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Abstract

Background Accurately predicting which patients are most likely to benefit from massive transfusion protocol

(MTP) activation may help patients while saving blood products and limiting cost. The purpose of this study is to

explore the use of modern machine learning (ML) methods to develop and validate a model that can accurately

predict the need for massive blood transfusion (MBT).

Methods The institutional trauma registry was used to identify all trauma team activation cases between June 2015

and August 2019. We used an ML framework to explore multiple ML methods including logistic regression with

forward and backward selection, logistic regression with lasso and ridge regularization, support vector machines

(SVM), decision tree, random forest, naive Bayes, XGBoost, AdaBoost, and neural networks. Each model was then

assessed using sensitivity, specificity, positive predictive value, and negative predictive value. Model performance

was compared to that of existing scores including the Assessment of Blood Consumption (ABC) and the Revised

Assessment of Bleeding and Transfusion (RABT).

Results A total of 2438 patients were included in the study, with 4.9% receiving MBT. All models besides decision

tree and SVM attained an area under the curve (AUC) of above 0.75 (range: 0.75–0.83). Most of the ML models have

higher sensitivity (0.55–0.83) than the ABC and RABT score (0.36 and 0.55, respectively) while maintaining

comparable specificity (0.75–0.81; ABC 0.80 and RABT 0.83).

Conclusions Our ML models performed better than existing scores. Implementing an ML model in mobile com-

puting devices or electronic health record has the potential to improve the usability.

Introduction

Over the last few decades, a massive transfusion protocol

(MTP) has become a widespread tool in the management of

severely injured patients to help ensure that blood products
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are coordinated and delivered in an expeditious manner

while adhering to an optimal ratio of each component of

transfusion therapy. There is good evidence that these

protocols help clinicians provide earlier and more balanced

resuscitation and their use has been associated with

improved patient survival [1, 2]. However, MTP activa-

tions are resource-intensive events. Not only do they con-

sume large amounts of blood products, but they may also

require the allocation of specific human resources, such as

blood bank technologists or porters, for hours. Thus, there

is a special interest in accurately determining which

patients are most likely to benefit from activation of MTP.

Several scoring systems have been created to help

clinicians determine when MTP should be activated [3].

The ideal tool would balance sensitivity and specificity for

the need for massive blood transfusion (MBT) so that all

patients whose outcome depends on the timely activation

of MTP would receive it, while excluding patients who

would not benefit. Generally, these existing scores were

derived from small- to medium-sized trauma patient

cohorts. Inputs vary between scores, with some using only

vital signs, some relying only on variables available at the

bedside in the Emergency Department (ED), and others

requiring laboratory values that would need some time

process [4–7]. The calculation complexity also varies

between these scores and this added burden may explain

why the most cited score, the Assessment of Bleeding

Consumption (ABC), is also one of the simplest [6].

Several factors have changed in the past decade which

justifies another approach at predicting need for MBT. The

number of trauma centers with MTPs has continued to

increase [8] and even many small centers now have MTPs

[9]. Clinicians in these smaller centers, where MTP is

activated more rarely, are more likely to benefit from

decision aids. In addition, the ubiquity of intelligent elec-

tronic health records (EHR) and stand-alone smartphone

applications means that more complex tools may now be

practical. Finally, in the last two decades, machine learning

(ML) techniques have become increasingly sophisticated,

accessible, and reported in medical applications. ML,

broadly, uses a number of mathematical methods to process

input data and create an output, commonly a prediction or

classification. [10]. The purpose of this study was to

investigate whether modern ML methods can be used to

create a more accurate tool to predict the need for MTP.

We hypothesized that ML models using only variables

available in the period of the initial trauma assessment can

predict the need for MBT more accurately compared to the

currently used scoring systems.

Methods

Study design and patients

This is a retrospective study conducted at a high-volume,

urban Level 1 Trauma Center. After approved by the

Institutional Review Board, the institutional trauma reg-

istry was queried to identify eligible patients and retrieve

the data between June 1, 2015 and August 31, 2019. Fur-

ther information was collected from the EHR and digital

picture archiving system. The study population included all

patients (age C 16 years) who presented as trauma team

activations (TTA). The TTA criteria at our institution are

included in Supplemental Table 1. Patients were excluded

if they presented without any signs of life or if they had

missing Glasgow Coma Scale (GCS) or ED vital sign

values.

Data collection

Variables available during the initial trauma assessment in

the ED were collected (age, sex, body mass index [BMI],

mechanism of injury, pre-hospital and ED vital signs, and

GCS). Results of the extended focused assessment with

sonography for trauma (eFAST) were extracted from the

EHR including the location of any positive results (thorax,

pericardium, abdomen). Portable pelvis x-ray was reviewed

by board-certified surgeons (MS, KM) and assessed for

presence of visible pelvic fractures. In the primary analysis,

pelvis x-ray was not used in the models because it was not

routinely performed. In a sensitivity analysis, pelvis x-ray

results were included to evaluate for changes in prediction

model performances. Finally, blood transfusion data were

obtained including number of units and timing of transfu-

sions, type of product transfused, and whether MTP was

activated.
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Statistical analysis

The outcome of interest was need for MBT which was

defined as the need for C10 units of packed red blood cells

(PRBC) in the first 24 h after arrival. We tested commonly

used ML techniques including regression (simple and

penalized) and decision trees (single tree and random forest)

which are the generally interpretable models. We expanded

our assessment of ML algorithms by implementing support

vector machines (SVMs), naı̈ve Bayes, boosting techniques

such as XGBoost and AdaBoost, and neural networks.

All models were validated using a fivefold cross validation

process. Under a fivefold cross validation, the data were split

into five partitions. The full analysis was then run five times

where during each run, a different partition was used as the

testing data while the remaining partitions were used as the

training data. Amodel that performswell should show similar

performance results across each of the five runs. Somemodels

required a threshold value for classification (e.g., logistic

regression). In those cases, we present each model’s perfor-

mance when we selected a threshold value that minimizes the

distance from the receiver operating characteristics (ROC)

curve to perfect sensitivity and specificity. In practice, dif-

ferent thresholds can be selected to reflect the local prefer-

ences for higher sensitivity or specificity.We evaluatedmodel

performance by looking at the following metrics of interest

across our cross validation: area under the curve (AUC),

sensitivity, specificity, positive predicted value (PPV) and

negative predicted value (NPV). In addition to comparing our

prediction models to each other, we also compared our mod-

els’ performance to the ABC score [6] and the Revised

Assessment of Bleeding and Transfusion (RABT) score [7],

when applied to our patient set.

Results

During the study period, 4102 TTA patients were identified

in our trauma registry. After excluding patients under age

16 years, with no signs of life upon arrival, and with

missing information, a total of 2,483 patients were included

for analysis (Fig. 1). The median age was 37 years, median

SBP of 135 mmHg, and DBP of 90 mmHg (Table 1). The

mean injury severity score was 13. Approximately 98% of

Fig. 1 Patient flow diagram. GCS: Glasgow Coma Scale

Table 2 Patient outcomes

Outcomes Total patients (n = 2438)

In-hospital mortality (%) 9.9%

Massive blood transfusion* (%) 5.0%

MTP activated (%) 9.4%

Median PRBC within 4 h, mL (IQR) 0 (0–291.5)

Median PRBC within 24 h, mL (IQR) 0 (0–543.8)

Median plasma within 4 h, mL (IQR) 0 (0–0)

Median plasma within 24 h, mL (IQR) 0 (0–0)

Median platelets within 4 h, mL (IQR) 0 (0–0)

Median platelets within 24 h, mL (IQR) 0 (0–0)

*[ 10 units of PRBC within 24 h after arrival

MTP: massive transfusion protocol, PRBC: packed red blood cell,

IQR: interquartile range

Table 1 Valuables included in the machine-learning model

Variable Total patients (n = 2438)

Median age, year (IQR) 37 (26–56)

Penetrating mechanism (%) 955 (39.2)

Blunt mechanism (%) 1,511 (62.0)

Median SBP, mmHg (IQR) 135 (118–152)

Median DBP, mmHg (IQR) 90 (74–104)

Median respiratory rate (IQR) 20 (16–23)

Median oxygen saturation, % (IQR) 100 (97–100)

Median GCS eye opening (IQR) 4 (4–4)

Median GCS motor response (IQR) 6 (5–6)

Median GCS verbal response (IQR) 5 (5–3)

Positive FAST (%) 383 (15.7)

Positive pelvis X-ray (%) 287 (11.7)

IQR: interquartile range, SBP: systolic blood pressure, DBP: diastolic

blood pressure,

GCS: Glasgow Coma Scale, FAST: focused assessment with sonog-

raphy for trauma
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the patients had an eFAST examination performed with

15.7% of those results being positive. Only 37% of the

patients underwent a pelvis x-ray, and after verifying

against patient charts, 11.7% of those patients had positive

results. While MTP was activated 233 times (9.4%), only

121 (4.9%) required MBT within the first 24 h of arrival.

Full descriptive statistics are shown in Table 2.

In our study population, we observed that the ABC score

had a sensitivity of 0.36, specificity of 0.80, PPV of 0.08, and

NPV of 0.96. The RABT score had values of 0.55, 0.83, 0.14,

and 0.23 for sensitivity, specificity, PPV, and NPV, respec-

tively. Compared with these scores, all ML models had

comparable or higher sensitivity.Allmodels, except for SVM.

Naı̈ve Bayes, and Neural networks had comparable speci-

ficity, PPV, and NPV. Full performance metrics with mean

and standard errors from the cross-validation results are

shown in Table 3. The ROC curves for all tested models are

shown in Fig. 2. In a sensitivity analysis where allMLmodels

are re-run using the pelvis X-ray information, we find that our

model performance generally improves with logistic regres-

sion reaming as a high performingmodel.Model performance

metrics for the sensitivity analysis are presented in the sup-

plementary document in Supplemental Table 2.

Discussion

The current study showed that most ML methods outper-

form the ABC score and RABT score in predicting the

need for MBT in TTA patients. We used a large patient

dataset, approximately five times larger than those used by

other groups to develop scoring systems and limited our

inclusion to objective data available early in the initial

trauma assessment. A machine learning framework was

then used to evaluate numerous ML tools and compare

them in terms of test characteristics. Although one other

study has used a modern ML method [11], we report the

first multi-method approach, searching to optimize pre-

diction over a broad range of techniques.

Predicting who will require MBT has been an area of

ongoing research for nearly two decades. Early activation

of MTP is associated with improved mortality in several

studies [1, 2] and, as these protocols have become wide-

spread, the need for decision aids has presumably

increased. At least 15 scoring systems predicting MBT

requirement have been described and the pros and cons of

each of these have also been reviewed [12, 13]. Notably,

most of these scoring systems are derived retrospectively

from single-center experiences. Prior work has demon-

strated that, in general, the more variables are considered,

the better the score performs. The simplest scores use only

physiologic data or a combination of physiologic data and

information about mechanism [14, 15]. More comprehen-

sive scores use data obtained from the FAST exam, labo-

ratory results, and plain radiography [5–7, 16]. While

additional variables tend to improve score performance in

terms of predictive power, waiting for laboratory studies to

result or medical imaging may lead to delays in MTP

activation which ultimately could erode the benefit of early

activation. In this study, we therefore focused on patient

characteristics that are readily available early upon arrival

to the trauma center, to preclude delay for laboratory

results. The number of variables, while more comprehen-

sive than the simplest, most popular scores currently in use,

Table 3 Model performance for predicting need for massive transfusion protocol

Model AUC (SE) Sensitivity (SE) Specificity (SE) PPV (SE) NPV (SE)

ABC score 0.52 (0.028) 0.51 (0.061) 0.52 (0.024) 0.05 (0.004) 0.95 (0.005)

RABT score 0.64 (0.051) 0.67 (0.094) 0.52 (0.035) 0.07 (0.007) 0.97 (0.008)

Logistic regression 0.83 (0.034) 0.81 (0.033) 0.75 (0.019) 0.15 (0.012) 0.99 (0.003)

Lasso 0.77 (0.067) 0.72 (0.074) 0.75 (0.041) 0.13 (0.023) 0.98 (0.005)

Ridge 0.77 (0.067) 0.73 (0.077) 0.74 (0.023) 0.13 (0.012) 0.98 (0.005)

CART 0.69 (0.037) 0.48 (0.068) 0.89 (0.014) 0.19 (0.034) 0.97 (0.003)

RF 0.81 (0.039) 0.77 (0.033) 0.76 (0.102) 0.16 (0.056) 0.98 (0.003)

SVM 0.66 (0.011) 0.6 (0.035) 0.7 (0.056) 0.1 (0.023) 0.97 (0.004)

XGBoost 0.8 (0.035) 0.74 (0.079) 0.79 (0.066) 0.16 (0.027) 0.98 (0.004)

Naive Bayes 0.77 (0.048) 0.74 (0.036) 0.71 (0.047) 0.12 (0.019) 0.98 (0.004)

AdaBoost 0.79 (0.059) 0.77 (0.076) 0.75 (0.061) 0.14 (0.024) 0.98 (0.004)

Neural network 0.81 (0.053) 0.79 (0.062) 0.77 (0.045) 0.15 (0.034) 0.99 (0.004)

*Bolded numbers represent the highest value seen across all models

ABC: Assessment of Blood Consumption, RABT: Revised Assessment of Bleeding and Transfusion, CART: Classification and Regression Tree,

RF: Radio Frequency, SVM: Support Vector Machine, AUC: Area Under the Curve, PPV: positive predictive value, NPV: negative predictive

value, SE: Standard Error
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was also selected to not be too large so as to become

onerous to use in a trauma setting with the help of an

electronic app.

The majority of existing scoring systems were derived

by using regression methods and relatively small popula-

tions. The ABC score, for example, was derived from a

cohort of 596 patients with 77 massive transfusion events

[6]. The RABT score used a population of 380 patients and

102 massive transfusions [7]. Many of the existing scores

dichotomize the input variables to make calculation sim-

pler, at the expense of accuracy. As an example, the ABC

score assigns one point for SBP B 90 mmHg which means

that, all other factors being equal, a patient with SBP of

91 mmHg is regarded the same way as a patient with an

SBP of 120 mmHg. This desire for simplicity is pervasive

among risk scores. This was a necessary feature of classic

scores such as Ranson’s criteria for acute pancreatitis

mortality or the Child–Pugh score for cirrhosis mortality

where clinicians simply did not have access to computing

power to perform more sophisticated calculations [17, 18].

With the widespread availability of smartphones, tables,

and other mobile devices in the clinical setting and the

increased adoption of EHR systems, modern scoring sys-

tems may benefit from more complex models. Our group

has been working on the development of a mobile app to be

used by clinicians in real time without increasing their

workload. Given the paucity of data on the use of mobile

apps in a highly stressful medical environment, future

studies should evaluate usability of the prediction app in

the acute trauma setting.

In contrast to existing scoring systems, the current study

explored different ML techniques for MBT prediction. ML

has brought standardized techniques by which to evaluate

and compare statistical models beyond those which were

traditionally used. AUC, sensitivity, specificity, PPV, and

NPV are widely used and understood metrics by which

multiple models can be transparently compared. It has also

increased the acceptance of cross validation and other

methods to identify over- and underfitting, which may be

particularly valuable when data comes from a single center

and may not be generalizable a priori. In this work, we

examine the performance of existing methods (such as

ABC score, etc.) against ML methods on these metrics

using fivefold cross validation to provide multiple per-

spectives in understanding how this data might perform in

a real-world setting.

Our results identified 3 ML models that were compa-

rable or outperformed the well-accepted ABC score and

RABT score across all metrics: logistic regression, Ran-

dom Forest, and AdaBoost. The remaining models still

perform better in terms of sensitivity but have noticeably

lower specificity. Given that many of these models per-

formed very similarly, choosing the optimal model to build

into production depends in part on human factors and the

costs of over- or under-classifying. Ultimately, the final

model we would recommend is the complete simple

Fig. 2 Comparison of ML

models using ROC curves. ML:

machine learning, ROC:

receiver operating

characteristics, ABC:

Assessment of Blood

Consumption, RABT: Revised

Assessment of Bleeding and

Transfusion
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logistic regression without applying any variable selection

or regularization. We identify this as the most preferable

model for three reasons: (1) The complete simple logistic

regression performance is as good as, if not better, than the

other ML approaches tested, (2) A simple logistic regres-

sion is highly interpretable and more familiar to clinicians,

which will assist in future efforts toward implementation.

For example, our regression results confirm that a higher

heart rate is an indicator of increased need for MBT, (3)

Removing variables that a physician may deem to be sig-

nificant can result in skepticism regarding the model, and

translate to further challenges in implementation. Addi-

tionally, as previously discussed, we left out pelvic x-ray

results because it is not consistently performed in our study

cohort, thus rendering the model useless if pelvic results

were required. Sensitivity analysis did however show that

incorporating pelvic x-ray results can improve predictive

performance.

Our study has several limitations. First, our training and

validation datasets were composed of retrospective data col-

lected at discrete points in time. Although this remains how

data are stored in trauma registries, clearly some information

was lost through this simplification. Having multiple sets of

physiologic data or even continuous information, for example,

might lead to better prediction as has been demonstrated in

other ML applications [19]. Second, we included all patient

data accessible retrospectively, but other streams available to

the clinician at the point of care were not included. These

include subtleties about the mechanism, patient medications,

and the patient’s general appearance which, especially to

expert clinicians, may carry strong predictive value. Third, we

had to handle some variables cautiously because of associated

information that would erode at the generalizability of our

results. At our center, for example, pelvic x-ray is not routinely

performed because our time to computed tomography (CT) is

sufficiently low that we consider it unnecessary in most

patients. Thus, plain film is often reserved for patients who are

particularly unwell andwho, in the trauma attending’s opinion,

may not be stable enough for CT. In early iterations of our

algorithms, this resulted in a strong positive association

betweenmerely receiving a pelvic X-ray and need for massive

transfusion. The result is that we had to exclude an important

potential source of data because of this confounding effect.

Finally, likemost studies attempting to create a prediction tool,

there is the riskof overtraining toour data set andnot beingable

to reproduce our results on another population of patients.

Conclusions

Our results suggest that the use of modern ML methods can

significantly improve the accuracy in predicting the need

for MBT. However, this improvement must be validated

and the feasibility of implementing these algorithms in the

trauma bay environment must be explored in future studies.
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