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Abstract Intravenous fluid management of trauma patients is fraught with complex decisions that are often com-

plicated by coagulopathy and blood loss. This review discusses the fluid management in trauma patients from the

perspective of the developing world. In addition, the article describes an approach to specific circumstances in trauma

fluid decision-making and provides recommendations for the resource-limited environment.

Initial resuscitation fluid management

Background

Fluid resuscitation of trauma patients has been an ongoing

challenge, constantly reviewed and debated, resulting in

recommendations changing for the use of crystalloids/col-

loids/packed red blood cells/warm fresh whole blood and

clotting factors. Other challenges, such as limited resour-

ces, impact the practitioners’ choice of fluid—the best fluid

available does not always equate to the best fluid for the

patient, especially where long transfers and no blood

availability are concerned. These decisions and manage-

ment strategies appear relevant for further discussion and

research, as this fluid resuscitation attempts to provide

adequate organ perfusion and oxygen delivery in a system

compromised by the physiological consequences of injury.

Several questions have arisen from this topic: Which fluid

is best, how much should be given, and do specific inju-

ries call for different strategies (for example, penetrating

vs. blunt trauma)? Achieving balance in the resuscitation

period is challenging, particularly the volume adminis-

tered. More fluid is not always better, in fact, quite the

contrary [1–3]. Much of the literature on fluid resuscita-

tion focuses on critically ill patients with sepsis, or elec-

tive perioperative patients [4–7]. Small cohorts of trauma

patients can be found in the larger studies, but it should be

remembered that most of these data include patients from

the ICU setting [4, 5]. Extrapolation of data to the initial

resuscitation phase of the trauma patient is not possible

[8, 9]. This article emphasizes different types of fluid

available, when they should be used, and recommenda-

tions on how to tailor fluid resuscitation through moni-

toring techniques. The goals of improving physiology,

restoring or maintaining normothermia and minimizing

coagulopathy should be considered paramount throughout

the discussion.
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Penetrating versus blunt injury versus head injuries

There are three distinct groups of trauma patients, but often

there is an overlap. Most commonly encountered is the

combination of blunt trauma and head injury associated

with motor vehicle collisions. While the general Advanced

Trauma Life Support (ATLS) management approach to the

three groups remains similar, fluid therapy strategies differ.

The literature suggests patients with penetrating injuries,

particularly to the thoracoabdominal region, have better

outcomes with restrictive clear fluid resuscitation policies,

permitting a systolic blood pressure (BP) between 60 and

70 mmHg until the patient can be taken to the operating

theater [10]. Once hemorrhage has been controlled in

theater and blood products are available, higher blood

pressure values may be targeted. There have been no large

trials comparing restrictive and liberal fluid strategies in the

context of blunt injury. However, a restrictive policy is

acceptable with slower infusions favored over rapid bolu-

ses [10]. A slightly higher systolic blood pressure of

80–90 mmHg is permitted, again, until control in theater is

achieved and blood products are available. This restrictive

policy is thought to minimize intra-abdominal bleeding

while maintaining adequate organ perfusion and reducing

the risk of intra-abdominal hypertension and complications

mentioned previously. It should be remembered, however,

that clinical scenarios are often complicated, and blood

pressure goals should be individualized according to

patient physiology, comorbidities and physiological com-

pensation to shock during the time of resuscitation.

The exception to the guidelines above is the polytrauma

patient (blunt or penetrating) with traumatic brain injury

(TBI). In order to preserve adequate cerebral perfusion

pressure and prevent secondary brain injury, one needs to

target a mean arterial pressure (MAP) of greater than

80 mmHg (a cerebral perfusion pressure of approximately

60 mmHg) [10].

Clear fluid resuscitation

The ongoing debate as to which group of fluid (synthetic

colloid or crystalloid solutions [3]) is best to use in the

resuscitation phase of trauma patients remains unanswered

with large studies showing little, if any benefit of hydrox-

yethyl starch 130/0.4 [11] over the traditionally used

crystalloids. The CRISTAL trial did identify a potential

mortality benefit in a heterogeneous hypovolemic patient

cohort resuscitated with a variety of colloid solutions

compared to crystalloid solutions. However, several limi-

tations identified by the authors limits applicability: the

lack of renal injury and potential 90-day outcome benefit,

deserve further research [7]. When reviewing the available

literature, in several trials recruitment and consent

requirements resulted in the comparison of fluids com-

mencing after the initial resuscitation phase, resulting in

interpretation difficulties of outcome benefit in trauma

patients [4, 5, 7, 12]. These studies do, however, demon-

strate a trend toward less synthetic colloid fluid required to

achieve hemodynamic goals compared to crystalloids with

a ratio (volume of colloid to crystalloid that results in

similar physiological effects) varying between 1:1.1 and

1:1.6 (colloids:crystalloids) [4, 5, 7, 12]. This ratio is

smaller than previously thought (ATLS teaches a ratio of

1:3), and significance in subgroups of patients is yet to be

determined. Concerns still exist about the adverse effects of

hydroxyethyl starch 130/0.4 on renal function and coagu-

lopathy although crystalloid fluids are not without com-

plications [7]. Further studies need to be done comparing

these crystalloids and colloids in the initial resuscitation

phase of trauma patients. A further concern is the chloride

load administered in these fluids and the potential contri-

bution toward acidosis and renal injury [13]. The resultant

hyperchloremic metabolic acidosis may have negative

consequences. The meta-analysis by Krajewski et al. [13]

showed a significant association between high chloride

content fluids and acute kidney injury, blood transfusion

volume and mechanical ventilation time. Mortality was

unaffected in this population of perioperative patients.

Despite this, 0.9% saline remains widely used as a resus-

citation fluid and remains the fluid of choice for patients

with brain injury, hyponatremia and metabolic alkalosis.

Balanced salt solutions (solutions with a physiological pH

and isotonic electrolyte concentration), being more physi-

ological in nature, are being used more frequently, showing

a trend toward less harm than 0.9% sodium chloride—

whether in isolation or as a medium carrying a colloid [14].

Balanced salt solutions closely resemble human plasma

and thus have a lower sodium and chloride content than

0.9% saline with the addition of a buffer such as acetate or

lactate. These fluids (e.g., Ringer’s lactate, Hartmann’s

solution) have minimal effects on pH but are hypotonic, so

can exacerbate edema, particularly cerebral edema in the

injured brain. In addition, when using Ringer’s lactate

solution, consideration should be given to the potential

interaction between citrate found in stored blood and

bicarbonate, explaining why 0.9% saline is still a com-

monly used resuscitation fluid in trauma patients, despite

the high chloride load [15]. The concerns regarding the

inflammatory effects from Ringers lactate infusions,

demonstrated in animal models, have not been demon-

strated to influence outcomes in human studies. Of greater

concern are the negative consequences of hyperchloremic

metabolic acidosis. There are no large randomized control

trials demonstrating a mortality benefit for 0.9% saline over

balanced solutions. Currently, saline is preferred in brain-

injured patients and balanced solutions are preferred in
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patients who are already acidotic. Although only in an

porcine model, resuscitation after severe hemorrhage with

0.9% saline was inferior to ringers lactate due to

vasodilatory effect, and risks of metabolic acidosis and

hyperkalemia [16]. In elective neurosurgical patients, lac-

tated ringers also proved better than 0.9% saline in terms of

electrolyte management (particularly sodium and chloride)

and acid–base balance [17].

In the resource-limited environment, the use of cheaper

crystalloid solutions is still recommended due to lack of

data showing significant outcome benefits of more expen-

sive synthetic colloids. A selection of different crystalloid

solutions is often not available in resource-limited settings,

making the available solution the only and best choice. In a

Cochrane review, the use of hypertonic saline for the

resuscitation of trauma victims has failed to show any

benefit over isotonic or near-isotonic crystalloids and two

adequately powered trials investigating mortality as an

endpoint were halted early due to futility. Controversy,

however, still continues fueled by animal studies demon-

strating benefits that have not been reflected as outcome

benefits in human studies [18]. Heterogeneous populations

and methodological differences between studies make the

interpretation of evidence difficult. Hypertonic saline may

have a role when used in the head-injured patient as a

bridge to neurosurgery [19].

Several trials show either no benefit, or in some cases

worse outcomes, with albumin thus making this solution

not recommended in the resuscitation of trauma patients

[20–22].

The physiological impact of the volume of fluid infused

may be as, or even more important than the type selected

[2, 23–26]. Excessive fluid results in a dilutional coagu-

lopathy and diffuse tissue edema. This negatively impacts

organ function at both a macroscopic and cellular level by

increasing the distance over which electrolytes, elements

and oxygen have to move [3]. The consequence is wors-

ening renal, hepatic and cardiac function as well as

increasing volume of extra vascular lung water that wors-

ens ventilation–perfusion mismatch. Abdominal hyperten-

sion/compartment syndrome may progress to a

polycompartment syndrome [23, 26].

Therefore, until such time as blood and blood products

are available, clear fluid resuscitation should be limited to

only that which is necessary to maintain adequate organ

perfusion. Several factors influence decisions at this point

of the resuscitation. Trauma units with easy access to on-

site blood and blood products should commence resusci-

tation of patients with massive blood loss with these

products from the start. In environments where blood

products are limited, the authors suggest judicious use of

clear fluids to sustain organ perfusion while avoiding the

negative effects of excess fluid. Response to fluid

administration and determining the need for further fluid

administration is discussed in the next section.

As defined by the Advanced Trauma Life Support

course, classification of patients into those that respond to

initial fluid resuscitation versus those that only transiently

respond or do not respond at all is important. The

response to intravenous fluid resuscitation is assessed

using physiological markers of improvement such as

blood pressure, heart rate, decreasing lactate and nor-

malizing base deficit with adequate control of bleeding.

Responders are considered those that demonstrate these

physiological improvements, whereas transient responders

show an initial improvement followed by further physio-

logical deterioration. Non-responders are those that show

continued physiological deterioration despite initial fluid

resuscitation. The distinction requires vigilance and

repeated clinical assessments to identify those patients

with re-bleeding, or ongoing bleeding, and initiation of

blood product resuscitation together with surgical inter-

vention. What may be regarded as acceptable physiologi-

cal parameters will vary depending on many factors

including the age, underlying medication and comorbidi-

ties of the patient.

See Fig. 1 for a guide to initial fluid management in

trauma patients.

Blood and blood products

The goal of resuscitation is to achieve adequate tissue

perfusion and oxygenation while correcting any coagu-

lopathy. Packed red blood cells, and to some extent

hemoglobin-based oxygen carriers (HBOCs), help to

achieve the former while component therapy attempts to

deal with the coagulopathy. Whole blood may achieve both

objectives [27]. Currently, there is no consensus definition

for a massive blood transfusion [28]; however, recom-

mendations for the concept of massive transfusions suggest

plasma:platelets:red blood cells in a ratio of 1:1:1 or 1:1:2

[29]. This objective is seldom achieved due to limited

access and supply of blood products in developing coun-

tries, where a 1:1:2 ratio is more easily achieved. An

alternative to the use of this ratio is the use of warm fresh

whole blood that has a higher hematocrit, more platelets

and higher percentage of functional clotting factors per unit

volume when compared to component therapy [27]. The

concerns about its use, however, include a slightly higher

sepsis rate, possible increased risk of acute kidney injury,

as well as the risk of transfusion-related immunomodula-

tion (TRIM), although this is minimized by the use of

leukodepletion filters [27]. Several trials exist comparing

the use of component therapy [30] to warm fresh whole

blood, but many did not make this direct comparison, but

rather a combination of warm fresh whole blood with
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packed red blood cells and plasma, making the comparison

difficult. Both 24-h and 30-day survival were higher in the

warm fresh whole blood/red blood cell/plasma group

compared with the component therapy only group, but

further trials comparing these groups are necessary [27].

Whole blood also causes less dilutional effect and offers a

higher concentration of fibrinogen than component therapy.

The current preference for massive transfusion is trending

toward the use of whole blood; however, if this is not

readily available, as in the resource constrained environ-

ments, component therapy with a 1:1:1 ratio should be

utilized [27–29, 31, 32].

Hemoglobin solutions

Modified hemoglobin solutions are not substitutes for

blood as they do not possess the metabolic functions of

erythrocytes. They act purely as oxygen carriers [33].

Large-scale investigation and experimentation in this field

has occurred, with uses not only limited to trauma patients

but also general surgical patients, oncology patients and

Jehovah’s Witnesses suffering from severe anemia result-

ing from various reasons [33]. The only product that was

registered for use, in South Africa and later Russia, was

Hemopure(R) (HbO2 Therapeutics LLC, South Africa),

used in isolation as well as in combination with blood

products, or as a bridge to blood transfusion [34, 35].

Hemoglobin solutions do not only help oxygen trans-

portation, but also enhance the release of oxygen from

native hemoglobin at tissue level with some of them having

a positive inotropic effect that may be useful in shocked

trauma patients. This positive inotropy is related to the rate

of administration and if given slowly is negligible [33, 34].

Serious adverse events (SAEs) were rare with the most

serious being fluid overload. A recent review of the liter-

ature highlights several flaws in Natanson’s previous meta-

analysis suggesting that although a small minority of

HBOCs have had serious adverse events (myocardial

ischemia, cerebrovascular accidents), this cannot be

extrapolated as a class effect due to the vast differences

among HBOCs with respect to their structure, hemoglobin

concentration and nitric oxide scavenging effects. In light

of this, there is renewed interest in the use of HBOCs,

especially the Hemopure(R) (HbO2 Therapeutics LLC,

South Africa) compound, which to date has had the most

success with fewest serious adverse events [36]. Further

studies are required before these therapies become widely

used.

Fig. 1 Flow diagram of initial fluid resuscitation of trauma patients
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Monitoring coagulopathy

Trauma-induced coagulopathy [37] is a relatively new

concept, and the pathophysiology is still not completely

understood. Traditionally, tests such as prothrombin/inter-

national normalized ratio [38] and partial thromboplastin

time (PTT) were previously used to make this diagnosis.

While these tests form the mainstay of trauma-induced

coagulopathy testing in many centers, they only focus on

the initial part of clot formation and not on the evolution of

the clot or clot lysis. D-dimer and fibrinogen levels are

used as surrogate markers of fibrinolysis and clotting factor

consumption, respectively, but again these are non-specific

when assessing coagulation in the injured patient [71].

Diagnosis of trauma-induced coagulopathy using these

older assays is defined as: PT[ 18 s, INR[ 1.5,

PTT[ 60 s or any of these values at a threshold of 1.5

times their reference value.

Monitoring coagulation in trauma-induced coagulopathy

has been made easier with the use of point-of-care testing,

namely viscoelastic assays. Recent evidence shows that it

improves survival in patients requiring massive blood

transfusions compared to those monitored by more tradi-

tional assays as described above [39]. While challenges

may exist in introducing point-of-care testing into

resource-limited settings, these systems would be ideal as

they reduce dependency on traditional laboratory testing

and allow for real-time feedback and goal-directed blood

product use. Viscoelastic assays guide component

replacement instead of resuscitating without reproducible

biological guidance [40]. By initially assessing patients’

thrombotic deficiencies and continuously re-assessing them

following resuscitation with component therapy/whole

blood, thromboelastometry guides resuscitation and

potentially minimizes the use of allogeneic blood products

resulting in reduced risk of transfusion-related side effects

and minimizing costs [41]. Table 1 offers a guide to

thromboelastometry interpretation and appropriate actions,

but a more detailed description and management based on

viscoelastic assays is beyond the scope of this review

(Fig. 2).

Recommendations for current best practices:

1. Try and identify risk factors and priorities in trauma

patients early (i.e., traumatic brain injury, penetrating

injury, ongoing blood losses, compartment

syndromes).

2. Consider early administration of blood products in a

ratio of 1:1:1 or 1:1:2 if available.

3. In the absence of blood products, use clear fluid

resuscitation. Preferably, a balanced salt solution

should be used (such as Ringer’s lactate or Plas-

maLyte); however, care should be taken not to mix this

fluid with blood transfusions.

4. When using clear fluids in resuscitation, vigilance is

required to provide only that fluid which is necessary

to maintain perfusion. Excessive clear fluid adminis-

tration has negative consequences such as dilution of

Fig. 2 Thromboelastometry—differences in measurement between

ROTEM and thromboelastography [42]

Table 1 Thromboelastometry interpretation and action guide

Laboratory value Interpretation Blood product transfusion

R time\4 min Enzymatic hypercoagulability Do not treat if bleeding

R time[11 min Low clotting factors FDP/FFP’s and RBC’s

Alpha angle[45 degrees Low fibrinogen levels Cryoprecipitate/fibrinogen/platelets

MA\54 mm Low platelet function Platelets/cryoprecipitate/fibrinogen

MA[73 mm Platelet hypercoagulability Do not treat if bleeding

LY30[3% Primary fibrinolysis Tranexamic acid 1 g IV over 10 min then 1 g/250 ml NS over 8 h

CI\1.0

FDP freeze-dried plasma, FFP fresh-frozen plasma, RBC red blood cell
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coagulation factors, tissue edema, hyperchloremic

metabolic acidosis and organ dysfunction.

5. Point-of-care testing should be used whenever possible

to guide component therapy replacement to correct

coagulopathy.

6. In rural LMIC or long-distance transfer situations with

no access to blood, a synthetic colloid may be of

benefit in reducing subsequent edema and bowel

anastomotic breakdown.

Post-resuscitation fluid management

Background

The consequences of under- or over-resuscitation with

intravenous fluids are both detrimental [43, 44]. Hypov-

olemia resulting in adrenergic stimulated vasoconstriction,

hypervolemia and fluid overload, massive intravenous fluid

administration causing large sodium loads, dilution of

coagulation factors, and rapid administration of cold fluids

all result in damage to the endothelial layer and glycocalyx,

impairment of microcirculatory function and inappropriate

fluid shifts. The decision when to transition from an initial

resuscitation phase to a post-resuscitation period is critical

to a successful outcome.

Following the initial resuscitation phase, physiological

targets may change despite the overall objective of ade-

quate tissue perfusion remaining the primary goal. The

post-resuscitation period may be considered after:

• Hemostasis and correction of coagulopathy (ongoing

blood product replacement no longer required) [45].

• Evidence of improving microcirculatory flow (for

example, improving lactate and blood gas parameters)

[45].

• Hemodynamic stability (systolic blood pressure

[100 mmHg with a mean arterial blood pressure of

[65 mmHg in most cases; no longer need for inotropic

or vasopressor support; an improving pulse rate in the

presence of appropriate analgesia).

At this stage, most patients will no longer be responsive

to rapid fluid administration, with normalization of markers

for volume status (barometric or volumetric preload indi-

cators) and markers for fluid responsiveness (pulse pressure

variation (PPV), stroke volume variation (SVV), passive

leg raise (PLR) test) [46].

Importantly, in certain circumstances where patients

remain fluid responsive, curtailment of ongoing fluid

resuscitation may be necessary if the tolerance to further

intravenous fluid is deemed detrimental to physiological

processes (for example, abrupt increase in extravascular

lung water; worsening intra-abdominal pressure or

abdominal compartment syndrome; difficult ventilation)

[44]. Alternative strategies should be considered including

inotropic support guided by cardiac output monitoring,

alternative fluid strategies, and planning for hemodialysis

with net ultrafiltration.

The clinician should be aware of the different phases

within fluid management according to the ROSE concept.

After the initial resuscitation (R) phase comes organ sup-

port (O) and stabilization (S), and finally evacuation (E) of

excess fluids may be needed in some patients (Table 2)

[47].

These are broad guidelines, and exceptions do exist.

Urine output has not been included in our recommenda-

tions due to the many influencing factors, although it may

be one of the only parameters to measure, particularly in

resource-limited settings. The renal response to hypov-

olemia is multifactorial and depends on a combination of

renal blood flow, renal perfusion pressure and plasma

oncotic pressure. The type of resuscitation fluid is impor-

tant as it may influence oncotic pressure. In addition, the

neurohormonal control of renal function may cloud the

clinical picture and appropriate retention of water may be

interpreted as renal dysfunction when this may be an

appropriate physiological fluid conservation mechanism.

As outlined by Peeters et al., previous studies have not

found a correlation between urine output and invasively

derived physiological variables. Also, several studies have

pointed to the inaccuracy of using urine output as a

resuscitation target and its limitation in identifying fluid

responders. This situation is complicated further in trauma

patients in the presence of increased intra-abdominal

pressure. The limitations of using urine output should be

understood by attending physicians.

Fluids should be treated as drugs: Not only the type of

fluid is important, but also the dose, the administration

speed, the duration and de-escalation [48]. There are only

three indications for giving fluids: resuscitation, replace-

ment or maintenance [49].

Maintenance fluid

In providing maintenance fluids, care should be taken to

avoid causing tissue edema. This requires limitation of

crystalloid administration, which can only really be

achieved in the post-resuscitation period. Crystalloid fluid

administration is not without hazards. Excessive crystalloid

administration is associated with edema of skin, abdominal

organs (leading to abdominal compartment syndrome),

kidneys (leading to renal compartment syndrome, con-

tributing to acute renal failure) and heart (leading to

myocardial dysfunction) [44]. The ideal concept would be

to use a strategy where the fluid stays intravascular and
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expands this compartment for longer. However, the design

of the recent large studies involving HES showed that

ongoing use of these fluids in critically ill patients, beyond

initial resuscitation (even in the trauma subgroup analysis),

was without benefit and may increase the need for renal

replacement therapy [47].

During the post-resuscitation phase, crystalloids are not

only required for fluid supplementation, but also as vehi-

cles for administration of medication, including antibiotics,

sedation and inotropes/vasopressors. The fluid required for

the administration of these solutions together with those

required for nutrition should as a guide not exceed 2 ml/kg/

h. 0.9% ‘‘normal’’ saline has often been the fluid of choice

for this purpose; however, concerns about both the sodium

and chloride load may favor other ‘‘balanced’’ fluids

[13, 50, 51]. This fluid can again be substituted for the one

designed specifically for maintenance of daily fluid and

electrolyte requirements once certainty regarding fluid

requirements and responsiveness has been reached. During

this period, the solutions infused as medications may also

be made more concentrated to limit volume requirements.

It must be remembered that intravenous fluids are drugs

providing both electrolytes and water. While calculating

these requirements, the patient’s medication and feed also

need to be incorporated to avoid excessive volumes of

each.

Assessing volume status

Fluid responsiveness

Only half of the ICU patients with hemodynamic instability

are able to ‘‘respond’’ to fluid loading, which is explained

by the shape of the Frank–Starling curve [52]. On the

initial and steep limb of the curve, the stroke volume is

highly dependent on preload: Administering fluid will

actually result in a significant increase in stroke volume. In

contrast, if the heart is working on the terminal and flat

portion of the Frank–Starling curve, it cannot utilize any

preload reserve and fluid administration will not signifi-

cantly increase stroke volume. Accordingly, predictors of

volume responsiveness are mandatory to distinguish

between patients who can benefit from fluid and those in

whom fluid is useless and hence deleterious.

1. Static markers of cardiac preload

Considering the Frank–Starling relationship, the

response to volume infusion is more likely to occur when

Table 2 ROSE concept (adapted from Malbrain et al. with permission) [40]

Resuscitation phase (R)

Salvage or rescue treatment with fluids administered quickly as a bolus (4 mL/kg over 10–15 min)

The goal is early adequate goal-directed fluid management (EAFM), fluid balance must be positive, and the suggested resuscitation targets

are: MAP[ 65 mm Hg, CI[ 2.5 L/min/m2, PPV\ 12%, LVEDAI[ 8 cm/m2

Optimization phase (O)

Occurs within hours

Ischemia and reperfusion

Degree of positive fluid balance may be a marker of severity in this phase

Risk of polycompartment syndrome

Unstable, compensated shock state requiring titrating of fluids to cardiac output

Targets: MAP[ 65 mm Hg, CI[ 2.5 L/min/m2, PPV\ 14%, LVEDAI 8-12 cm/m2, IAP (\15 mm Hg) are monitored, and APP

([55 mm Hg) is calculated. Preload optimized with GEDVI 640—800 mL/m2

Stabilization phase (S)

Evolves over days

Fluid therapy only for normal maintenance and replacement

Absence of shock or threat of shock

Monitor daily body weight, fluid balance and organ function

Targets: neutral or negative fluid balance; EVLWI\ 10-12 mL/kg PBW, PVPI\ 2.5, IAP\ 15 mm Hg, APP[ 55 mm Hg,

COP[ 16-18 mm Hg and CLI\ 60

Evacuation phase (E)

Patients who do not transition from the ‘‘ebb’’ phase of shock to the ‘‘flow’’ phase after the ‘‘second hit’’ develop global increased

permeability syndrome (GIPS)

Fluid overload causes end-organ dysfunction

Requires late goal-directed fluid removal (‘‘de-resuscitation’’) to achieve negative fluid balance

Need to avoid over-enthusiastic fluid removal resulting in hypovolemia
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the ventricular preload is low, rather than when it is high.

Unfortunately, none of the measures of cardiac preload

enables to accurately predict fluid responsiveness: Neither

the central venous pressure (CVP), the pulmonary artery

occlusion pressure (PAOP), nor the left ventricular end-

diastolic area (LVEDA) can discriminate between respon-

ders and non-responders to fluid therapy [24, 53, 54]. Only

the right ventricular and the global end-diastolic volume

have been proven to be of some benefit compared to

barometric preload indicators especially in patients with

increased intra-thoracic or intra-abdominal pressures

[23, 55].

2. Dynamic markers of volume responsiveness

The alternative method for predicting volume respon-

siveness is simply to induce a change in cardiac preload

and to observe the resulting effects on stroke volume or

cardiac output or any available surrogate, i.e., to perform a

‘‘functional assessment’’ of the cardiac function [24]. This

is achieved with intravenous fluid boluses [56]. This

method can be criticized because repeated infusions of

such amounts could eventually exert adverse effects if

there is no preload reserve, especially if pulmonary per-

meability was increased.

The respiratory variation of hemodynamic signals

Observing the respiratory variation of hemodynamic sig-

nals has emerged as an alternative for assessing volume

responsiveness without administering fluid. The concept is

based on the assumption that the cyclic changes in right

ventricular preload induced by mechanical ventilation

should result in greater cyclic changes in left ventricular

stroke volume when both ventricles operate on the steep

rather than on the flat portion of the Frank–Starling curve,

i.e., in case of biventricular preload preserve.

Numerous studies have consistently demonstrated that

the magnitude of respiratory variation of surrogates of

stroke volume allows predicting fluid responsiveness with

accuracy [24]. Pulse pressure variation (PPV) is the most

popular index, since it needs only an arterial catheter to be

obtained and numerous bedside monitors calculate and

display its value in real time. Reliability of PPV to predict

fluid responsiveness has been demonstrated in ICU patients

when it is calculated from a simple arterial catheter [4] or

automatically calculated by simple bedside monitors such

as the IntelliVue (Philips, USA) [5], the PiCCO (PULSION

Medical Systems SE, Germany) [6] and the LiDCOplus

(LiDCO Group PLC, UK) [7] monitors [57–61]. PPV can

also be automatically obtained with the LiDCOrapid

(LiDCO Group PLC, UK), Mostcare (Vytech, Italy) and

Pulsioflex (MAQUET, Germany) uncalibrated monitors

[62]. Noninvasive finger pressure monitors such as the

CNAP (CNSystems Medizintechnik AG, Austria) or

ClearSight (Edwards Lifesciences Corporation, USA) also

allow calculation of noninvasive PPV [63, 64]. It must be

noted that this modality is difficult to use in several cases of

trauma resuscitation as it requires controlled ventilation

(i.e., no spontaneous ventilatory efforts), regular sinus

rhythm and tidal volumes of[7 ml/kg.

Other markers

The following other surrogates of stroke volume respira-

tory variation can be used at the bedside:

• Respiratory variation of the pulse contour-derived

stroke volume measured by the PiCCO or by the

FloTrac/Vigileo (Edwards Lifesciences Corporation,

USA) or by the LiDCOplus [58, 65, 66].

• Respiratory variation of the subaortic flow assessed by

echocardiography and respiratory variation of the

descending aortic blood flow assessed by esophageal

Doppler [30, 67, 68].

• Other heart–lung interaction indices like respiratory

variation of inferior or superior vena cava diameter

(echocardiography), although limitations exist

[24, 68–70].

• The passive leg raise (PLR) test carries an excellent

ability to serve as a test of preload responsiveness,

demonstrated in patients with acute circulatory failure

[71, 72]. A 10–12% increase in cardiac output or stroke

volume during PLR enables prediction of fluid respon-

siveness, even patients with cardiac arrhythmias and/or

spontaneous ventilator triggering [73]. However, in

conditions of increased IAP and pain, the PLR may

result in a false negative [55, 74].

• The end-expiratory occlusion test. The end-expiratory

occlusion test can be used in patients with low lung

compliance [64, 75].

• Ultrasonography: This bedside modality has advantages

of repeatability, being noninvasive, with the ability to

assess dynamic changes in the inferior vena cava (IVC)

diameter, left ventricular outflow tract stroke volume

variation, and estimate cardiac ejection fraction [76].

This provides the ability for real-time guidance of fluid

resuscitation [77]. The most widely used method for

assessing fluid responsiveness using IVC parameters is

the caval index [78]. This measurement is most useful

at extremes of volume status and is influenced by

increases in ventilation parameters (tidal volume and

positive end-expiratory pressure) and intra-abdominal

pressure. As a result, despite positive findings in early

studies, research has demonstrated a limited ability to

detect those patients that would respond to further fluid

resuscitation due to changes in these ventilatory
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parameters, and other patient factors such as obesity

[79, 80]. Other measurements using ultrasonography

are possible such as SVV using pulse-wave Doppler,

and aortic blood flow velocity using trans-esophageal

echocardiography, but require more experience and

may prove challenging in the emergency setting

[81–83]. The combination of using ultrasonography to

measure aortic velocity–time integral and combining

this with a PLR test may be the best technique in skilled

hands [84, 85].

Recommendations for current best practices:

1. If ultrasonography is available, then we advise using

dynamic changes in IVC together with other clinical

parameters. Preferably, if the skills are available,

combining aortic velocity–time integral with dynamic

changes from a PLR test should be performed.

2. In the absence of ultrasonography, dynamic markers of

volume resuscitation should be attempted such as a

PLR test, although this may have limited utility in the

emergency setting due to patient injuries and pain.

3. If it is unable to utilize ultrasonography or PLR testing,

other dynamic markers of fluid responsiveness can be

attempted although these may be impractical in the

emergency setting. Repeated ‘‘mini-boluses’’ of intra-

venous fluid (100–250 ml) can be used, provided that

vigilance regarding excessive or inappropriate clear

fluid administration is maintained.

Special groups

Pediatrics

Infants and children suffer from trauma, particularly vehic-

ular trauma, with an increasing incidence in the developing

world [86]. Children differ from adults in having a larger

circulating blood volume (80 ml/kg in a term neonate) that

decreases with age to the adult level of 70 ml/kg [87]. While

the relative blood volume is larger, the absolute volumes

required are small and should ideally be delivered through

flow control devices (infusion pumps/syringe drivers) [88].

A cheap precaution is to deliver all clear fluids through a

60-drop-per-minute administration set rather than the 10-/

15-drop-per-minute sets used for adults.

Restoration of circulating volume is a priority with the

establishment of vascular access via a peripheral line,

central (commonly femoral) line or intra-osseous line. The

access should not be established distal to a site of injury

(e.g., femoral line with blunt abdominal trauma) as the

resuscitation fluid will extravasate into the injured area

[89].

The principles of goal-directed therapy apply equally

well to children as to adults. Initial resuscitation should be

with 20 ml/kg of balanced crystalloid [90]. There is limited

information on the efficacy and safety of synthetic colloids

(e.g., HES) in children, with some evidence that hemody-

namic goals are achieved more quickly and with smaller

volumes but at increased cost and with no evidence of

outcome benefit [91].

The role of all clear fluids is limited in trauma resusci-

tation due to their adverse effects of dilutional coagu-

lopathy and anemia and generation of edema that hinders

tissue perfusion and promotes organ dysfunction (including

ileus, abdominal compartment syndrome and ARDS). The

volume of clear fluid should not exceed 40 ml/kg [90].

Administration of blood and blood products (platelets and

plasma) should be considered depending on the response to

the initial 20 ml/kg crystalloid bolus and the severity of

injury. Due to the small volumes required, many pediatri-

cians use human colloids such as plasma or albumin for

intravascular volume replacement in preference to syn-

thetic clear fluids [92].

During the maintenance phase of resuscitation, children

appear to be at risk of hyponatremia. This seems to be due

to administration of excessive volumes of hypotonic solu-

tions such as � strength Darrow’s solution (Na-61, K-12,

Cl-52, Lactate-27 mmol/l) with 5% dextrose resulting in

hyponatremia and potentially fatal cerebral edema [93]. A

clear distinction is required between resuscitation fluids,

that must be isotonic and preferably balanced, and main-

tenance fluids, that may be hypotonic and should only be

given in limited volumes (maximum 2 ml/kg/h) via a flow

controller to prevent rapid administration [94].

Elderly

The World Health Organization defines ‘‘elderly’’ as a

chronological age of 65 years or more. Age is only one

criterion in the assessment of overall health leading to the

concept of biological age based on organ dysfunction and/

or chronic disease [95]. Despite advances in trauma care,

the elderly, either chronologically or biologically, are at

increased risk of morbidity, particularly limitation of

mobility and self-care ability, and mortality after trauma

[96].

Cardiovascular changes of aging include stiffening of

the arterial circulation and loss of compliance of the left

ventricle. The elderly thus tolerate hypo- and hypervolemia

poorly. Volume loss reduces preload resulting in ventric-

ular under-filling and a disproportionate drop in cardiac

output. Over-hydration is as dangerous due to the lack of

ventricular compliance predisposing to the development of

edema, particularly pulmonary edema [97]. Assessment of

fluid requirements in the elderly is best done by
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echocardiography as noninvasive measurements based on

pressure or pulse contour analysis are subject to variation

due to the changes in the cardiovascular system from aging

[98].

Clear fluid administration should initially be limited to

20 ml/kg with early consideration given to the adminis-

tration of blood and blood products. Careful re-evaluation

and vigilant monitoring should to performed to determine

if further fluid administration is required; particularly if

underlying heart disease is suspected. Due to the likelihood

of underlying coronary and cerebral artery disease in the

elderly, consideration should be given to maintaining

hemoglobin levels above 9 g/dl and mean arterial pressure

above 70 mmHg, particularly if the patients comorbidities

are unknown [97].

Burns

Appropriate and effective initial resuscitation of victims of

burns is vital for survival and reduction of morbidity and

mortality [99]. The deeper and more extensive the burn, the

greater the fluid requirements, but excessive fluid admin-

istration will also increase morbidity by generation of

edema [100]. The formulas used for calculating volume

requirements (e.g., Brooke & Parkland) use only body

surface area (BSA) and do not compensate for depth. In

clinical practice, the fluid requirement is approximately

5 ml/kg/ %BSA during the first 24 h [101].

The rate of fluid administration will initially be rapid

with up to half the daily requirement given in the first 6 h.

The use of colloid solutions is controversial. Hyperoncotic

colloids worsen outcome, but the role of albumin or syn-

thetic colloids (e.g., HES) is less clear [102–104]. Colloid

solutions shorten the time to achieve hemodynamic goals,

but increase expense without a concomitant improvement

in outcome.

Enteral resuscitation is effective if commenced within

6 h. Placement of a feeding tube should be part of the

resuscitation protocol for burns. Delay of feeding for more

than 6 h will result in an increasing feeding failure due to

gastroparesis and ileus. Maintenance of enteral feeding

maintains the gut associated lymphoid tissue that partici-

pates in maintenance of immunity at all epithelial surfaces

including the skin. A standard formula may be used starting

at 2 ml/kg/h and increasing incrementally every 3 h until

the goal rate calculated for each patient is reached [105].

Two simple investigations should be used to monitor the

effectiveness of resuscitation from burns. The first is the

hematocrit, which may be as high as 70% on admission

after extensive burns. Failure to reduce the hematocrit

below 40% within the first 6 h is an accurate indicator of

poor prognosis. The second is urine output, which should

be maintained at around 1 ml/kg/h. Development of acute

renal failure carries a very poor prognosis with extensive

burns [106]. A more detailed review of fluids in burn

resuscitation is beyond the scope of this paper; however,

further references are provided [107, 108].

Crush injury/syndrome

Crush injury is seen in victims of motor vehicle collisions

who are entrapped and have limbs compressed, resulting in

direct muscle trauma followed by a reperfusion injury

when freed. Similar injury is seen in prolonged immobi-

lization (after a fall or drug overdose) and entrapment in

collapsed buildings after natural disasters [109]. South

Africa has an unfortunate history of interpersonal violence.

With the breakdown in the rule of law in many commu-

nities, alleged criminals may be assaulted by community

members using traditional whips (sjamboks). This results

in extensive muscle injury; however, muscle perfusion is

maintained so reperfusion does not occur [110]. Muscle

injury releases myoglobin that is detrimental to kidneys. A

surrogate marker for myoglobin is creatine kinase (CK)

used as follows (Table 3).

With diffuse injury, such as community sjambok

assaults, the surface area of the body injured should be

quantified as for burns. A surface area of [18% carries

increased risk of renal dysfunction [110]. Aggressive fluid

loading (20–40 ml/kg initial bolus followed by 10–20 ml/

kg/h) should begin as soon as the patient makes contact

with the healthcare system. In the pre-hospital environ-

ment, fluid loading should ideally occur prior to release of

crushed limb/s [111].

Traditionally, 0.9% saline is used for fluid loading.

Alternatives, to limit the occurrence of hypernatremia and

hyperchloremic acidosis, include 0.45% saline and alter-

nating 0.9% saline and 5% dextrose. Balanced solutions

such as modified Ringer’s lactate are not recommended due

to concerns regarding hyperkalemia, but this risk may be

offset by the hyperchloremic acidosis seen with large-

volume saline administration [109].

Should presentation be delayed, creatinine and potas-

sium should be measured while initial fluid loading occurs,

as the kidneys may have been damaged beyond immediate

recovery. Failure to produce urine after initial fluid loading

associated with an elevated urea, creatinine and potassium

Table 3 Representation of how to use creatine kinase as a surrogate

marker for myoglobin

CK U/l Risk of renal failure Admission

\500 Low Unlikely

500–5000 Intermediate At least overnight

[5000U/l High Admission to ICU/high care
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indicates the need for urgent renal replacement therapy.

Further fluid loading should not be administered, as the

absolute volume overload that arises in the absence of urine

output will result in pulmonary edema with hypoxia

requiring intubation and ventilation. There is no role for

loop or osmotic diuretics, and the use of sodium bicar-

bonate to induce alkaline diuresis is also not supported by

evidence [110].

Pregnancy

Trauma, particularly vehicular, or due to intimate partner

violence is a common cause for maternal and fetal mor-

bidity and mortality. In the developing world, neonatal

intensive-care facilities are limited so maternal considera-

tions take precedence in resuscitation until fetal viability is

likely [112].

Pregnancy duration of more than 20 weeks makes aor-

tocaval compression a realistic cause of hypotension during

resuscitation, emphasizing the need for maintaining a 20�
left lateral tilt [113]. Fluid administration follows accepted

principles of resuscitation [112].

Should delivery occur during resuscitation, significant

blood loss may occur due to post-partum hemorrhage.

Oxytocin availability may be limited due to expense and

requirement for refrigeration. Misoprostol is an accepted

alternative, but is only available in an oral form that may

need to be administered rectally during resuscitation [114].

It should be remembered that the physiological compen-

sation for blood loss might be better tolerated in pregnancy

due to the physiological changes that predominantly take

place in the second and third trimesters and include an

increased circulating blood volume and cardiac output.

Awareness of this should be maintained to avoid under-

estimation of blood loss and underlying injuries.

Conclusion

Fluids are drugs and should be managed as such. Appro-

priate early fluid resuscitation in trauma patients is a

challenging task. Care should be taken in selecting both the

type and volume to promote appropriate perfusion and

oxygen delivery, avoiding the adverse effects seen when

giving too little or too much. Ongoing fluid strategies

following resuscitation should incorporate dynamic mark-

ers of volume status whenever possible. All aspects of fluid

administration should be incorporated into daily fluid

plans, including feeding and infusions of medications. A

sound knowledge of the differences and physiological

consequences of specific trauma groups is essential for all

practitioners delivering care for trauma patients [7].
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