LETTER TO THE EDITOR

Letter to the Editor: Role of Chewing Gum in Reducing Postoperative Ileus after Reversal of Ileostomy: A Randomized Controlled Trial

Paweł Konstanty Korolkiewicz¹ · Łukasz Sein Anand¹

Accepted: 20 February 2021/Published online: 1 April 2021 © Société Internationale de Chirurgie 2021

Dear Editor,

It is with great interest that I read the study of Bhatti et al. [1] on the effects of chewing gum on the duration of postoperative ileus (POI) in patients undergoing surgery for stoma closure and small gut anastomosis.

I would like to draw your attention to some confounders, which should be taken into consideration while interpreting the results of the study.

The prolonged administration of antimycobacterial agents including a relatively broad-spectrum antibiotic such as rifampin exerts a profound effect on the gut microbiome [2]. The iatrogenic microbial dysbiosis could negatively affect gastrointestinal and colonic motility [3] and might have played a potential role in the delayed POI resolution time in the tuberculosis versus typhoid perforation cohorts—see Table 5 for results [1].

Additionally, the study is an investigator-sponsored trial, and all patients were recruited at a single research site, thereby reducing the generalizability of these interesting and valuable results.

Compliance with Ethical Standards

Conflict of interest The authors declare that they have no conflict of interest.

Reference

- Bhatti S, Malik YJ, Changazi SH, Rahman UA, Malik AA, Butt UI, et al. Role of Chewing Gum in Reducing Postoperative Ileus after Reversal of Ileostomy: A Randomized Controlled Trial. World J Surg [Internet]. 2021; Available from: https://doi.org/10. 1007/s00268-020-05897-1
- O'Toole RF, Gautam SS. The host microbiome and impact of tuberculosis chemotherapy. Tuberculosis [Internet]. 2018;113:26–9. Available from: https://doi.org/10.1016/j.tube. 2018.08.015
- 3. Ge X, Ding C, Zhao W, Xu L, Tian H, Gong J et al (2017) Antibiotics-induced depletion of mice microbiota induces changes in host serotonin biosynthesis and intestinal motility. J Transl Med 15(1):1–9

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Paweł Konstanty Korolkiewicz pawelkorolkiewicz@gumed.edu.pl

¹ Medical University of Gdańsk, Poland. Address: Debinki 7, 80-952 Gdańsk, Poland