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Abstract

Background Previous Enhanced Recovery After Surgery (ERAS�) studies have not always taken into account that

ERAS interventions depend on baseline covariates and that several confounding variables affect the composite

outcomes.

Method A causal latent variable model is proposed to analyze data obtained prospectively concerning 1261 patients

undergoing elective colorectal surgery within the ERAS protocol. Primary outcomes (composite of any complication,

surgical site infection, medical complications, early ready for discharge (TRD), early actual discharge) and secondary

outcomes (composite of late bowel function recovery, IV fluid resumption, nasogastric tube replacement, postop-

erative nausea and vomiting, re-intervention, re-admission, death) are considered along with their multiple

dimensions.

Results Concerning the primary outcomes, our results evidence three subpopulations of patients: one with probable

good outcome, one with possibly prolonged TRD and discharge without complications, and the other one with

probable complications and prolonged TRD and discharge. Epidural anesthesia, waiving surgical drainage, and early

ambulation, IV fluid stop and urinary catheter removal act favorably, while preoperative hospital stay and blood

transfusion act negatively. Concerning the secondary outcomes our results evidence two subpopulations of patients:

one with high probability of good outcome and one with high probability of complications. Epidural anesthesia,

waiving surgical drainage, early ambulation and IV fluid stop act favorably, while blood transfusion acts negatively

also with respect to these secondary outcomes.

Conclusion The multivariate causal latent class two-parameter logistic model, a modern statistical method over-

coming drawbacks of traditional models to estimate the average causal effects on the treated, allows us to disentangle

subpopulations of patients and to evaluate ERAS interventions.

Introduction

The ERAS (Enhanced Recovery After Surgery) is a mul-

timodal perioperative care pathway intended to improve

and shorten recovery after major surgery through the

application of a bundle of interventions [1, 2]. However

implementing all of the ERAS items is a hard work for any

hospital and it is possible that some ERAS interventions

exert a greater impact on outcome than others. Although

the final goal is to realize a complete ERAS pathway,

concentrating on some possible ‘‘core items’’ in the
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beginning could be prominently facilitating. Much interest

is growing about the search for evidence on these core

items [3].

Any study on this topic exploited the incomplete com-

pliance with ERAS items, which variably accompany

ERAS databases and provides the necessary variability for

addressing the question of the benefit of a single item or of

ERAS as a whole. Nevertheless, previous analysis did not

adequately consider that non-compliance is scarcely ever

independent from other important variables. This raises at

least three major methodological issues that have been

poorly addressed in previous studies. First, ERAS out-

comes and ERAS interventions themselves are affected by

several confounding variables. For example, the American

Society of Anesthesia score (ASA) status can affect both

the outcome and the early postoperative mobilization.

Second, ERAS items are themselves inter-related. For

example, conservative intraoperative fluid administration is

conceivably more applicable in patients who did not

receive preoperative bowel preparation. Third, when deal-

ing with ERAS, the outcome measures are composite. For

example, the principal outcome measures in ERAS studies,

postoperative length of hospital stay and complications,

cannot be considered separately since they measure a

similar trait.

We retrospectively studied a prospectively collected

data of patients undergoing elective colorectal surgery

between 2014 and 2018 with an ERAS protocol in 20

Italian hospitals affiliated with the PeriOperative Italian

Society (POIS). The aim of our study is to analyze the

effects of a number of ERAS items with a statistical model

that considers the aforementioned methodological issues,

namely a multivariate Latent Class Two-Parameter

Logistic (LC-2PL) model [4, 5] formulated within a

potential outcome framework [6]. We estimate the Average

Causal Effects on the Treated (ATET) adequately weight-

ing each patient through the Inverse-Probability-of-Treat-

ment (IPT, [7]). As recently remarked by [8] propensity

score methods allow us to block the association between

observed confounding variables and treatments, thus per-

mitting to reduce bias due to pre-treatment imbalances in

observational studies. Innovatively we propose to estimate

patient’s weights according to the pre-treatment covariates

and sequential blocks of treatments. We summarize the

responses by means of a multivariate latent variable model

suitable to classify patients and to assess the effects of the

ERAS interventions on primary and secondary outcomes.

Materials and methods

Study design

Twenty Italian hospitals affiliated with POIS collaborated

in collecting data. All centers treated their patients within

an ERAS pathway, which was defined with active contri-

bution from the ERAS Society. Before the start of the

study, all hospitals had been involved in a pathway

implementation program led by POIS consisting in edu-

cation and audit meetings every six months for a two-year

period.

All data were collected prospectively through a stan-

dardized electronic spreadsheet, which was used to record

90 variables per patient [9]. Every three months, the center-

specific spreadsheets containing data collected in that time

period were merged into a web-based password-protected

database managed by POIS. Data collected included

demographics, patient comorbidities, preoperative and

intraoperative variables, adherence to ERAS items, early

recovery variables, and short-term postoperative outcomes.

Figure 1 shows the conceptual framework used to define

sequentially the treatments, the confounders, the potential

outcomes, the latent variables and the observed outcomes.

We study 18 items out of the POIS database. For most of

these treatments ERAS recommendations are available.

Since our purpose is to account for the aforementioned

inter-relationship between these treatments, we grouped

them according to the phase of the patient’s pathway in

which they are applied. Hence, treatments are classified in

three consecutive units, namely preoperative, intraopera-

tive, and postoperative, and each unit affects the ones to

follow. Four treatments are considered as preoperative,

namely preoperative hospital stay (number of days), no

bowel preparation, glucidic drink administration, and

premedication. Six are considered as intraoperative,

namely IV fluid administration (ml/kg/h), epidural anes-

thesia, antibiotic prophylaxis, maintenance of normother-

mia, nausea and vomiting (PONV) prophylaxis, and no

surgical drainage. Eight treatments are considered as

postoperative, namely intravenous fluid administration (ml/

kg during POD 1), morphine administration (dichotomous

no/yes variable without differentiating between different

administration modes—PCA, elastomer, fixed-dose—or

different dosing), thromboembolism prophylaxis, proki-

netic administration, naso-gastric tube (NGT) removal

within POD 0, intravenous fluid stop within POD 2, urinary

catheter removal within POD 1, and ambulation within

POD 1. The cut-off POD choice for the last four variables

has been decided according to the clinical experience.

There are 15 observed confounders. Seven of these

potentially affect compliance with all of the treatments:
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year of surgery, age, gender, ASA classification of general

health status (ASA1–2 vs ASA[ 2), baseline blood

hemoglobin (mg/dl), preoperative body weight loss, and

preoperative diagnosis of diabetes mellitus. Five con-

founders potentially affect compliance only with postop-

erative treatments: intraoperative fluid losses (ml/kg),

length of surgery (min), maximum postoperative pain on

POD 1–4 [measured on the Numerical Rating Scale

(NRS)], laparotomy (vs laparoscopy), and surgical stoma

(coded as binary variables). We also consider the following

external variables that directly affect the outcomes: type of

surgery (colonic or rectal), malignancy of the underlying

disease, blood derivatives transfusion.

The main advantage of the proposed causal latent class

model is that we jointly account for several outcomes that

are distinguished as primary and secondary according to

their relative clinical importance in the ERAS framework.

The primary outcomes are the following: occurrence of any

complication, occurrence of surgical site infection (SSI),

occurrence of medical complications unrelated to the

surgical site, such as cardiovascular, pulmonary, throm-

boembolic, or urinary complications, ready for discharge

after POD 5, and actual discharge from hospital after POD

6 [10]. Within our proposal, as illustrated in the next sec-

tion, we are able to consider the outcomes jointly and to

account for the fact that they mainly concern two dimen-

sions: the first is made by complications and the second one

is made by Time Ready for Discharge (TRD) and actual

discharge.

The secondary outcomes that we account jointly are the

following: bowel function recovery after POD 1, need for

IV fluid resumption after suspension, need for nasogastric

tube (NGT) replacement after removal, occurrence of

postoperative nausea and vomiting (PONV), surgical re-

intervention, hospital re-admission, death within POD 30.

In the multivariate model presented below we assume they

represent two distinct dimensions: the first made by bowel

function, need for IV fluid resumption, need for nasogastric

tube, nausea and vomiting and the second made by surgical

re-intervention, hospital re-admission and death.

Fig. 1 Conceptual framework of the proposed multivariate causal latent variable model. IV: intravenous; NGT: nasogastric tube; PONV:

postoperative nausea and vomiting; ASA: American Society of Anesthesia score; SSI: surgical site infection; TRD: time ready for discharge. U:
latent variable; U(0): latent potential outcome referred to the non-treated patient; U(1): latent potential outcome referred to the treated patient
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Statistical model

We highlight a proposal for the estimation of multiple

treatments within observational studies, since we are

interested to disentangle the effects of the ERAS items on

primary and secondary outcomes. The treatment is con-

founded with the patient’s characteristics and to address

this problem we follow the potential outcome approach to

causal inference as proposed by [11, 12] and we extend the

IPT weighed estimator [13, 14] to a multivariate LC-2PL

model [15]. The estimation of the probability to be treated

is made sequentially along pre-treatment covariates and

blocks of treatments (see Fig. 1).

Differently from previous proposals we suppose the

counterfactual outcomes as latent variables denoted as U
0ð Þ
i

and U
1ð Þ
i indicating for each patient i; i ¼ 1; . . .; n, the

variable under the non-treated and treaded status, respec-

tively. An underlying latent variable Ui is assumed to

depend on both U
0ð Þ
i and U

1ð Þ
i as well as on the treatments

(see Fig. 1). We assume local independence [5, 16]

meaning that the observed outcomes are conditionally

independent given the potential latent variables and the

treatments administered sequentially.

In what follows, first we describe the estimation of the

probability of treatment exposure given the pre-treatment

covariates and each block of ERAS items (according to the

arrows depicted in Fig. 1). This estimation is made by a

sequence of linear or logistic regressions. Next, we calcu-

late weights for each patient as the inverse of the proba-

bility of the observed treatment sequence. Third, we use

stabilized weights to estimate a weighted causal LC-2PL

model on the primary and secondary outcomes. The esti-

mation is carried out through the maximization of a

weighted log-likelihood employing the Expectation–Max-

imization algorithm (EM [17]). We rely on the Bayesian

Information Criterion [BIC 18] through which we choose

the suitable number of latent components. Fourth, we

estimate the selected model by adding the covariates

through a convenient parameterization considering the first

latent class as reference since it identifies the subpopulation

of patients recovered as expected.

The latent class model [4, 5] first proposed by [19] to

classify units within a probabilistic approach is formulated

as a finite mixture model [20]. Following some recent

proposals in the literature, we formulate a multivariate LC-

2PL model [21] to infer causal effects within observational

studies [15, 22, 23]. We introduce a novel use of this model

by attempting to estimate the effects of various sequential

interventions on patients entered in the ERAS project. We

model the marginal distribution of the counterfactual

variables [6, 24, 25] and as a result the estimated regression

coefficient encode the magnitude of the ATET [8]. In this

way we mimic an artificial random assignment scenario

essential to account for differences among patients. As

pointed out by [7] the use of the Inverse-Probability-of-

Treatment Weighting [IPTW 26] allow us to disentangle

the association between the observed confounding vari-

ables and treatments thus permitting to reduce bias due to

confounding.

A causal latent variable model

The potential outcomes of the patient are usually referred

to as Y
1ð Þ

i if the patient is exposed to treatment Zi and as

Y
0ð Þ

i if the patient is not exposed with i, i ¼ 1; . . .; n. The

treatment effect is given by the difference Y
1ð Þ

i � Y
0ð Þ

i and

the expected value of this difference over the entire pop-

ulation of treated patients is defined as the ATET. We

instead postulate the existence of the underlying latent

potential variables denoted as U
zð Þ
i and we define the ATET

as

ATET ¼ E U
1ð Þ
i � U

0ð Þ
i jZi ¼ 1

� �
;

for i, i ¼ 1; . . .; n, and of the latent variable Ui depending

on the treatment through the latent potential variables as

follows

Ui ¼ 1� Zið ÞU 0ð Þ
i þ ZiU

1ð Þ
i :

For this latent variable we assume a discrete distribution

left unspecified with a finite number of support points

ranging from 1 to k.

Let Yir be the observed binary response referred to

outcome r; r ¼ 1; . . .; p for each patient i; i ¼ 1; . . .; n;

randomly drawn from the population. Following [27, 28]

we extend the proposal of [15] to estimate patient specific

weights. We formulate the following assumptions: i) con-

ditional exchangeability meaning that the latent potential

outcomes are independent on the treatment given the

covariates, ii) positivity (ignorable treatment assignment)

meaning that there is a positive probability for every

patient of receiving any type of treatment, iii) consistency

implying that the latent potential variables are well-defined

and as a result any observed outcome is the potential

variable corresponding to the observed treatment sequence.

Let xi denotes the covariates for patient i observed prior

to the treatment assignment, the weight for this patient

corresponds to the inverse of the conditional probability of

receiving the treatment. In the case of a binary treatment

we use the following logit model to estimate this

probability
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pi = log
P Zi ¼ 1jxið Þ
P Zi ¼ 0jxið Þ ¼ aþ x

0

ic;

where a and c0 denotes the intercept and the vector of

regression coefficients respectively. The weights are

estimated sequentially according to the blocks of the

ERAS items illustrated in Fig. 1. The arrows reported in

this figure pointing from the risk factors into the other

blocks indicate that the treatment is confounded and

causally endogenous. The overall weight of patient i is

determined as the sum of the product of the estimated

inverse-probabilities of the treatments in each block as

follows

ŵi ¼
XV
v¼1

1QJ
j¼1 pij

;

where v ¼ 1; . . .;V denotes the block and j; j ¼ 1; . . .; J
denotes the treatment in each block. The weights are sta-

bilized by trimming them up to certain level to avoid high

variability [23].

The dependence of the potential latent variables is

modelled through the following multinomial logit model

log
p U

zð Þ
i ¼ u

� �

p U
zð Þ
i ¼ u� 1

� � ¼ b0u þ d zð Þ0b1u

where u ¼ 2; . . .; k; b0u is the intercept specific of each

latent class, d zð Þ is a vector with elements equal to 1 for

treated patients and b1u is the vector of parameters that

define the ATET in the distribution of the latent variables.

Another set of parameters is referred to the conditional

distribution of the observed outcomes and it is defined as

p Yir ¼ 1jU zð Þ
i ¼ u

� �
¼ 1

1þ exp �gr ni � drð Þ½ � ;

where u ¼ 1; . . .; k; gr is a parameter measuring the dis-

criminating power of the outcome r; r ¼ 1; . . .; p, dr is

another parameter measuring the difficulty of the outcome,

and ni indicates the point on the latent continuum where

patient i; i ¼ 1; . . .; n is located. This is a 2PL model

specification for the dichotomously scored outcomes.

The model is estimated through a weighted log-likeli-

hood function by considering a sample of n independent

patients for which we observe the multivariate binary

outcomes. The target log-likelihood function is

l hð Þ ¼
Xn
i¼1

ŵili hð Þ;

where h denotes the overall vector of free parameters

arranged in a suitable way. This weighted log-likelihood is

maximized through the EM algorithm [17]. The latter

estimates the model parameters considering as missing data

the vector of latent variables. Then E-step of the algorithm

computes the conditional expected value of the complete-

data log-likelihood given the observed data and the current

value of the parameters. The M-step updates the parameters

maximizing the expected value of the quantity computed at

the E-step. The two steps are alternated repeatedly until a

convergence criterion is reached.

In order to choose the best number of latent classes and

to discover meaningful groups of patients in the population

we apply a model selection strategy. The resulting sub-

populations should be internally cohesive and well sepa-

rated from one another. We rely on the BIC index [18] that

is a measure of the relative goodness of fit of the model

able to account simultaneously for its accuracy and com-

plexity. It is defined as

BIC ¼ �2lðĥÞ þ log nð Þ#par;

where lðĥÞ denotes the maximum of the weighted log-

likelihood of the model with k latent classes, #par denotes

the number of free parameters and n is the sample size. The

model is estimated for an increasing number of latent

classes and the best model is selected as that before the BIC

starts to increase. Once the suitable number of latent

classes is selected every patient is allocated to a latent class

according the highest posterior probability. Standard errors

for the estimated parameters are obtained as the square root

of the diagonal elements of the inverse of the observed or

expected information matrix computed through numerical

methods.

Results

The available observations are related to 1261 patients

operated between 2014 and 2018. Table 1 shows some

descriptive statistics. The model is estimated by using the

open source software R [29] through the package

multiLCIRT [30]. As far as we know there are no other

software able to account for the multidimensionality of the

responses and latent variables with a discrete distribution.

For replicability purposes the code to estimate the proposed

model is available from the repository at the following link

https://github.com/penful/Eras. The complete results are

available from the authors upon request.

Results for the primary outcomes

The multivariate causal LC-2PL model is estimated for a

number of latent classes ranging from 1 to 5. According to

the lowest value of the BIC index we select the model with

three latent classes. Table 2 reports on the estimated con-

ditional probabilities of the primary outcomes. The first

class, which encompasses 47% of the patients, presents low
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probability of complications and of late discharge. The

second class, representing 35% of the patients, exhibits a

high probability of late TRD and actual discharge although

complications are improbable. Patients in the third class,

accounting for the remaining 18% of patients, present high

probability of complication and late TRD and actual dis-

charge. Since these subpopulations are ordered according

to the outcome occurrence we define the first LC as that

representing the subpopulation of the best performing

patients, the second that of intermediate patients and the

third that of worst performing patients.

By looking at the estimated ATETs defined with respect

to the first LC chosen as reference due to the fact that it

collects patients with the best outcomes, we evaluate the

efficacy of each intervention. Table 3 reports on the esti-

mated ATETs of being in the 1st rather than in the 2nd LC.

The estimated regression coefficients in the upper part of

Table 1 Frequency distribution of the available data

Characteristics

Colon (vs rectal) surgery 962 (76.29)

Malignant lesion 1058 (83.90)

Blood transfusion 116 (9.20)

Preoperative treatment

Preoperative hospital stay (days) 1.56 ± 3.56

Bowel preparation 160 (12.69)

Glucidic drink 887 (70.34)

Premedication 522 (41.40)

Intraoperative treatment

IV fluids (ml/kg/h) 8.95 ± 4.43

Epidural anesthesia 468 (37.11)

Antibiotic prophylaxis 1243 (98.57)

Maintenance of normothermia 1243 (98.57)

PONV prophylaxis 940 (74.54)

Surgical drainage 862 (68.36)

Postoperative treatment

IV fluids on POD 1 (ml/kg) 21.57 ± 11.24

Morphine 458 (36.32)

Thrombosis prophylaxis 1250 (99.13)

Prokinetics 368 (29.18)

Removal of NGT (POD) 0.16 ± 0.73

Stop of IV fluids (POD) 2.52 ± 2.52

UC removal (POD) 1.74 ± 1.96

Ambulation within POD 1 1043 (82.71)

Covariates

Age (yrs) 67.25 ± 11.78

Male gender 676 (53.61)

ASA[ 2 441 (34.97)

Baseline serum hb (mg/dl) 12.86 ± 1.98

Preoperative weight loss 84 (6.66)

Diabetes mellitus 162 (12.85)

Intraoperative fluid loss (ml/kg) 4.81 ± 2.60

Length of surgery (min) 203.26 ± 75.63

Max pain on POD 1–4 (NRS) 3.55 ± 2.02

Laparotomy 251 (19.90)

Surgical stoma 192 (15.23)

Primary outcomes

Any complication 259 (20.54)

Medical complication 67 (5.31)

SSI 91 (7.22)

TRD after POD 5 6.26 (4.75)

Discharge after POD 6 6.6 (4.64)

Secondary outcomes

Bowel function recovery (POD) 1.9 (1.11)

IV fluids resumption 158 (12.53)

NGT replacement 96 (7.61)

PONV occurrence 133 (10.55)

Surgical re-intervention 59 (4.68)

Table 1 continued

Characteristics

Hospital re-admission 23 (1.82)

Death within POD 30 7 (0.56)

ASA: American Society of Anesthesia status score; PONV: postop-

erative nausea and vomiting; POD: postoperative day; NGT: naso-

gastric tube; SSI: surgical site infection; hb: serum hemoglobin;

IV: intravenous; UC: urinary catheter; TRD: time ready to discharge.

Categorical variables are reported as number (percentage), continuous

variables as mean ± standard deviation. The year of the surgery is

omitted from the table

Table 2 Estimated probability of each latent class and estimated

conditional probabilities of the multivariate causal latent class two-

parameter logistic model for the primary outcomes

Latent class

1 2 3

Estimated probability of each Latent Class 0.47 0.35 0.18

Estimated conditional probability for primary outcomes

Any complication 0.07 0.08 0.82

SSI 0.01 0.01 0.35

Medical complication 0.02 0.02 0.28

TRD after POD 5 0.00 0.94 0.95

Discharge after POD 6 0.00 0.65 0.87

SSI: surgical site infection; TRD: time ready for discharge;

POD: postoperative day. Any complications, SSI and medical com-

plication measure the first dimension, TRD after POD 5 and Dis-

charge after POD 6 measure the second dimension
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the table indicate that no bowel preparation, colon surgery,

ambulation within POD 1, IV fluid stop within POD 2,

urinary catheter removal within POD 1, epidural anesthe-

sia, and not inserting any surgical drainage significantly

favor being in the class of best performing patients (1st LC)

rather than in the group of less (intermediate) performing

patients (2nd LC).

The estimated regression coefficients in the bottom part

of the table indicate that preoperative hospital stay,

malignant lesion, and blood transfusion significantly favor

being in the group of intermediate performing patient (2nd

LC) with respect to best performing (1st LC).

Table 4 reports on the estimated ATETs of being in the

2nd rather than in the 3rd LC. The estimated regression

coefficients in the upper part of the table indicate that

ambulation within POD 1, epidural anesthesia, IV fluid

stop within POD 2, urinary catheter removal within POD 1,

and not inserting any surgical drainage favor being in the

class of intermediate performing patients (2nd LC) rather

than in the group of worst performing patients (3rd LC).

The estimated regression coefficients in the bottom part

of the table indicate that postoperative fluids, preoperative

hospital stay, PONV prophylaxis, premedication, and

blood transfusion significantly favor being in the group of

worst performing patients (3rd LC) rather than stay in the

intermediate group of patients (2nd LC).

Results for the secondary outcomes

The multivariate causal LC-2PL model for the secondary

outcomes is estimated as the previous model for a number

of latent classes ranging from 1 to 5. According to the

lowest value of the BIC index we select the model with two

latent classes. The estimates of the model parameters for

the secondary outcomes are reported in Tables 5 and 6.

According to the results showed in Table 5 we notice that

both latent classes have a similar probability of bowel

function recovery after POD 1 (0.51 and 0.56 respectively)

and a null or very low probability of death before POD 30

(0.00 and 0.01 respectively). The first class (78% of

patients) exhibits low probability for all the other sec-

ondary outcomes. In the second latent class IV fluid

resumption, NGT replacement, PONV occurrence and

surgical re-intervention are sensibly more probable, while

hospital re-admission is only slightly more probable.

Table 6 reports on the estimated ATETs of being in the

1st rather than in the 2nd LC. The estimated regression

coefficients in the upper part of the table indicate that

Table 3 Estimated effects of the causal latent class two-parameter logistic model for being in the 1st latent class rather than in the 2nd latent

class for the primary outcomes. Estimated standard errors and asymptotic confidence interval at confidence level of 0.95

1st versus 2nd Latent Class Estimated coefficient S.E. CI

Intercept 1.49 1.08 (- 0.63, 3.61)

No bowel preparation - 0.85* 0.51 (- 1.21, -0.43) Favor being in the 1st LC

Colon surgery - 0.82*** 0.20 (- 1.85, 0.15)

Ambulation within POD 1 - 0.76*** 0.21 (- 1.17, -0.35)

IV fluid stop within POD 2 - 0.75*** 0.17 (- 1.08, -0.42)

UC removal within POD 1 - 0.62*** 0.19 (- 0.99, -0.25)

Epidural anesthesia - 0.39** 0.18 (- 0.74, -0.04)

No surgical drainage - 0.35* 0.18 (- 0.70, 0.00)

Prokinetics - 0.15 0.16 (- 0.46, 0.16)

NGT removed on POD 0 - 0.15 0.27 (- 0.68, 0.38)

Morphine - 0.05 0.16 (- 0.36, 0.26)

Preoperative glucidic drink - 0.04 0.16 (- 0.35, 0.27)

Intravenous fluids - 0.02 0.02 (- 0.06, 0.02)

IV fluids during POD 1 0.01 0.01 (- 0.01, 0.03) Favor being in the 2nd LC

Preoperative hospital stay 0.05** 0.02 (0.01, 0.09)

PONV prophylaxis 0.08 0.19 (- 0.29, 0.45)

Premedication 0.40 0.24 (- 0.07, 0.87)

Malignant lesion 0.45** 0.20 (0.06, 0.84)

Thromboembolism prophylaxis 0.69 0.90 (- 1.07, 2.45)

Blood transfusion 1.16** 0.32 (0.53, 1.79)

LC: latent class; IV: intravenous; UC: urinary catheter; NGT: nasogastric tube; POD: postoperative day. Significance levels for the test based on

the estimated standard errors that each parameter is equal to zero: *significant at 1%; **significant at 5%; ***significant at 10%
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thromboembolism prophylaxis, ambulation within POD 1,

IV fluid stop within POD 2, NGT removal on POD 0, not

inserting any surgical drainage, and epidural anesthesia

favor being in the class of best performing patients (1st LC)

rather than in the group of the worst performing patients

(2nd LC).

The estimated ATETs in the bottom part of the

table indicate that blood transfusion, preoperative glucidic

drink, and prokinetics significantly favor being in the group

of the worst performing patient (2nd LC) with respect to

best performing (1st LC).

Discussion

With respect to our primary outcomes, the model points out

three classes of patients. The first one has a high probability

of good outcome and represents the majority of our patients.

The second class exhibits possibly prolonged TRD and

discharge notwithstanding the absence of complications.

The third class presents high probability of both complica-

tions and prolonged TRD and discharge. Five variables

positively affect the outcomes (ambulation within POD 1,

IV fluid stop within POD 2, urinary catheter removal within

POD 1, epidural anesthesia, and not inserting any surgical

drainage). Two variables negatively affect the outcomes

(preoperative hospital stay and blood transfusion).

With respect to our secondary outcomes, three of them

could not contribute to discrimination between classes of

patients, since their probability was uniformly either low

(hospital re-admission and death within POD 30) or high

(bowel function recovery after POD 1). The model points

out two classes of patients: a first class with high proba-

bility of good outcome (including the majority of our

patients), and a second one with high probability of IV fluid

resumption, NGT replacement, PONV occurrence, and

surgical re-intervention. Six variables positively affect the

secondary outcomes and four of them do the same for the

primary outcomes (ambulation within POD 1, IV fluid stop

within POD 2, epidural anesthesia, and not inserting any

surgical drainage). Four variables negatively affect the

secondary outcomes and one of them does the same for the

primary outcomes (blood transfusion).

Our results contribute to the ongoing debate about the

existence of ERAS ‘‘core-items’’. In fact, although it is

recognized that the complete ERAS protocol is the best

way to improve postoperative outcome, the number and

relative combination of the ERAS items implemented in

Table 4 Estimated effects of the causal latent class two-parameter logistic model for being in the 2nd rather than in the 3rd latent class for the

primary outcomes. Estimated standard errors and asymptotic confidence interval at confidence level of 0.95

2st versus 3rd Latent Class Estimated coefficient S.E. CI

Intercept 2.08* 1.14 (- 0.15, 4.31)

Ambulation within POD 1 - 1.51*** 0.28 (- 2.06, - 0.96) Favor being in the 2nd LC

Thromboembolism prophylaxis - 1.12 0.83 (- 2.75, 0.51)

Epidural anesthesia - 0.90*** 0.27 (- 1.43, - 0.37)

IV fluid stop within POD 2 - 0.81*** 0.24 (- 1.28, - 0.34)

UC removal within POD 1 - 0.68** 0.26 (- 1.19, -0.17)

No surgical drainage - 0.67** 0.26 (- 1.18, - 0.16)

No bowel preparation - 0.48 0.72 (- 1.89, 0.93)

Colon surgery - 0.36 0.28 (- 0.91, 0.19)

Prokinetics - 0.31 0.25 (- 0.80, 0.18)

NGT removed on POD 0 - 0.08 0.36 (- 0.79, 0.63)

Intraoperative fluids - 0.04 0.03 (- 0.10, 0.02)

IV fluids during POD 1 0.02** 0.01 (0.00, 0.04) Favor being in the 3rd LC

Preoperative hospital stay 0.05** 0.02 (0.01, 0.09)

Preoperative glucidic drink 0.20 0.22 (- 0.23, 0.63)

Morphine 0.24 0.21 (- 0.17, 0.65)

Malignant lesion 0.38 0.28 (- 0.17, 0.93)

PONV prophylaxis 0.54** 0.28 (- 0.01, 1.09)

Premedication 0.97*** 0.33 (0.32, 1.62)

Blood transfusion 1.90*** 0.35 (1.21, 2.59)

LC: latent class; IV: intravenous; UC: urinary catheter; NGT: nasogastric tube; POD: postoperative day. Significance levels for the test according

to the estimated standard errors that each parameter is equal to zero: *significant at 1%; **significant at 5%; ***significant at 10%
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previous works varied across studies without substantial

differences in postoperative short-term outcomes [31, 32].

Indeed, several studies imply that some ERAS elements

may be more significant than others in affecting outcome

[33–36] and that simplified protocols could yield compa-

rable results [23, 24]. A systematic review suggests that the

number of implemented ERAS items does not affect out-

come and that applying only some core-items is sufficient

to obtain the benefits of the ERAS program [37]. In con-

trast, a large cohort of patients from the ERAS Society

Registry suggested that the improvement in clinical out-

come provided by an ERAS program was directly corre-

lated with the number of implemented items and the degree

of compliance to the protocol [38, 39].

In addressing these issues no previous study adequately

considered the dependency of multivariate outcomes from

confounding variables and non-compliance to ERAS items,

the inter-relation between ERAS items themselves, and the

composite nature of the primary and secondary outcomes at

stake.

The estimation of treatment effects in observational

studies when the treatment assignment depends on the

sequence of previous assignments and on time-varying

confounders is still a matter of debate. The main advantage

over the standard simple multinomial logit model is that

our counterfactual framework assesses causal associations,

corrects for pre-treatment confounders and for multiple

treatment conditions in order to reduce the bias due to

confounding. Another advantage is that it is a multivariate

model-based clustering method and allows us to properly

account for suitable groups able to disentangle the

heterogeneous population of patients. Moreover, it yields a

classification that uses the maximum a-posteriori estimates

of the model parameters.

The results of the application provide evidence that

waiving bowel preparation increases the probability of

good outcome. Recent ERAS guidelines on colonic surgery

and a large meta-analysis of more than 21,000 patients

agree that mechanical bowel preparation is not associated

to any reduction in postoperative complications, mortality,

and length of hospital stay when compared with no

preparation [40, 41]. Actually, waiving preoperative

mechanical bowel preparation reduces the risk of preop-

erative dehydration and the possibly associated electrolyte

disorders. This favors a reduction in fluid administration

and the reaching of zero fluid balance. Moreover, a pos-

sible increment in Gram-negative bacterial components of

the intestinal flora is associated with bowel preparation

[42].

Recent studies demonstrate how a balanced intraopera-

tive goal directed therapy reduces mortality, overall mor-

bidity, and the time to first flatus and to oral feeding [43].

The ERAS guidelines clearly state that postoperative IV

fluid administration is not necessary if oral intake is pos-

sible and that early oral feeding is safe and well tolerated

by the majority of patients after colorectal surgery [44].

Early stop of IV fluid infusion and urinary catheter

removal, together with good pain control and no surgical

drainage, foster patients’ mobilization after surgery. A

reduction of postoperative pulmonary and thromboembolic

complications and a regain of preoperative functional

capacity and muscular strength are strictly related to early

postoperative mobilization [45].

The results suggest that epidural analgesia exerts a

favorable effect on outcome and therefore they confirm the

findings of other studies according to which epidural

analgesia after laparotomy provides optimal pain control

and reduces the inflammatory stress response. This reduces

the incidence of pulmonary and cardiovascular

Table 5 Estimated probability of each latent class and estimated conditional probabilities of the multivariate causal latent class two-parameter

logistic model for the secondary outcomes

Latent class

1 2

Estimated probability of each Latent Class 0.78 0.22

Estimated conditional probability for secondary outcomes Bowel function recovery after POD 1 0.51 0.56

IV fluid resumption 0.03 0.57

NGT replacement 0.00 0.34

PONV occurrence 0.08 0.41

Surgical re-intervention 0.01 0.16

Hospital re-admission 0.00 0.07

Death within POD 30 0.00 0.01

POD: postoperative day; IV: intravenous; NGT: nasogastric tube; PONV: postoperative nausea and vomiting measure the first dimension and the

remaining outcomes measure the second dimension
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complications, in particular in frail patient [46, 47]. Nev-

ertheless, the role of thoracic epidural analgesia after

laparoscopic procedures is controversial and the impor-

tance of multimodal analgesic sparing-opioids strategies is

widely accepted in less invasive surgery. Studies address-

ing purely laparoscopic colonic surgery suggest caution

towards epidural analgesia [48]. It should be noted that,

although laparoscopy is widely recognized as a predictor of

faster recovery, this effect was not apparent in our results.

The negative effect of a prolonged preoperative hospital

stay, which we observed, deserves attention. Serious

comorbidities requiring longer preoperative hospitalization

can make it difficult to optimize patients’ conditions and

preserve functional capacity before surgery. It has been

recently demonstrated that a decline in preoperative func-

tional capacity, determined by the Duke score activity

index, is associated to increased myocardial infarction and

death 30 days and one year after major non-cardiac surgery

[49]. Prehabilitation, as preoperative optimization of

patients’ condition, is a key ERAS concept [50]. However,

it is evident that this should not prolong the preoperative

hospital stay. Our analysis supports the hypothesis that

preoperative hospital stay may even impair prehabilitation.

Our results on the adverse effect of blood transfusion on

outcome support the evidence that a careful management of

preoperative anemia through iron supplemental therapy can

improve overall morbidity and mortality by reducing the

need for blood transfusion in the perioperative period

[39, 51].

A possible limitation of our study is related to con-

ceivable differences between the participating hospitals

and through the time span of the data collection, both in the

degree of ERAS pathway implementation and in the

baseline standard of care. A potential selection bias could

be at stake, despite all centers have been invited to submit

consecutive elective patients. Nevertheless, the wide mix

of ages and comorbidities included indicates a small like-

lihood of selection bias among patients.

The major strength of our proposal resides in the fea-

tures of the proposed statistical method. Moreover, we

accessed a dedicated ERAS database from which we

derived the data used for the analyses and we used a val-

idated indicator of short-term recovery such as the TRD

[10].

Table 6 Estimated effects of the causal latent class two-parameter logistic model for being in the 1st latent class rather than in the 2nd latent

class for the secondary outcomes. Estimated standard errors and asymptotic confidence interval at confidence level of 0.95

1st vs 2nd LC Estimated coefficient S.E. CI

Intercept 1.24 1.37 (- 1.45, 3.93)

Thromboembolism prophylaxis - 2.56*** 0.80 (- 4.13, - 0.99) Favor being in the 1st LC

Ambulation within POD 1 - 1.48*** 0.27 (- 2.01, - 0.95)

IV fluid stop within POD 2 - 1.45*** 0.25 (- 1.94, - 0.96)

NGT removed on POD 0 - 1.21*** 0.36 (- 1.92, - 0.50)

No bowel preparation - 0.77 0.92 (- 2.57, 1.03)

No surgical drainage - 0.48* 0.27 (- 1.01, 0.05)

Epidural anesthesia - 0.47* 0.27 (- 1.00, 0.06)

Colon surgery - 0.23 0.28 (- 0.78, 0.32)

PONV prophylaxis - 0.13 0.28 (- 0.68, 0.42)

UC removal within POD 1 - 0.04 0.26 (- 0.55, 0.47)

Intraoperative fluids - 0.02 0.03 (- 0.08, 0.04)

Morphine - 0.02 0.23 (- 0.47, 0.43)

IV fluids during POD 1 - 0.01 0.01 (- 0.03, 0.01)

Preoperative hospital stay 0.00 0.03 (- 0.06, 0.06) Favor being in the 2nd LC

Malignant lesion 0.04 0.30 (- 0.55, 0.63)

Premedication 0.46 0.38 (- 0.28, 1.20)

Blood transfusion 0.87** 0.33 (0.22, 1.52)

Preoperative glucidic drink 0.97** 0.28 (0.42, 1.52)

Prokinetics 1.22** 0.20 (0.75, 1.69)

LC: latent class; IV: intravenous; UC: urinary catheter; NGT: naso-gastric tube; POD: postoperative day. Significance levels for the test based on

the estimated standard errors that each parameter is equal to zero: *significant at 1%; **significant at 5%; ***significant at 10%
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Conclusion

We analyze a colonic surgery ERAS database by proposing

a multivariate causal latent class two-parameter logistic

model. This modern statistical method overcomes several

drawbacks of traditional methods to estimate average

treatment effects on the treated. Since we are dealing with

observational studies we employ a propensity score

method. We propose to use a maximum likelihood

approach by employing weights estimated through the

inverse-probability of receiving the treatments. In this way,

we avoid rough comparisons of patients thus producing a

valid inference and reducing the possibility of biased

treatment effects. As noted by [52] generally a simple

covariate adjustment cannot be able to produce unbiased

estimates of the model parameters. The proposed method

of analysis is able to account for patient heterogeneity and

it constitutes a general approach for the analysis of data

arising in similar medical contexts.

According to the results early postoperative ambulation

and IV fluid stop, epidural anesthesia, and waiving any

surgical drainage exert a favorable effect on primary out-

comes (time ready for discharge and actual discharge from

hospital, and occurrence of any complication, surgical site

infection, and medical complications), while prolonged

preoperative hospital stay and blood transfusion act

unfavorably.
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