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Abstract

Background Current diagnosis and classification of thyroid nodules are susceptible to subjective factors. Despite

widespread use of ultrasonography (USG) and fine needle aspiration cytology (FNAC) to assess thyroid nodules, the

interpretation of results is nuanced and requires specialist endocrine surgery input. Using readily available pre-

operative data, the aims of this study were to develop artificial intelligence (AI) models to classify nodules into likely

benign or malignant and to compare the diagnostic performance of the models.

Methods Patients undergoing surgery for thyroid nodules between 2010 and 2020 were recruited from our institu-

tion’s database into training and testing groups. Demographics, serum TSH level, cytology, ultrasonography features

and histopathology data were extracted. The training group USG images were re-reviewed by a study radiologist

experienced in thyroid USG, who reported the relevant features and supplemented with data extracted from existing

reports to reduce sampling bias. Testing group USG features were extracted solely from existing reports to reflect

real-life practice of a non-thyroid specialist. We developed four AI models based on classification algorithms (k-

Nearest Neighbour, Support Vector Machine, Decision Tree, Naı̈ve Bayes) and evaluated their diagnostic perfor-

mance of thyroid malignancy.

Results In the training group (n = 857), 75% were female and 27% of cases were malignant. The testing group

(n = 198) consisted of 77% females and 17% malignant cases. Mean age was 54.7 ± 16.2 years for the training

group and 50.1 ± 17.4 years for the testing group. Following validation with the testing group, support vector

machine classifier was found to perform best in predicting final histopathology with an accuracy of 89%, sensitivity

89%, specificity 83%, F-score 94% and AUROC 0.86.

Conclusion We have developed a first of its kind, pilot AI model that can accurately predict malignancy in thyroid

nodules using USG features, FNAC, demographics and serum TSH. There is potential for a model like this to be used

as a decision support tool in under-resourced areas as well as by non-thyroid specialists.
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Introduction

Thyroid nodules are common. Approximately 7% of the

adult population have a palpable thyroid nodule and the

prevalence of imaging-detected nodules approaches 70%

[1, 2]. However, many incidental nodules are not of clinical

significance, and only around 5% are malignant [3]. As

surgery is the primary treatment, evaluation by a specialist

thyroid surgeon to determine extent of surgery is pivotal in

the management of patients with malignant or suspicious

thyroid nodules. Nevertheless, general practitioners (GP)

and general surgeons should have a reliable, yet cost-ef-

fective method of discriminating between benign and

malignant nodules, to help guide referrals or surveillance.

Ultrasonography (USG) and fine needle aspiration

cytology (FNAC) are the most widely used modalities in

clinching the thyroid nodule diagnosis [4–8]. Within USG,

thyroid nodules are increasingly classified using the

American College of Radiology Thyroid Imaging,

Reporting and Data System (TI-RADS) which has a rea-

sonably high diagnostic performance [9, 10]. However, the

TI-RADS classification is not only labour intensive but also

there is inherent user dependency, inter-reader variability

and subjectivity. When there is suspicion based on TI-

RADS, FNAC is the most effective diagnostic test.

Unfortunately, cytology fails to reach a definitive diagnosis

in 10–32% of samples and can be prone to sampling errors

in large nodules [11–15].

When applied in the appropriate setting, gene expression

and genomic sequencing classifiers (GSC) have been

shown to be clinically beneficial and effective in reducing

diagnostic thyroidectomy. However, its unproven cost-ef-

fectiveness and accessibility issues have limited its use

outside the USA. Comparable artificial intelligence (AI)

algorithms are increasingly used to deliver solutions or aid

in decision-making in many healthcare contexts, including

image classification of thyroid nodules [16–18]. Most

existing models give the user a static output—malignant vs

benign—and are purely radiologically driven.

The overall purpose of this pilot study is to address the

shortcomings of thyroid nodule diagnostics. We aimed to

develop an AI classifier model by incorporating radiology,

cytology, biochemistry and demographic data to estimate

the probability of malignancy in a nodule. Secondarily, we

aimed to determine the diagnostic performance of the

models created.

Materials and methods

Ethical approval was granted by the institution’s review

board.

Study population

This was a multicentre study from 2010 to 2020. Patients

undergoing thyroid surgery were recruited from the

prospectively maintained surgical database of the Monash

University Endocrine Surgery Unit and assigned to either

the training or testing group (approximately an 80/20%

distribution). (Fig. 1).

Ultrasonographic features

The thyroid nodules were assessed for the presence of

features commonly used to determine degree of suspicion

for malignancy, including solitary nodule, microcalcifica-

tion, hypoechogenecity, taller-than-wide shape, irregular

margins, halo, solid components in a cystic nodule, central

vascularity, and associated lymphadenopathy. In the

training group, these features were extracted from USG

images by a dedicated study radiologist with interest and

experience in thyroid imaging in two-thirds of the cases,

and from existing USG reports in the remaining cases. This

mixed method of extracting features was employed to

diversify the training dataset, increase heterogeneity, and

reduce sampling bias that can potentially attenuate the

performance of the AI model.

To reflect a real-life clinical scenario, the above USG

features for the testing group patients were solely extracted

from pre-existing reports, without re-interpretation of

images. Data extraction was performed by two surgical

residents to simulate non-specialist interpretation of radi-

ology vernacular. Discrepancies were addressed and

resolved by the senior author (JL). Nodule characteristics

not mentioned on the USG reports were considered not

present. TI-RADS classification scores were not included;

this enabled a pragmatic approach using fundamental USG

features and greater flexibility within our model.

Biochemistry, FNAC and histopathology

In addition to USG features, other clinical parameters

collected for inclusion in the machine learning model were

age, sex, suppressed serum thyroid-stimulating hormone

(TSH) on presentation, and FNAC findings. The presence

of suppressed TSH was defined as below the lower limit of

the reference range of each laboratory. Cytology findings

were reported using the Bethesda system [19].

All included patients had undergone thyroidectomy, and

the histopathology was reported using World Health

Organisation guidelines [20]. The histological diagnosis

was used to label each nodule as benign or malignant. In

the training group, this was used to train and internally

validate the machine learning algorithm. In the testing
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group, this was used to determine the performance of the

algorithm.

Classification models

Using the training group data, four classifiers were used to

determine the likelihood of malignancy for a particular

nodule. We then compared the performance of these four

classifiers by applying the testing group data. The premise

of classification models is mapping properties of particular

examples and assigning data into attribute-value groups.

When given a new example, a classifier ascribes it to the

best fitted category. The structure of classification models

differs from linear discrimination functions to clustering

and each classifier has its own attractive properties to the

type of dataset it learns from [21]. We therefore selected a

variety of commonly used classification models to evaluate

their performance on a thyroid dataset.

The selected classifiers were as follows:

1. K-Nearest Neighbour (kNN): Each case is assigned a

score, which is calculated using a series of formulae

based on examining the entire training cohort. The

score of a new case is then compared to the scores of

cases in the training group. The new case is then

matched to the training case with the closest score, also

known as ‘‘the nearest neighbour’’ [21].

2. Decision Tree (DT): The prediction is reached by

using a series of branching logic, like a root-to-leaf

construct. The order of the branches is determined by

the AI after examining the training cohort and

determining the relative importance of each parameter

[22].

3. Support Vector Machine (SVM): This is thought to be

the optimal classifier for determining binary outcomes,

such as benignity and malignancy. The theoretical

‘‘hyperplane’’ that separates these 2 outcomes exists in

a multi-dimensional space, which consists of as many

dimensions as there are the number of parameters

[22, 23].

4. Naı̈ve Bayes (NB): Predicts based on Bayes’ theorem

with the ‘naı̈ve’ assumption that all parameters are

independent given the value of the class variable. [24].

Statistical analysis and artificial intelligence model

Standard statistical analysis was performed using Stata�
software version 17.0 (StataCorp, Texas, USA). Binary

variables were analysed using Pearson’s Chi-square test,

and continuous variables were analysed using Student’s

t test. A value of p\ 0.05 was accepted as statistically

significant. The AI model was coded using Python pro-

gramming language.

To develop the AI model, the above USG features,

serum TSH, age, sex and FNAC results were added as

parameters and final surgical histology as a target into our

models’ data set. Subsequently, a grid search tuning algo-

rithm which is a maximum-likelihood method capable of

obtaining optimum results when searching over multi-

Fig. 1 Flow chart of inclusion

criteria for training and testing

groups
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dimensional spaces, with each parameter considered to add

one dimension, was introduced. To train and internally

validate our predictive model as well as overcome dataset

biases, a resampling technique known as k fold cross-val-

idation was employed [23]. This technique randomly par-

titions the training group into k fold subsamples (k = 10 in

this case). k-minus-onefold (90%) of the total training

group was used as the training subsample and the

remaining k fold (10%) was used for internal validation

within the training group. The partitioning and training

occurred ten times over, with a different k fold used for

internal validation each time. Five repeats of k fold cross-

validation were performed to improve the estimate of the

mean model performance.

The AI predictive model estimates the probability of

malignancy in percentage. A value of 50% or greater was

accepted as a predicted positive and consequently a true

positive if final histology was malignant. Following

development and internal validation using the training

group, further validation using the testing group was per-

formed for each classifier to determine which had the best

performance—measured using a confusion matrix (Fig. 2).

Several measures of predictive performance were calcu-

lated, including the area under the receiver operating

characteristic curve (AUROC), accuracy, sensitivity,

specificity, and the F-score. The F-score is a measure of

accuracy in binary classification, including both precision

and recall [23]. Where numbers were too low to populate

the confusion matrix for sub-group analysis, the percentage

of correctly classified cases was reported instead.

Results

The mean age of the study population was

54.7 ± 16.2 years for the training group and

50.1 ± 17.4 years for the testing group (\0.001). After

excluding patients with insufficient information, the train-

ing group comprised of data of 857 nodules (from 778

patients)—563 re-reported by the study radiologist and 294

had USG features extracted from existing reports. Of these,

624 (73%) cases were benign and 233 (27%) malignant on

final histopathology; 641 (75%) patients were female and

216 (25%) males. The testing group included 171 patients

with 198 nodules in total. Of these, 164 (83%) were benign

and 34 (17%) malignant on final histopathology. There

were 153 (77%) female patients and 45 (23%) male

patients. Baseline demographics, biochemistry, USG fea-

tures, cytology and histology findings of the study cohort

are summarised in Table 1.

Training group results

When predictive performance was estimated on the train-

ing dataset for each of the four classifiers, SVM performed

best with overall accuracy of 89%, sensitivity 81%,

specificity 90%, F-score of 86% and AUROC of 0.91.

Although DT performed favourably with a slightly higher

accuracy and specificity than SVM, it had much lower

sensitivity and AUROC. (Table 2a and Fig. 3a).

Testing group results

Similarly, SVM classifier was the best in predicting final

histopathology in the testing group, with an accuracy of

89%, sensitivity 89%, specificity 83%, F-score of 94% and

AUROC 0.86. It outperformed the other 3 classifiers in all

measures, except kNN had a marginally higher sensitivity

than SVM (90% vs. 89%), (Table 2b and Fig. 3b).

The SVM classifier correctly predicted 180 of 198

(90.9%) testing group nodules. Of the 18 errors, 15 (7.6%)

were false negative predictions and 3 (1.5%) were false

positives. Four (26.7%) false negative predictions were

incidental micropapillary carcinomas; five (33.3%) had

Fig. 2 Confusion matrix
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Table 1 Demographics of patients and distribution of histopathology, cytology, biochemical and ultrasonographic features of training and

testing groups

Features Training group; n = 857 Testing group; n = 198 P value

Mean age, years ± SD 54.7 ± 16.2 50.1 ± 17.4 \0.001

Sex, F (%): M (%) 641 (74.8): 216 (25.2) 153 (77.3): 45 (22.7) 0.47

USG feature extraction, images (%): reports (%) 563 (65.7): 294 (34.3) 0: 198 (100) -

Histology, benign (%): malignant (%) 624 (72.8): 233 (27.2) 164 (82.8): 34 (17.2) 0.003

Supressed TSH 187 42 0.85

Cytology

Bethesda 1 35 (4.0) 6 (3.0) \0.0001

Bethesda 2 487 (56.7) 161 (81.3)

Bethesda 3 125 (14.5) 6 (3.0)

Bethesda 4 57 (6.6) 10 (5.1)

Bethesda 5 41 (4.7) 5 (2.5)

Bethesda 6 117 (13.1) 10 (5.1)

Ultrasonography

Solitary nodule 299 103 \0.0001

Microcalcifications 125 42 0.003

Lymphadenopathy 35 10 0.54

Hypoechogenecity 128 32 0.67

Taller rather than wide shape 15 3 0.82

Halo 13 5 0.32

Solid – cystic nodule 278 77 0.08

Irregular margins 50 13 0.69

Central vascularity 203 48 0.10

TSH Thyroid-stimulating hormone

Table 2 Performance analysis of artificial intelligence model

Model Accuracy (%) Sensitivity (%) Specificity (%) F-Score (%) AUC (%)

Performance of classifier models following k fold validation with the training group

kNN 76 72 78 75 83

DT 90 70 98 81 84

SVM 89 81 90 86 91

NB 85 74 89 81 92

Model Accuracy (%) Sensitivity (%) Specificity (%) F-Score (%) AUC (%)

Performance of classifier models following validation on the testing group

kNN 86 90 60 92 79

DT 87 88 72 92 82

SVM 89 89 83 94 86

NB 79 86 38 87 81

kNN K-Nearest neighbour, DT Decision tree, SVM Support vector machine, NB Naı̈ve Bayes
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poor quality FNA samples; three (20.0%) were minimally

invasive follicular cancers; two (13.3%) papillary cancers

in multinodular goitres; and one (6.7%) follicular cancer.

The three false positive predictions included two Bethesda

4 nodules incorrectly classified as malignant (one Hurthle

cell adenoma and one hyperplastic nodule), and one

Bethesda 5 nodule within a multinodular goitre, which was

benign histologically.

Sub-group analysis

We analysed the performance of the classifiers on all six

FNAC categories independently within our testing group.

For Bethesda 1 and 6 nodules, SVM and DT predicted

100% of final histopathology correctly. With Bethesda 2

nodules, SVM and DT performed similarly at 93.4%. For

indeterminate nodules, the percentage of correctly classi-

fied nodules for SVM versus DT was 66.1% versus 50.1%

for Bethesda 3, 60% versus 70.2% for Bethesda 4,

Fig. 3 Receiver operating

characteristic analysis for the

performance of four classifier

algorithms tested a Training

group b Testing group
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respectively; and for Bethesda 5 nodules, both performed

correspondingly classifying 79.9% accurately. KNN clas-

sified 100% of Bethesda 4 nodules accurately and NB

classified 67.7% of Bethesda 3 nodules and 79.9%

Bethesda 5 nodules correctly.

Clinical implications

Within the testing group, there were 16 Bethesda 3 and

Bethesda 4 nodules that had diagnostic haemithyroidec-

tomies. There was a high percentage of malignancy within

that group, with 9 out of 16 nodules (56.3%) found

malignant on operative histology. If the SVM model was

applied to this cohort, 5 out of 16 diagnostic haemithy-

roidectomies (31.3%) that were benign on surgical histol-

ogy could have been prevented.

There were seven diagnostic haemithyroidectomies

performed for Bethesda 4 and Bethesda 5 nodules that the

SVM model had predicted as malignant in the testing

group. 3 (42.9%) of these patients proceeded to a com-

pletion thyroidectomy at a separate admission.

Discussion

In this study, we designed an AI model to discriminate

benign and malignant thyroid nodules based on USG fea-

tures, FNAC, serum TSH and demographics; trialling four

different classifiers. Our model showed high levels of

diagnostic performance within the training group with an

AUROC of 0.91 for SVM. When further validated on the

testing group, SVM also performed best with an AUROC

of 0.86; the classifier model had an accuracy of 89% and

F-score of 94%. SVM performs well in high dimensional

spaces as it creates a hyperplane in a multi-dimensional

data space that separates the dataset into two vector sets.

When an input element is fed into the SVM system, it is

compared in respect to this separating hyperplane [25].

This is likely why SVM performs so well in predicting

probability of a binary outcome which in this study’s case

is benign versus malignant.

The clinical dilemma that prompted our study lies

within two areas. Firstly, in areas with limited access to a

specialist endocrine surgical unit, an efficient and cost-ef-

fective system to aid interpretation and integration of

thyroid nodule diagnostic results would be of high clinical

value [26]. Second, generalist surgeons may also benefit

from this model. Nonetheless, even in highly specialised

units, a diagnostic thyroid lobectomy is often needed to

diagnose a nodule with indeterminate cytology [15].

Hypothyroidism post-haemithyroidectomy occurs in 10.9%

to 47.0% of patients [27–29]. There is also risk of recurrent

laryngeal nerve injury and general operative risks such as

bleeding and infection [30, 31]. While the general preva-

lence of malignancy in indeterminate nodules is around

35–40%, there are series that report rates as low as 6%

prompting the need for further risk stratification tools

[28, 32, 33].

Most of the recent studies in the field of AI thyroidology

have been carried out on computer-aided diagnosis (CAD)

systems such as S-Detect (Samsung Medison Co., Seoul,

South Korea) which is a real-time classification apparatus

incorporated into an ultrasound machine. In these experi-

mental studies, Park et al. and Jeong et al. showed CAD

systems had overall comparable diagnostic performance to

radiologists with accuracies of 86%. [34, 35] While Chung

et al. similarly found that accuracy and sensitivity of the

CAD system did not differ from that of a radiologist

(88.6% vs. 84.1%, p = 0.687; 86.0% vs. 91.0%,

p = 0.267), the diagnostic performance varied according to

the experience level of the USG operator and was lower

with less experience [36] Thomas and Haertling [37]

developed an image similarity AI tool using convolutional

neural network that achieved a sensitivity of 87.8% and

specificity of 78.5%. Although images produced by dif-

ferent machines may yield different results, their model

allows for the clinician to select the image fed into their

model and verify the AI diagnosis by reviewing similar

images subsequently to accept or reject the classification of

the thyroid nodule provided. This allows the clinician

autonomy within the computer support tool and enhances

the decision-making process rather than replacing it.

Models as such that allow the healthcare practitioner to be

involved in multiple steps of the process also allay fears

that AI lacking human oversight can result in poor out-

comes due to machine error.

In a similar radiologically driven large-scale AI study

involving a total of 11,114 patients, Peng et al. [38] found

that when their deep learning model assisted radiologists in

the diagnostics of a thyroid nodule, the aid of AI improved

the AUROC of the performance of radiologists from 0.84

to 0.88 and in their simulated scenario, there was a 26.7%

reduction of the need for FNAC and there was a 1.9%

decrease in missed malignancies supporting the synergistic

relationship between machine and clinician.

While FNAC has been shown to be highly accurate as a

screening tool to select patients for surgery or observation,

limitations such as insufficient aspirates and results can be

susceptible to the challenges of real-world practice espe-

cially in areas without specialist interest. Interestingly, a

recent meta-analysis suggests that an institution’s malig-

nancy rates influence the interaction between FNAC and

USG in indeterminate thyroid nodules where B3 nodules

with suspicious USG features from certain centres had a

higher probability of malignancy and warranted further

action rather than observation [39]. AI appears to be able to

336 World J Surg (2023) 47:330–339

123



provide a potential resolution to these problems by offering

a machine-based solution circumventing human modula-

tion. From a clinical perspective, our model works accu-

rately for B1 nodules which could help prevent further

aspirates. There are parallel studies in the field of thyroid

cytopathology where AI models predict benign vs malig-

nant superiorly compared to FNAC with accuracies up to

95%. Implementation of these models, however, is chal-

lenging due to the need for manual segmentation of rele-

vant areas on the cytology slide [40, 41].

In effect, clinically applicable machine learning algo-

rithms in thyroid diagnostics first began with the current

commercially available GSC tests that are based on SVM

and DT classifiers [42–44]. Advances in molecular markers

and genomic sequencing have had positive impacts on

individualising treatment for patients with indeterminate

cytology. Unfortunately, the availability and feasibility of

these advances are currently confined to a few countries. AI

models like the one reported in this study could be a pos-

sible option for other regions. This AI-driven tool has the

potential to improve risk stratification leading to fewer

diagnostic lobectomies, better selection of patients for

nodule surveillance, and in high-risk cases, enable single-

stage surgical planning. It can also be used by GPs to either

streamline referrals to a surgical service or empower them

to manage benign disease in the community.

By including training data from both the study radiol-

ogist and existing reports, we exposed the AI model to a

range of reporting styles. The use of existing reports for the

testing group further increased the applicability of this

model for everyday use. This pilot AI model is the first to

incorporate multiple modalities in patient assessment

(biochemistry, demographics, radiology, and cytology) into

an all-encompassing predictive tool.

There were some limitations to the current study. First,

our malignancy rates (25.3%) were lower than some

studies (45–52.3%) [45, 46]. However, comparable to other

more contemporary studies [37, 47], our study was also

susceptible to the limitations of a retrospective design.

Additionally, the population of this study was entirely post-

operative and does not capture the entire community with

thyroid nodules. Addressing this limitation would require a

prospective study or retrospective data from patients that

are on long-term follow-up for benign or indeterminate

nodules that have subsequently proven to be malignant on

cytology or continued a benign course. However, this

patient population is small, disseminated and to congregate

such a cohort to power the AI model to a satisfactory level

would require further work and collaboration. Finally,

some of the false negative predictions may suggest an over-

reliance on the cytology for its predictions, which is likely

due to the inclusion of both a high number of Bethesda 2 as

well as malignant cytology nodules in the training group.

Further work is required to clarify or rectify this point.

Other future work includes improving the model by

acquiring a larger dataset and further validating the per-

formance of the model. We are also working on a delivery

system that is both easily accessible and user-friendly. The

system would be available via a web-based application

similar to other online calculators. Once parameters are

entered into the system, the user is informed of the prob-

ability of malignancy in percentage.

Conclusion

We have developed a first of its kind pilot AI model that

can accurately predict malignancy in thyroid nodules using

USG features, FNAC, demographics and serum TSH. Once

further evolved and refined for clinical use, there is great

potential for this AI model to function as a computer-aided

decision support tool, to be used by both surgeons and

general practitioners, to help individualise treatment for

patients with thyroid nodules.
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