Skip to main content

Advertisement

Log in

A Bibliometric Analysis of the Role of 3D Technology in Liver Cancer Resection

  • Scientific Review
  • Published:
World Journal of Surgery Aims and scope Submit manuscript

Abstract

Background

Liver cancer resection is an effective but complex way to treat liver cancer, and complex anatomy is one of the reasons for the difficulty of surgery. The use of 3D technology can help surgeons cope with this dilemma. This article intends to conduct a bibliometric analysis of the role of 3D technology in liver cancer resection.

Methods

(TS = (3D) OR TS = (three-dimensional)) AND (TS = (((hepatic) OR (liver)) AND ((cancer) OR (tumor) OR (neoplasm)))) AND (TS = (excision) OR TS = (resection)) was used as a search strategy for data collection in the Web of Science (WoS) Core Collection. CiteSpace, Carrot2 and Microsoft Office Excel were used for data analysis.

Results

Three hundred and eighty-eight relevant articles were obtained. Their annual and journal distribution maps were produced. Countries/regions and institutions collaboration, author collaboration, references co-citations and their clusters and keywords co-occurrences and their clusters were constructed. Carrot2 cluster analysis was performed.

Conclusions

There was an overall upward trend in the number of publications. China’s contribution was greater, and the USA had greater influence. Southern Med Univ was the most influential institution. However, the cooperation between institutions still needs to be further strengthened. Surgical Endoscopy and Other Interventional Techniques was the most published journal. Couinaud C and Soyer P were the authors with the highest citations and centrality, respectively. “Liver planning software accurately predicts postoperative liver volume and measures early regeneration” was the most influential article. 3D printing, 3D CT and 3D reconstruction may be the mainstream of current research, and augmented reality (AR) may be a future hot spot.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. World Health Organization. (2020). Liver [Online]. Available at: https://gco.iarc.fr/today/data/factsheets/cancers/11-Liver-fact-sheet.pdf. Accessed March 26 2022.

  2. Chen JG, Zhu J, Zhang YH et al (2021) Liver cancer mortality over six decades in an epidemic area: what we have learned. PeerJ 9:e10600

    Article  PubMed  PubMed Central  Google Scholar 

  3. Llovet JM, Kelley RK, Villanueva A et al (2021) Hepatocellular carcinoma. Nat Rev Dis Primers 7:6

    Article  PubMed  Google Scholar 

  4. Villanueva A (2019) Hepatocellular carcinoma. N Engl J Med 380:1450–1462

    Article  CAS  PubMed  Google Scholar 

  5. Orcutt ST, Anaya DA (2018) Liver resection and surgical strategies for management of primary liver cancer. Cancer Control 25:1073274817744621

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ni ZK, Lin D, Wang ZQ et al (2021) Precision liver resection: three-dimensional reconstruction combined with fluorescence laparoscopic imaging. Surg Innov 28:71–78

    Article  PubMed  Google Scholar 

  7. Ellegaard O, Wallin JA (2015) The bibliometric analysis of scholarly production: How great is the impact? Scientometrics 105:1809–1831

    Article  PubMed  PubMed Central  Google Scholar 

  8. Brandt JS, Hadaya O, Schuster M et al (2019) A bibliometric analysis of top-cited journal articles in obstetrics and gynecology. JAMA Netw Open 2:e1918007

    Article  PubMed  PubMed Central  Google Scholar 

  9. Cooper ID (2015) Bibliometrics basics. J Med Libr Assoc 103:217–218

    Article  PubMed  PubMed Central  Google Scholar 

  10. Chen CM (2006) CiteSpace II: detecting and visualizing emerging trends and transient patterns in scientific literature. J Am Soc Inf Sci Tec 57:359–377

    Article  Google Scholar 

  11. Stefanowski J, Weiss D (2003) Carrot(2) and language properties in web search results clustering. Lect Notes Artif Int 2663:240–249

    Google Scholar 

  12. Beller S, Hunerbein M, Lange T et al (2007) Image-guided surgery of liver metastases by three-dimensional ultrasound-based optoelectronic navigation. Br J Surg 94:866–875

    Article  CAS  PubMed  Google Scholar 

  13. Cash DM, Miga MI, Glasgow SC et al (2007) Concepts and preliminary data toward the realization of image-guided liver surgery. J Gastrointest Surg 11:844–859

    Article  PubMed  Google Scholar 

  14. Endo I, Shimada H, Sugita M et al (2007) Role of three-dimensional imaging in operative planning for hilar cholangiocarcinoma. Surgery 142:666–675

    Article  PubMed  Google Scholar 

  15. Fang CH, Liu J, Fan YF et al (2013) Outcomes of hepatectomy for hepatolithiasis based on 3-dimensional reconstruction technique. J Am Coll Surg 217:280–288

    Article  PubMed  Google Scholar 

  16. Fang CH, Tao HS, Yang J et al (2015) Impact of three-dimensional reconstruction technique in the operation planning of centrally located hepatocellular carcinoma. J Am Coll Surg 220:28–37

    Article  PubMed  Google Scholar 

  17. Lang H, Radtke A, Hindennach M, et al. (2005) Impact of virtual tumor resection and computer-assisted risk analysis on operation planning and intraoperative strategy in major hepatic resection. Arch Surg 140: 629–638

  18. Mise Y, Tani K, Aoki T et al (2013) Virtual liver resection: computer-assisted operation planning using a three-dimensional liver representation. J Hepatobiliary Pancreat Sci 20:157–164

    Article  PubMed  Google Scholar 

  19. Saito S, Yamanaka J, Miura K et al (2005) A novel 3D hepatectomy simulation based on liver circulation: application to liver resection and transplantation. Hepatology 41:1297–1304

    Article  PubMed  Google Scholar 

  20. Simpson AL, Geller DA, Hemming AW et al (2014) Liver planning software accurately predicts postoperative liver volume and measures early regeneration. J Am Coll Surg 219:199–207

    Article  PubMed  PubMed Central  Google Scholar 

  21. Soon DS, Chae MP, Pilgrim CH et al (2016) 3D haptic modelling for preoperative planning of hepatic resection: a systematic review. Ann Med Surg (Lond) 10:1–7

    Article  PubMed  Google Scholar 

  22. Takamoto T, Hashimoto T, Ogata S et al (2013) Planning of anatomical liver segmentectomy and subsegmentectomy with 3-dimensional simulation software. Am J Surg 206:530–538

    Article  PubMed  Google Scholar 

  23. Tang R, Ma LF, Rong ZX et al (2018) Augmented reality technology for preoperative planning and intraoperative navigation during hepatobiliary surgery: a review of current methods. Hepatobiliary Pancreat Dis Int 17:101–112

    Article  PubMed  Google Scholar 

  24. Witowski JS, Pedziwiatr M, Major P et al (2017) Cost-effective, personalized, 3D-printed liver model for preoperative planning before laparoscopic liver hemihepatectomy for colorectal cancer metastases. Int J Comput Assist Radiol Surg 12:2047–2054

    Article  PubMed  PubMed Central  Google Scholar 

  25. Cai W, Fan Y, Hu H et al (2017) Postoperative liver volume was accurately predicted by a medical image three dimensional visualization system in hepatectomy for liver cancer. Surg Oncol 26:188–194

    Article  PubMed  Google Scholar 

  26. Chopra SS, Hunerbein M, Eulenstein S et al (2008) Development and validation of a three dimensional ultrasound based navigation system for tumor resection. Ejso 34:456–461

    Article  CAS  PubMed  Google Scholar 

  27. Hamaoka M, Kobayashi T, Kuroda S et al (2017) Hepatectomy after down-staging of hepatocellular carcinoma with portal vein tumor thrombus using chemoradiotherapy: a retrospective cohort study. Int J Surg 44:223–228

    Article  PubMed  Google Scholar 

  28. Huettl F, Saalfeld P, Hansen C et al (2021) Virtual reality and 3D printing improve preoperative visualization of 3D liver reconstructions-results from a preclinical comparison of presentation modalities and user’s preference. Ann Transl Med 9:11

    Article  Google Scholar 

  29. Jurgaitis J, Paskonis M, Pivoriunas J et al (2008) The comparison of 2-dimensional with 3-dimensional hepatic visualization in the clinical hepatic anatomy education. Medicina (Kaunas) 44:428–438

    Article  PubMed  Google Scholar 

  30. Lamade W, Glombitza G, Fischer L et al (2000) The impact of 3-dimensional reconstructions on operation planning in liver surgery. Arch Surg 135:1256–1261

    Article  CAS  PubMed  Google Scholar 

  31. Lopez-Lopez V, Robles-Campos R, Garcia-Calderon D et al (2021) Applicability of 3D-printed models in hepatobiliary surgey: results from “LIV3DPRINT” multicenter study. HPB (Oxford) 23:675–684

    Article  PubMed  Google Scholar 

  32. Okuda Y, Taura K, Seo S et al (2015) Usefulness of operative planning based on 3-dimensional CT cholangiography for biliary malignancies. Surgery 158:1261–1271

    Article  PubMed  Google Scholar 

  33. Sheng W, Yuan C, Wu L, et al (2021) Clinical application of a three-dimensional reconstruction technique for complex liver cancer resection. Surg Endosc

  34. Takamoto T, Sano K, Hashimoto T et al (2018) Practical contribution of virtual hepatectomy for colorectal liver metastases: a propensity-matched analysis of clinical outcome. J Gastrointest Surg 22:2037–2044

    Article  PubMed  Google Scholar 

  35. Tian F, Wu JX, Rong WQ et al (2015) Three-dimensional morphometric analysis for hepatectomy of centrally located hepatocellular carcinoma: a pilot study. World J Gastroenterol 21:4607–4619

    Article  PubMed  PubMed Central  Google Scholar 

  36. Wei XB, Xu J, Li N et al (2016) The role of three-dimensional imaging in optimizing diagnosis, classification and surgical treatment of hepatocellular carcinoma with portal vein tumor thrombus. HPB 18:287–295

    Article  PubMed  Google Scholar 

  37. Yamanaka J, Okada T, Saito S, et al (2009) Minimally invasive laparoscopic liver resection: 3D MDCT simulation for preoperative planning. J Hepato-Biliary-Pancreatic Surg 16:808-815

  38. Yamanaka J, Saito S, Fujimoto J (2007) Impact of preoperative planning using virtual segmental volumetry on liver resection for hepatocellular carcinoma. World J Surg 31:1249–1255

    Article  PubMed  Google Scholar 

  39. Yang T, Lin S, Xie Q et al (2019) Impact of 3D printing technology on the comprehension of surgical liver anatomy. Surg Endosc 33:411–417

    Article  PubMed  Google Scholar 

  40. Yeo CT, MacDonald A, Ungi T et al (2018) Utility of 3D reconstruction of 2D liver computed tomography/magnetic resonance images as a surgical planning tool for residents in liver resection surgery. J Surg Educ 75:792–797

    Article  PubMed  Google Scholar 

  41. Zhang G, Zhou XJ, Zhu CZ et al (2016) Usefulness of three-dimensional(3D) simulation software in hepatectomy for pediatric hepatoblastoma. Surg Oncol-Oxf 25:236–243

    Article  Google Scholar 

  42. Zhao D, Lau WY, Zhou W et al (2018) Impact of three-dimensional visualization technology on surgical strategies in complex hepatic cancer. Biosci Trends 12:476–483

    Article  PubMed  Google Scholar 

  43. Glombitza G, Lamade W, Demiris AM et al (1999) Virtual planning of liver resections: image processing, visualization and volumetric evaluation. Int J Med Inform 53:225–237

    Article  CAS  PubMed  Google Scholar 

  44. Lee JW, Lee JH, Park Y et al (2020) Risk factors of posthepatectomy liver failure for perihilar cholangiocarcinoma: risk score and significance of future liver remnant volume-to-body weight ratio. J Surg Oncol 122:469–479

    Article  CAS  PubMed  Google Scholar 

  45. Beller S, Eulenstein S, Lange T et al (2009) Upgrade of an optical navigation system with a permanent electromagnetic position control: a first step towards “navigated control” for liver surgery. J Hepatobiliary Pancreat Surg 16:165–170

    Article  PubMed  Google Scholar 

  46. Peterhans M, vom Berg A, Dagon B et al (2011) A navigation system for open liver surgery: design, workflow and first clinical applications. Int J Med Robot Comput Assist Surg 7:7–16

    Article  CAS  Google Scholar 

  47. Qin Y, Zhang Q, Liu Y (2020) Analysis of knowledge bases and research focuses of cerebral ischemia-reperfusion from the perspective of mapping knowledge domain. Brain Res Bull 156:15–24

    Article  PubMed  Google Scholar 

  48. Luo H, Yin D, Zhang S et al (2020) Augmented reality navigation for liver resection with a stereoscopic laparoscope. Comput Methods Programs Biomed 187:105099

    Article  PubMed  Google Scholar 

  49. Satou S, Aoki T, Kaneko J et al (2014) Initial experience of intraoperative three-dimensional navigation for liver resection using real-time virtual sonography. Surgery 155:255–262

    Article  PubMed  Google Scholar 

  50. Tai K, Komatsu S, Sofue K et al (2020) Total tumour volume as a prognostic factor in patients with resectable colorectal cancer liver metastases. BJS Open 4:456–466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bagia JS, Chai A, Chou R et al (2015) Prospective diagnostic test accuracy comparison of computed tomography during arterial portography and primovist magnetic resonance imaging in the pre-operative assessment of colorectal cancer liver metastases. HPB (Oxford) 17:927–935

    Article  PubMed  Google Scholar 

  52. Ogasawara S, Chiba T, Motoyama T et al (2016) Prognostic significance of concurrent hypovascular and hypervascular nodules in patients with hepatocellular carcinoma. PLoS One 11:e0163119

    Article  PubMed  PubMed Central  Google Scholar 

  53. Schembri V, Piron L, Le Roy J et al (2020) Percutaneous ablation of obscure hypovascular liver tumours in challenging locations using arterial CT-portography guidance. Diagn Interv Imaging 101:707–713

    Article  CAS  PubMed  Google Scholar 

  54. Hosch WP, Schmidt SM, Plaza S et al (2006) Comparison of CT during arterial portography and MR during arterial portography in the detection of liver metastases. AJR Am J Roentgenol 186:1502–1511

    Article  CAS  PubMed  Google Scholar 

  55. Kono Y, Moriyasu F, Nada T et al (1999) Ultrasonographic arterial portography with second harmonic imaging: evaluation of hepatic parenchymal enhancement with portal venous flow. J Ultrasound Med 18:395–402

    Article  CAS  PubMed  Google Scholar 

  56. Dondossola D, Ghidini M, Grossi F et al (2020) Practical review for diagnosis and clinical management of perihilar cholangiocarcinoma. World J Gastroenterol 26:3542–3561

    Article  PubMed  PubMed Central  Google Scholar 

  57. Groot Koerkamp B, Fong Y (2014) Outcomes in biliary malignancy. J Surg Oncol 110:585–591

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Thanks to the clustering tools provided by Carrot2 online version. Thanks to WZ-G and Q-Z for their suggestions on the production of figures.

Funding

This study was funded by the Hunan Provincial Natural Science Foundation of China (2018JJ2612).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ji-Chun Sun or Ming-Yi Zhao.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, JX., Deng, Z., Liu, YY. et al. A Bibliometric Analysis of the Role of 3D Technology in Liver Cancer Resection. World J Surg 47, 1548–1561 (2023). https://doi.org/10.1007/s00268-023-06950-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00268-023-06950-5

Navigation