj,0, mode q1j,0 parameters, and the mode

anharmonicity parameters aj,0 are defined at zero Kelvin

and zero pressure. These values are given in Table 1 for

Mg2SiO4 and Fe2SiO4 and were derived from a least-

squares optimization of available experimental data.

In Kieffer’s (1979) model the directionally averaged

longitudinal and transverse sound velocities are related to

the cut-off angular vibrational frequency xi,max by

ui ¼
1

4

4pZV

3NA

� �1=3

xi;max; ð28Þ

where u1 and u2 represent the sound velocities of the

transverse waves, u3 that of the Voigt–Reuss–Hill longi-

tudinal wave. The transverse sound velocity is calculated

using the relation

v2
T ¼

G

q
¼ 3

4
u2

3 � v2
B

� �
¼ 3

4
u2

3 �
KS

q

� �
; ð29Þ

where G is the shear modulus, vB the bulk sound velocity,

KS the adiabatic bulk modulus and q the density.

Appendix 2: Calculation of electronic–magnetic

contributions to thermodynamic properties

This appendix gives a summary of the calculation of

thermodynamic properties using the data given in Table 3.

To calculate thermodynamic properties relative to those at

0 K we write the partition function as

Z ¼ 1

g1

Xn

i¼1

gi exp � ei

kT

� �
ð30Þ

This expression results in zero contributions for the

Helmholtz energy and entropy at 0 K. To take volume

dependence of the electronic energy levels into account we

define an electronic Grüneisen parameter of energy level i

as

cel
i ¼ �

o ln ei

o ln V

� �

T

ð31Þ

For fayalite not sufficient data are available to determine

the volume dependence of the electronic Grüneisen

parameters. The volume dependence of the energy ei is

given by

eiðVÞ ¼ ei;0
V

V0

� �cel
i

ð32Þ

The values for ei,0 at ambient volume V0 are given in

Table 3. In the remaining part of this appendix ei/kT is

abbreviated to xi. The expressions for the electronic

contributions to thermodynamic properties are given

below and are given per atom Fe and for one site, e.g.,

the M1 site.

Helmholtz energy

Ael ¼ �kT ln
1

g1

Xn

i¼1

gie
�xi

 !
ð33Þ

Energy

Uel ¼ kT

Pn
i¼1 gixie

�xi

Pn
i¼1 gie�xi

ð34Þ

Entropy

Sel ¼ k ln
1

g1

Xn

i¼1

gie
�xi

 !
þ
Pn

i¼1 gixie
�xi

Pn
i¼1 gie�xi

( )
ð35Þ

Heat capacity at constant volume

Cel
V ¼ k

Pn
i¼1 gix

2
i e�xi

Pn
i¼1 gie�xi

�
Pn

i¼1 gixie
�xi

Pn
i¼1 gie�xi

� �2
( )

ð36Þ

Contribution to pressure

Pel ¼ kT

V

Pn
i¼1 gicel

i xie
�xi

Pn
i¼1 gie�xi

ð37Þ

Contribution to temperature derivative of the pressure

oPel

oT

� �

V

¼ k

V
Pn

i¼1 gie�xi

� �2

Xn

i¼1

gie
�xi

Xn

i¼1

gic
el
i x2

i e�xi

(

�
X2

i¼1

gic
el
i xie

�xi

Xn

i¼1

gixie
�xi

)
ð38Þ
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Contribution to isothermal bulk modulus

Kel ¼ kT

V
Pn

i¼1 gie�xi

�
Xn

i¼1

gic
el
i xi 1þ cel

i � cel
i xi

� �
þ
Pn

i¼1 gicel
i xie

�xi

Pn
i¼1 gie�xi

( )

ð39Þ

Contribution to Gibbs energy

Gel ¼ Ael þ PelV ð40Þ

Appendix 3: Excess properties due to the lambda

transition

We adopt a method which is frequently used in the SGTE

community by writing Eq. 3 as

AkðT ; y~Þ ¼ nFeRT gðsðy~ÞÞ � 1½ � � cðy~Þ ð41Þ

From Eq. 41 it is derived that at high temperature

the energy and entropy for the antiferromagnetic–

paramagnetic transition reach constant values. In the case

of fayalite constant values are reached for temperatures

higher than 100 K considering the experimental error

in entropy and energy values, 0.1 JK-1 mol-1 and

600 Jmol-1, respectively. As can be deduced from Eq. 4b

the value of g(s) is small at higher temperatures, typically

-2 9 10-5 at 300 K. Therefore we approximate Eq. 41 as

AkðT ; y~Þ ¼ �nFeRT � cðy~Þ ð42Þ

From Eq. 42 it follows that UkðT; y~Þ is zero and

therefore no excess energy is present. We impose that at

high temperature no excess contributions is present for the

entropy as well by writing that

AkðT ; y~Þ ¼ y2Ak
2ðTÞ ð43Þ

Inserting Eq. 42 into Eq. 43 gives the composition

dependence of cðy~Þas:

cðy~Þ ¼ � Ak
2ðTÞ

nFeRT
y2 ¼ const � y2 ð44Þ

For fayalite ‘const’ has the value given in Table 1.

Equation 41 becomes:

AkðT ; y~Þ ¼ nFeRT gðsðy~ÞÞ � 1½ � � const � y2 ð45Þ

In our calculation of the excess properties at

temperatures below room temperature, due to the

antiferromagnetic–paramagnetic transition, we assume

that Eq. 44 remains valid and that the non-linearity of the

Helmholtz energy is due to larger values of gðsðy~ÞÞ:
Dachs et al. (2007b) showed that the Néel temperature

is linear with composition between 60 and 100 mol%

fayalite. At compositions less than 60 mol% fayalite no

transition between the antiferromagnetic and paramagnetic

state could be established and thus no Néel temperature is

present for these compositions. Therefore, we take the Néel

temperature zero for compositions between 0 and 60 mol%

fayalite. Between 60 and 100 mol% fayalite we fitted the

Néel temperatures with the equation

TNðy~Þ ¼ �13:66þ 78:54 � y2 ð46Þ

Because at high temperatures the value of g(s) is small,

Eq. 45 results in no excess contribution. When Eq. 45 is

used for temperatures below about 100 K, the magnetic

Helmholtz energy is linear for compositions between 0 and

60 mol% fayalite, because s is infinitely large and

g(s) = 0. For compositions between 60 and 100 mol%

fayalite s decreases and g(s) attains values deviating from

zero resulting in a non-linear Helmholtz energy. That

results in an excess contribution to the Helmholtz energy

due to the antiferromagnetic–paramagnetic transition,

AEkðT ; y~Þ ¼ AkðT; y~Þ � y2Ak
2ðTÞ:

Appendix 4: Contributions to excess properties

The excess Helmholtz energy at selected (T, P) is defined as

AEðT;P; y~Þ ¼ AðT ;P; y~Þ �
X2

i¼1

yiAiðT ;PÞ ð47Þ

At the condition (T, P) the volume of the mixture is V

and that for endmember i is Vi resulting in

AEðT;V ; y~Þ ¼ AðT ;V ; y~Þ �
X2

i¼1

yiAiðT ;ViÞ ð48Þ

Assuming that contributions of static lattice, lattice

vibrations, electronic and magnetic to the Helmholtz

energy are additive, the excess Helmholtz energy is

partitioned as

AEstðV; y~Þ ¼ AstðVÞ �
X2

i¼1

yiA
st
i ðViÞ

¼ UstðVÞ �
X2

i¼1

yiU
st
i ðViÞ ¼ UEstðV; y~Þ ð49Þ

AEvibðT;V ; y~Þ ¼ AvibðT ;V; y~Þ �
X2

i¼1

yiA
vib
i ðT ;ViÞ ð50Þ

AEel�mgðT ;V ; y~Þ ¼ Ael�mgðT;V ; y~Þ �
X2

i¼1

yiA
el�mg
i ðT;ViÞ

ð51Þ

AEkðT ; y~Þ ¼ AkðT; y~Þ �
X2

i¼1

yiA
k
i ðTÞ ð52Þ

In Eq. 9 we have introduced the assumption that the

Helmholtz energy of the mixture is given by
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AstðVÞ ¼
X2

i¼1

yiA
st
i ðVÞ ¼

X2

i¼1

yiU
st
i ðVÞ ð53Þ

The calculation of the excess energy and excess entropy

proceeds in the same way with the difference that the

excess entropy of the static lattice is zero.

The calculation of the excess enthalpy proceeds as

follows. Starting from an analogous expression given by

Eqs. 47 and 48 it follows that

HEðT;P; y~Þ ¼ HEðT ;V; y~Þ ¼ HðT ;V; y~Þ �
X2

i¼1

yiHiðT ;ViÞ

ð54Þ

Because enthalpy is derived from the energy this

expression is written as

HEðT;P; y~Þ ¼ UðT ;V ; y~Þ þ PV �
X2

i¼1

yi UiðT ;ViÞ þ PVif g

ð55Þ

Because contributions of static lattice, lattice vibrations,

electronic, magnetic and lambda transition effects to

Helmholtz energy are assumed to be additive, this is also

the case for energy and pressure. The pressure P, on the

mixture is evaluated at the same value as for the

endmembers. For the mixtures it is expressed as

P ¼ PðT;V ; y~Þ
¼ PstðV; y~Þ þ PvibðT ;V; y~Þ þ Pel�mgðT;V ; y~Þ
þ PkðT;V ; y~Þ ð56Þ

The same pressure on the pure endmembers is given by:

P ¼ PiðT ;ViÞ
¼ Pst

i ðViÞ þ Pvib
i ðT;ViÞ þ Pel�mgðT ;ViÞ þ PkðT;ViÞ

ð57Þ

By combining Eqs. 55, 56 and 57 the excess enthalpy is

written as:

HEðT;P; y~Þ ¼ HEstðT ;V; y~Þ þ HEvibðT ;V; y~Þ
þ HEel�mgðT ;V ; y~Þ þ HEkðT ;V; y~Þ ð58Þ

where,

HstðT ;P; y~Þ ¼ UstðV; y~Þ þ PstðV ; y~Þ � V

�
X2

i¼1

yi Ust
i ðViÞ þ Pst

i ðViÞ � Vi

	 


¼ UEstðV; y~Þ þ PstðV ; y~Þ � V

�
X2

i¼1

yi � Pst
i ðViÞ � Vi ð59Þ

HEvibðT;P; y~Þ ¼ UvibðT ;V; y~Þ þ PvibðT ;V; y~Þ � V

�
X2

i¼1

yi Uvib
i ðT ;ViÞ þ Pvib

i ðT ;ViÞ � Vi

	 


¼ UEvibðT;V ; y~Þ þ PvibðT;V ; y~Þ � V

�
X2

i¼1

yi � Pvib
i ðT ;ViÞ � Vi ð60Þ

HEel�mgðT;P;y~Þ¼Uel�mgðT ;V;y~ÞþPel�mgðT ;V ;y~Þ�V

�
X2

i¼1

yi Uel�mg
i ðT;ViÞþPel�mg

i ðT;ViÞ�Vi

n o

¼UEel�mgðT ;V ;y~ÞþPel�mgðT;V ;y~Þ�V

�
X2

i¼1

yi�Pel�mg
i ðT ;ViÞ�Vi ð61Þ

HEkðT ;P; y~Þ ¼ UkðT ;V ; y~Þ þ PkðT ;V; y~Þ � V
�
X

yi Uk
i ðT;ViÞ þ Pk

i ðT ;ViÞ � Vi

	 


¼ UEkðT ;V; y~Þ þ PkðT ;V ; y~Þ � V

�
X2

i¼1

yi � Pk
i ðT ;ViÞ � Vi ð62Þ

The excess Gibbs energy contributions are calculated

from the expressions for the excess entropy and excess

enthalpy.
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