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Abstract
Unprecedented conservation efforts for sagebrush (Artemisia spp.) ecosystems across the western United States have been
catalyzed by risks from escalated wildfire activity that reduces habitat for sagebrush-obligate species such as Greater Sage-
Grouse (Centrocercus urophasianus). However, post-fire restoration is challenged by spatial variation in ecosystem
processes influencing resilience to disturbance and resistance to non-native invasive species, and spatial and temporal lags
between slower sagebrush recovery processes and faster demographic responses of sage-grouse to loss of important habitat.
Decision-support frameworks that account for these factors can help users strategically apply restoration efforts by predicting
short and long-term ecological benefits of actions. Here, we developed a framework that strategically targets burned areas for
restoration actions (e.g., seeding or planting sagebrush) that have the greatest potential to positively benefit sage-grouse
populations through time. Specifically, we estimated sagebrush recovery following wildfire and risk of non-native annual
grass invasion under four scenarios: passive recovery, grazing exclusion, active restoration with seeding, and active
restoration with seedling transplants. We then applied spatial predictions of integrated nest site selection and survival models
before wildfire, immediately following wildfire, and at 30 and 50 years post-wildfire based on each restoration scenario and
measured changes in habitat. Application of this framework coupled with strategic planting designs aimed at developing
patches of nesting habitat may help increase operational resilience for fire-impacted sagebrush ecosystems.
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Introduction

The sagebrush biome spans over 630,000 km2 of the wes-
tern United States (Shinneman 2020). Threats to sagebrush
ecosystem structure and function encompass altered wildfire
regimes (Flannigan et al. 2009), agriculture, energy devel-
opment (U.S. Fish and Wildlife Service 2015), and
anthropogenic impacts such as livestock grazing (i.e., heavy
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and repeated either constantly or during the growing season;
Chambers et al. 2017). Because of disturbances that disrupt
key components such as soil stability (Belnap et al. 2009;
Eldridge et al. 2016) and trigger changes to vegetation
community states (Chambers et al. 2014), there is a need for
tools that operationalize theoretical concepts of resilience to
disturbance and resistance to non-native invasive plants
(hereafter, resilience and resistance; Chambers et al. 2017;
Crist et al. 2019; Chambers et al. 2019a). Wildfire is the
primary natural disturbance in many ecosystems within the
biome, particularly those in the Great Basin (Brooks et al.
2015; Shinneman 2020). Over the past ~30 years, >8.4 mil
ha of sagebrush has been burned by wildfires (Brooks et al.
2015; Shinneman 2020), and some areas have burned
repeatedly (Brooks et al. 2015; Coates et al. 2016a). The
novel grass-fire cycle (D’Antonio and Vitousek 1992) is the
genesis of a new, altered regime, whereby non-native
invasive annual grasses have thrived with disturbance
(Germino et al. 2016) coupled with more weather condi-
tions that favor wildfire and ignition sources (Abatzoglou
and Park 2016). The resulting novel feedback cycle has
yielded larger and more frequent wildfires (Pilliod et al.
2017; Bradley et al. 2018). Severe wildfire is stand-
replacing and effectively removes sagebrush canopy from
the landscape through direct post-fire mortality, and
recovery is further hampered by potentially limited seed
banks and high seed mortality, reduced establishment rates,
short seed dispersal distances from surviving plants, and
slow growth rate and high mortality among post-fire recruits
in suboptimal site conditions (Miller et al. 2013; Shriver
et al. 2019; Shinneman 2020).

The underlying sagebrush ecosystem processes driving
resilience and resistance of sagebrush communities are
becoming well-understood (Chambers et al. 2014; Maestas
et al. 2016; Chambers et al. 2019a). Variation in resilience
and resistance and associated productivity align with ele-
vation and soil moisture gradients, whereby low elevation
sites with warm, dry soil composed largely of Wyoming big
sagebrush (Artemisia tridentata ssp. wyomingensis) are
prone to state transitions and difficult to restore. In contrast,
resilient and readily restorable sites exist more frequently at
higher elevations with cool, moist soils dominated by
mountain big sagebrush (A. t. ssp. vaseyana). The recent
advent of spatially explicit maps depicting soil climate
regimes and related ecological site potential has greatly
operationalized resilience and resistance concepts and
facilitated understanding of where, when, and how to
implement post-wildfire restoration across sagebrush eco-
systems in the western United States (Maestas et al. 2016;
Chambers et al. 2017; Chambers et al. 2019b). Such
resilience-based information facilitates tools that predict and
assess outcomes of passive and active restoration actions
(Suding 2011; Chambers et al. 2019a).

Nevertheless, ecological metrics with broad spatial
extents like resilience and resistance are based on gradual
processes that influence plant community characteristics
(Chambers et al. 2014), and may be out of sync with
generation times or life history requirements of wildlife
species intended to benefit from restoration of their habitat
(Miller and Hobbs 2007; Perring et al. 2015; Ricca and
Coates 2020), rendering many habitat restoration efforts
ineffective (Miller and Hobbs 2007). The potential for
such spatial and temporal mismatches is a concern for
managing Greater Sage-Grouse (Centrocercus uropha-
sianus; hereafter, sage-grouse), which is a sagebrush-
obligate species considered for listing multiple times
under the Endangered Species Act (U.S. Fish and Wildlife
Service 2015) and is at the nexus of 21st century sage-
brush conservation planning efforts (Bureau of Land
Management 2020). Sage-grouse rely on a diversity of
vegetation communities within sagebrush ecosystems to
fulfill habitat needs across their life history stages, while
its distribution also encompasses habitat for several other
sagebrush-obligate species (Rowland et al. 2006; Hanser
and Knick 2011; Knick and Connelly 2011; Coates et al.
2016b). Although sage-grouse populations are cyclical
(Row and Fedy 2017), largely in response to variable
climatic conditions (Coates et al. 2020), prevailing long-
term trends have exhibited downward trajectories across
much of the species’ range during recent decades (Con-
nelly et al. 2004; Garton et al. 2011; Coates et al. 2021).
Wildfire, followed by vegetation type conversion to non-
native annual grasslands, is thought to be a primary driver
of sage-grouse declines across the Great Basin (Connelly
et al. 2011; Coates et al. 2016a). Although sensitivity of
different life stages to wildfire impacts has not been
thoroughly studied, recent evidence suggests that the loss
of shrubs from wildfire has a substantial impact on nest
survival of sage-grouse (Lockyer et al. 2015; Foster et al.
2018; O’Neil et al. 2020). Sage-grouse rely on shrub
canopy cover for nesting concealment and thermal refugia
(Connelly et al. 2004; Coates et al. 2017), and loss or slow
recovery of this critical shrub cover following wildfire
reduces nest habitat quality (Beck et al. 2009). Reductions
in nest survival can limit recruitment and may reduce
population growth rates (Taylor et al. 2012; Foster et al.
2018; Dudley et al. 2021). Furthermore, hen fidelity to
pre-fire nest sites may reduce survival because sites that
previously comprised high quality habitat lack shrub and
other habitat components after wildfire (Lockyer et al.
2015; Foster et al. 2018; O’Neil et al. 2020). Thus, for
post-fire habitat restoration to be effective for species such
as sage-grouse, the relatively short-term requirements of
the species warrant consideration when allocating
resources to proposed restoration sites and treatment
options that may take longer to yield desired outcomes.
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Additionally, targeted resource allocation is important
because: the sheer area of sage-grouse habitat burned
annually (1.3 million ha from 2015–2017; US Department of
the Interior 2017) presents challenges for practical applica-
tion of restoration, including increased resource demand
(Copeland et al. 2018); post-fire sagebrush establishment has
proven difficult due to variation in restoration practices (e.g.,
seed source, planting method, timing, logistics) and under-
lying resilience and resistance or ecological site potential
(Meinke et al. 2009; Arkle et al. 2014; Pyke et al. 2015);
availability and predictability of weather favorable to post-
wildfire recovery contributes additional uncertainty to
potential for treatment success (Shriver et al. 2018;
O’Connor et al. 2020); and transient demographic and
population dynamics of sagebrush yield lower canopy cover,
where post-disturbance sagebrush populations have greatly
altered vital rates and size structure from pre-disturbance
populations (Shriver et al. 2019). To address these chal-
lenges, decision-support frameworks for post-fire restoration
can become more operational through explicit identification
of site qualities that were selected by nesting sage-grouse
and yielded high nest survival (i.e., positive fitness con-
sequences) before wildfire, and further understanding which
site characteristics are extrinsic to wildfire and which will be
degraded or altered by wildfire. Additionally, these quanti-
tative frameworks can generate spatial predictions of
immediate and longer-term changes to nesting habitat
quality (i.e., selection choice plus fitness consequence) given
underlying resilience and resistance and planned restoration
practices. When applicable, these frameworks can incorpo-
rate animal behavior that influences habitat selection to
better target management actions (Connelly et al. 2011;
Doherty et al. 2016). For example, sage-grouse have a
propensity to select nest sites adjacent to leks (Holloran and
Anderson 2005; Coates et al. 2013). Parameterizing habitat
suitability models to include this behavior refines predicted
habitat delineations (Ricca et al. 2018; Ricca and Coates
2020). This framework, when replicated, would facilitate
creation of resource islands, or strategic and concentrated
plantings of sagebrush (Hulvey et al. 2017), in areas where
sage-grouse would be predicted to nest and thus where
sagebrush restoration would potentially succeed. Such a
response would thereby increase synchrony between and
sagebrush recovery times and sage-grouse post-fire popula-
tion dynamics (Ricca and Coates 2020).

Herein, we describe a framework for targeted post-fire
restoration using predictive models of sage-grouse habitat
quality as defined by areas selected for nesting with high
nest survival which are then integrated with underlying
ecological capacity for sagebrush to recover with different
restoration practices following wildfire. Our framework
incorporates sage-grouse behavior, namely the use of pro-
ductive habitats adjacent to leks, to improve predictions of

high productivity nesting areas that reinforce prioritization
of restoration efforts. We used an expansive radio telemetry
dataset at a long-term monitoring site in northwestern
Nevada to model sage-grouse nest site selection and sur-
vival during pre-fire conditions, and then predicted expected
differences on the same landscape following two major
wildfires resulting in an immediate and acute loss of sage-
brush. Differences among predicted surfaces formed the
basis of a habitat restoration index for sage-grouse. We
projected future conditions following active or passive
restoration efforts by incorporating spatially explicit sage-
brush community recovery rates and risk of annual grass
dominance that varied with resilience and resistance under
three scenarios: passive recovery, seeding, and transplanting
sagebrush seedlings. This identified areas that could be
prioritized for restoration given a modeled return to a
minimum of 20% sagebrush cover as required by nesting
sage-grouse (Connelly et al. 2004; Smith et al. 2020) within
30 or 50 years. This quantitative framework facilitates
holistically targeting areas for post-fire restoration at scales
meaningful for management by reducing spatial and tem-
poral mismatches arising from longer sagebrush ecosystem
recovery times and more immediate sage-grouse population
responses. Supporting data are provided via USGS Scien-
ceBase repository (https://doi.org/10.5066/P96K6X05;
Roth et al. 2022)

Materials and Methods

Study Area

Our study area was the Virginia Mountains of northwestern
Nevada, USA. The Virginia Mountains occur in the north-
western Great Basin, a high desert (>2000m) characterized by
sagebrush shrub steppe with relatively low annual precipita-
tion occurring mainly as snow and primarily used as range-
land. Vegetation was dominated by low sagebrush (A.
arbuscula), and mountain big sagebrush (A. t. vaseyana) at
higher elevations, and Wyoming big sagebrush (A. t. wyo-
mingensis) and black sagebrush (A. nova) occurring at lower
elevations. Non-sagebrush shrubs included rabbitbrush
(Chrysothamnus ssp.), Mormon tea (Ephedra viridis), snow-
berry (Symphoricarpos ssp.), western serviceberry (Ame-
lanchier alnifolia), and antelope bitterbrush (Purshia
tridentata). Conifer woodlands were present but not prevalent,
comprising single-leaf pinyon pine (Pinus monophylla) and
Utah juniper (Juniperus osteosperma) (hereinafter, both
referred to as “pinyon-juniper”). Non-native invasive annual
grasses included cheatgrass (Bromus tectorum) and medusa-
head (Taeniatherum caput-medusae) (hereinafter, both refer-
red to as “non-native invasive annual grasses”). Native
perennial grasses included needle and thread (Hesperostipa

290 Environmental Management (2022) 70:288–306

https://doi.org/10.5066/P96K6X05


comata), Indian ricegrass (Achnatherum hymenoides), blue-
bunch wheatgrass (Pseudoroegneria spicata), Sandberg
bluegrass (Poa secunda), and squirreltail (Elymus elymoides).

Our analysis centered on two large wildfires that
impacted the study area during the summers of 2016 and
2017. In August 2016, the Virginia Mountains Complex
Fire burned a total of 24,171 hectares. During July of 2017,
the study area was impacted by the Long Valley Fire that
burned a total of 33,886 hectares (https://inciweb.nwcg.gov/
incident/5354/). The fires were fueled by grass and sage-
brush and occurred within the core distribution of local
sage-grouse populations, affecting 48.5% of breeding and
nesting habitat. Intersection of nest site locations from sage-
grouse data collected between 2009–2016 (see Data Col-
lection and Materials) and wildfire perimeter data revealed
that 60% of sage-grouse nest locations previously occurred
in the affected area.

Data Collection and Materials

We identified and monitored sage-grouse nest locations
during the breeding seasons of 2009–2016, prior to the
wildfires. We used spotlighting techniques (Giesen et al.
1982; Wakkinen et al. 1992) to capture female sage-grouse.
Most sage-grouse were outfitted with necklace-style VHF
radio-transmitters (Kolada et al. 2009), while a subsample
were fitted with combined Global Positioning Systems
(GPS) - Platform Transmitter Terminals (North Star Science
and Technology, LLC, King George, Virginia) and micro
VHF transmitters during 2012–2016. We relocated sage-
grouse at a minimum of twice weekly during the nesting
season (March–June) to identify nests and determine nest
fates (O’Neil et al. 2020). Nest locations were documented
using handheld GPS and subsequently monitored until nest
fate was determined by examination of nest bowl remains,
where a successful nest was indicated by the presence of ≥1
hatched egg or chick in the nest bowl.

Landscape Covariates

We used Geographic Information Systems to quantify a
suite of landscape metrics that could potentially influence
sage-grouse nest site selection and nest success. Land-
scape predictors broadly covered variation in surface
cover of dominant vegetation (30 × 30 m; Xian et al.
2015), topography, classification of regional soil moisture
and temperature annual ranges, hydrography, and
anthropogenic infrastructure. We summarized spatial
predictors across multiple scales relevant to sage-grouse
nesting and movement (i.e., mean percent cover of annual
grass; 30 × 30 m) and we calculated distance metrics to
relevant features (i.e., nearest distance to road). We con-
ducted neighborhood spatial analyses within ArcMap 10.3

(ESRI, Redlands, CA, USA). A complete list of landscape
metrics and their data sources is provided in Supple-
mentary Table S1 in the supplementary material. Because
we initially considered many candidate predictors across
multiple spatial scales and distance representations, it was
necessary to reduce the size of this dataset prior to fitting
final models of nest selection and survival. We did this by
selecting only the most influential predictors from sets of
correlated predictors (e.g., multiple scales) with an itera-
tive model subset routine, where the contributions of each
predictor to model fit (via dAIC rankings) were assessed
independently of those that were correlated. This variable
reduction procedure is described fully in Supplementary
Material S2.

Pre-Fire Nest Site Selection Model

We quantified patterns of nest site selection with a resource
selection function (RSF) study design (Johnson et al. 2006),
where habitat characteristics were contrasted between used
locations (nests) and random (available) locations occurring
within 17 km of known, active leks. This distance constraint
was applied because nests are known to occur near leks
(Coates et al. 2013), and 17 km was the maximum distance
observed in the dataset (O’Neil et al. 2020). As such, nest
site availability represented a range of site conditions
encompassing the most probable distribution of nesting
locations, given their proximity to known lekking grounds.
We generated ten random locations per nest within the
buffered area around active leks for the Virginia Mountains
sub-population. The choice of a 10:1 ratio of random to
used locations was intended to appropriately weight the
available distribution (e.g., maximizing the number of
available locations; Northrup et al. 2013; Fieberg et al.
2021) without oversaturating these locations within the
study’s geographic extent. We used a Bayesian generalized
linear mixed model (GLMM), and allowed separate inter-
cepts for each individual sage-grouse and year, to help
account for the unbalanced sampling efforts as well as
intraclass correlation among repeated measures and samples
collected within the same year (Gillies et al. 2006). The
response variable was binary for nest location (1) or random
location (0), so we assumed a binomial error distribution
when fitting the model. We selected candidate habitat pre-
dictors based on the results of variable reduction methods
described in Supplementary Material S2 and standardized
each variable prior to model fitting (mean= 0, sd= 1).

We obtained estimates for the nest RSF GLMM habitat
variables using MCMC methods in JAGS 4.2.0 (Plummer
2003), accessed via R with rjags (Plummer 2018) and
jagsUI (Kellner 2018). We specified shrinkage prior dis-
tributions for habitat covariates using the Bayesian lasso
(Park and Casella 2008; Supplementary Material S3), and
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uninformative normally distributed prior distributions for
random effects (Supplementary Material S3). Additional
details about the model process and MCMC parameter
settings are available in Supplementary Material S3. We
reported the results of all coefficient estimates (i.e., fixed
effects) in terms of median posterior values and 2.5th and
97.5th percentiles (95% CRI).

Pre-Fire Nest Survival Model

We used a Bayesian shared frailty model (Halstead et al.
2012) to model nest success, where daily nest hazard risk
was a function of landscape habitat covariates, age of hen,
and day of season. The frailty model accounts for the nest
exposure period by treating each day in the available nest
encounter history as a Bernoulli trial, where each nest either
survived or did not. Encounter histories for each nest con-
sisted of known active and censored days throughout the
nesting season, ending with either a successful or failed nest
(e.g., Converse et al. 2013). Nests that ultimately failed
were assumed to have failed between their last active date
(e.g., last checked) and the date that failure was determined.
As described for the nest RSF, we selected candidate habitat
predictors based on the variable reduction method (Sup-
plementary Material S2), applied the Bayesian lasso priors
to the model’s habitat coefficients, and incorporated random
intercepts for year and individual. Results from this model
were converted from daily unit hazard to a 38-day cumu-
lative nest survival estimate for mapping purposes. The
frailty model was also fit using MCMC in JAGS. Model
specification and parameter settings are described in detail
in Supplementary Material S4.

Post-Fire Habitat Suitability Modeling

To identify the highest priority areas for potential sagebrush
restoration, we used the final nest site RSF and nest frailty
model to generate predicted surfaces of relative nest selec-
tion and probability of nest success across the study area.
We did this by applying model coefficients from the fitted
model equations (median estimates from posterior dis-
tributions) to their associated habitat predictor values at
each 30 m raster pixel, and scaling to a pre-fire RSF and a
38-day survival estimate for each model, respectively.
Notably, the distance to lek predictor was included in these
predictions to account for clustering and the declining
probability of birds using nesting habitat as distance away
from breeding grounds increases (Holloran and Anderson
2005; Coates et al. 2013; Doherty et al. 2016), thereby
preventing direction of restorative efforts to areas not used
by sage-grouse. Detailed methods used to map relative nest
selection and nest success are available in Supplementary
Materials S3 and S4. These surfaces represented habitat

quality potential and contributions to nesting productivity
prior to the wildfires.

We then generated new predicted surfaces of relative nest
selection and probability of nest success by applying the
original, pre-fire model coefficients to the covariates in a
simulated post-fire landscape. We simulated the immediate
loss of habitat by replacing mapped values of shrubland
habitat covariates with 0, which assumed complete loss of
shrub cover immediately following wildfire. Values for
annual grass and NDVI were updated to post-fire conditions
using a recently developed geospatial layer (Boyte and
Wylie 2018). To estimate the potential cover of perennial
herbaceous vegetation immediately (<5 years) after wildfire,
we used the geospatial layer from Maestas et al. (2016)
depicting ecosystem resilience to disturbance and resistance
to invasion (i.e., classes high, moderate, and low) to index
ecological productivity and update post-fire values. Due to
data limitations on grazing regimes across our site, we were
unable to directly quantify the potential for post-fire grazing
to delay the recovery of perennial grasses or to increase the
colonization of non-native annual grasses. However, we did
include perennial grass recovery in our post-wildfire land-
scape. In burned pixels classified as either the moderate or
high resilience and resistance class, we allowed perennial
cover to return to 50 and 75% of its initial value, respec-
tively. In less productive burned pixels classified as the low
resilience and resistance class, we allowed perennial cover
to return to 25% of its initial value (Miller et al. 2013).

We scaled the post-fire RSF between 0 and 1 relative to
the minimum and maximum values of the pre-fire RSF
(e.g., Ricca et al. 2018) as described in Supplementary
Material S3. To develop an index representing loss of
habitat within burned areas, we first subtracted the post-fire
RSF from the pre-fire RSF to obtain the difference in nest
RSF values (ΔRSF) associated with the fires. Similarly, we
subtracted post-fire nest survival predictions from pre-fire
estimates to obtain the difference in expected nest survival
contributions (ΔS). We identified the most suitable areas for
restoration planting activities based on the combination of
ΔRSF and ΔS. To delineate this area for prioritization of
restoration, we first converted each surface into binary
values based on their 50th percentiles (i.e., 0 < 50th per-
centile, 1 > 50th percentile), and then combined the two
surfaces to represent a ranked restoration index class: 1=
low ΔRSF, low ΔS (0,0); 2= low ΔRSF, high ΔS (0,1); 3=
high ΔRSF, low ΔS (1,0), 4= high ΔRSF, high ΔS (1,1).
The 50th percentile was chosen in part because it occurred
at the value of ~ 0 for both ΔRSF and ΔS, so the highest
quality ranking could be interpreted as areas that lost habitat
from fire based on both selection and survival model con-
tributions. Our percentile-based approach for combining
selection and survival probabilities follows Aldridge and
Boyce 2007. We subsequently prioritized restoration
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suitability in class 3 and 4, because they represented the
immediate loss of areas that were previously highly selected
and targeted areas with the greatest loss in nest survivorship
(in the case of restoration class index 4). Sage-grouse
continue to use habitat following wildfire (O’Neil et al.
2020; Dudley et al. 2021), so prioritizing high selection,
low survival areas can help ameliorate potential post-
wildfire ecological traps.

Post-Fire Habitat Recovery Modeling

We evaluated the expected success of habitat recovery in
priority areas after 30 and 50 years for four different
restoration scenarios: (1) passive recovery; and post-wildfire
restoration through (2) grazing exclusion, (3) seeding, or (4)
transplanting sagebrush. We used the LANDFIRE biophy-
sical settings raster (Rollins 2009) to map the extent of three
different sagebrush communities within the study area
(Table 1). The biophysical settings raster categorizes the
landscape into potential dominant vegetation systems by
applying expert-based state and transition models assuming
pre-European settlement disturbance regimes (e.g., fire
return intervals) to the current biological and physical site
conditions. We classified the sagebrush biophysical settings
into three major sagebrush communities: Wyoming big
sagebrush (Artemisia tridentata wyomingensis, A.t. tri-
dentata); mountain big sagebrush (A. t. vaseyana); and low
sagebrush (A. nova, A. arbuscula) (Brooks et al. 2015). It is
well-established that interactions between elevation and
underlying soil moisture/temperature gradients mediate
plant communities’ resilience and resistance (Chambers
et al. 2014; Chambers et al. 2017). Sagebrush communities
occurring at lower elevations (<2000 m) within mesic/aridic
(warm and dry) zones face non-optimal growing conditions
for native perennials as well as potential competition from
non-native annuals and therefore are less likely to recover at
their estimated maximum rate than those in frigid/xeric
(cool and moist), higher elevation conditions (Miller et al.
2013). We modified annual recovery rates based on their
occurrence within high, moderate, or low resilience and
resistance classes (Table 1). For this analysis, we calculated
annual recovery rates by dividing 20% sagebrush cover,
which is the minimum amount of cover needed to fulfill
sage-grouse life history requirements (Connelly et al. 2004;
Coates et al. 2017; Smith et al. 2020), by the number of
years required to achieve that amount of cover (Table 1).
Recovery rates were determined for each sagebrush com-
munity by resilience and resistance class from a review of
existing literature describing post-fire growth rates and soil
and elevation characteristics. While there is a relative wealth
of empirical information for mountain big sagebrush (Baker
2006; Ziegenhagen and Miller 2009; Baker 2011; Miller
et al. 2013; Nelson et al. 2014) and Wyoming big sagebrush

(Nelle et al. 2000; Baker 2006; Cooper et al. 2011; Arkle
et al. 2014; Bates Jonathan et al. 2020) recovery, there was a
paucity of information for low sagebrush recovery. Given its
position along the elevational/productivity gradient (Miller
et al. 2013), we assigned an annual recovery rate that was
the average of mountain big and Wyoming big sagebrush.
This approach yielded the highest recovery potential for
mountain sagebrush in the high resilience and resistance
class and lowest recovery potential for Wyoming big sage-
brush communities in the low resilience and resistance class.
Because disturbance occurring in the low resilience and
resistance class is expected to lead to dominance by non-
native annual grass (Chambers et al. 2017; Pilliod et al.
2017), we further randomly converted 90% of recoverable
pixels in this class to annual grass. We included a lag year in
the recovery rates for all classes to represent time required
for germination. Because sagebrush recovery is highly
dependent on germination and early survivorship post-
disturbance (Dettweiler-Robinson et al. 2013; McAdoo et al.
2013; Pyke et al. 2020), we accounted for reduced estab-
lishment rates caused by wildfire damage to the seedbank by
randomly assigning a recruitment probability from a uniform
distribution between 10–25% to each pixel containing
sagebrush within the burn scars, assuming adequate seed
depths to allow viability, emergence and survival (Wijayr-
atne and Pyke 2012). Pixels that were recruited recovered
based on the annual rates established for their community
and resilience and resistance class.

We simulated recovery for the three restoration scenarios
by either modifying passive recruitment probability or both
recruitment probability and annual recovery rates. We
developed a restoration scenario that simulated sagebrush
recovery under grazing exclusion. Because livestock graz-
ing is so pervasive throughout sagebrush ecosystems
(Williamson et al. 2020), we assume our literature-derived
recovery rates for the baseline passive scenario are impacted
by livestock grazing pressure. Livestock disperse annual
grass seeds, and grazing reduces native herbaceous cover
while trampling disturbs biological soil crusts that typically
fill interspace and prevent invasion by annual grass (Reisner
et al. 2013; Ellsworth et al. 2016; Condon and Pyke 2018;
Williamson et al. 2020). The grazing exclusion scenario
assumed an increased probability of sagebrush establish-
ment promoted by reduced competition from annual grass
(Reisner et al. 2013; Ellsworth et al. 2016; Condon and
Pyke 2018) and soil disturbance. We simulated this effect
by increasing the range of recruitment probability to
15–30%, which still accounts for the independent negative
impact of wildfire on annual grass colonization (Condon
and Pyke 2018; Williamson et al. 2020) and sagebrush
seedbank depletion (Baker 2011; Wijayratne and Pyke
2012). Because livestock generally do not graze on sage-
brush, we assumed livestock exclusion would not increase
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observed cover compared to the passive scenario, so we
maintained the passive annual recovery rates.

For seeding and seedling transplant, we altered both the
probability of establishment as well as annual recovery

rates. We increased the range of recruitment probability to
25–50% to simulate increased potential for establishment
due to seeding (Pyke et al. 2020). Additionally, we dou-
bled the initial recovery rate for second year seeding

Table 1 Recovery times for the different sagebrush communities that occur within the Virginia Mountains study site within Nevada, USA

Scenario Probability of
establishment

Community Resilience and
resistance class

Recovery
(years)

Sources

Passive 10–25% Wyoming High 50 Moffet et al. 2015; Nelson et al. 2014; Miller
et al. 2013, Cooper et al. 2011, Lesica et al.
2007, Baker 2006, Colket 2003, Wambolt
et al. 2001, Watts and Wambolt (1996)

Moderate 123

Low 246

Low High 22 Miller et al. 2013

Moderate 38

Low 76

Mountain big High 9 Bates Jonathan et al. 2020; Shinneman and
McIlroy 2016; Miller et al. 2013, Lesica et al.
2007, Ziegenhagen and Miller 2009, Baker
2006

Moderate 15

Low 30

Grazing Exclusion 15–30% Wyoming High 50 Moffet et al. 2015; Nelson et al. 2014; Miller
et al. 2013, Cooper et al. 2011, Lesica et al.
2007, Baker 2006, Colket 2003, Wambolt
et al. 2001, Watts and Wambolt (1996)

Moderate 123

Low 246

Low High 22 Miller et al. 2013

Moderate 38

Low 76

Mountain big High 9 Bates Jonathan et al. 2020; Shinneman and
McIlroy 2016; Miller et al. 2013, Lesica et al.
2007, Ziegenhagen and Miller 2009, Baker
2006

Moderate 15

Low 30

Seeding 25–50% Wyoming High 49 Dettweiler-Robinson et al. 2013, McAdoo
et al. 2013, Pyke et al 2020.Moderate 122

Low 244

Low High 21

Moderate 37

Low 74

Mountain big High 8

Moderate 14

Low 28

Seedling transplant
(1 seedling/ 1 m2)

50–100% Wyoming High 21 Dettweiler-Robinson et al. 2013, McAdoo
et al. 2013, Pyke et al 2020.oderate 77

Low 144

Low High 14

Moderate 24

Low 48

Mountain big High 6

Moderate 10

Low 20

Recovery rates were modified by the resilience and resistance class in which the sagebrush community occurred. Additionally, growth rates were
projected under four different management scenarios: passive, grazing exclusion, seeding, and seedling transplant. Annual recovery rates were
calculated based on the number of years necessary for each sagebrush community to achieve 20% cover, which is required for sage-grouse nesting.
Passive and seeding scenarios include an additional lag year to account for germination time. While annual recovery rates were identical in the
passive and grazing exclusion scenario, grazing exclusion scenario had a higher rate of establishment. The seeding and seedling transplant
scenarios also had higher rates of establishment than the passive scenario.
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treatments to simulate increased germination during the
growing season immediately following treatment. For
restoration using transplanted seedlings, we again doubled
the recruitment probability to 50–100%, as this method
eliminates variability in survivorship due to unsuccessful
germination and establishment and is only impacted by
early survivorship (Dettweiler-Robinson et al. 2013; Pyke
et al. 2020). Accordingly, we doubled recovery in the first
year to represent establishment, and then set recovery at
1.5 times the passive annual rate in subsequent years to
account for increased cover. For each restoration scenario,
we projected the annual recovery over 30 and 50 years to
produce binary rasters identifying areas with >= 20%
cover. We intersected recovered areas from each restora-
tion scenario with restoration index classes 3 and 4 to
identify post-fire areas with the highest sagebrush
restoration potential and recovery of formerly quality
nesting habitat for sage-grouse. We provide code for
generating annual percent cover recovery maps in the three
sagebrush communities for each recovery scenario in
Supplementary Materials S5.

Results

Nest Site Selection

Prior to the wildfires of 2016 and 2017, we located and
monitored 141 nests from 96 sage-grouse over 8 years
(2009–2016). Of the 141 nests, 71 had hatched eggs
(50.3%). After accounting for exposure time via the nest
frailty model, the pre-fire median posterior estimate of
cumulative 38-day nest survival was 0.336 (95% CRI=
0.141–0.577). Of all nests, 84 (59.6%) occurred within the
area that eventually burned. Sage-grouse in the Virginia
Mountains study region selected nest sites where propor-
tions of big sagebrush cover (radii [r]= 75 m; Table 2) and
perennial herbaceous cover (r= 439 m; Table 2) were
above average compared to available locations, and where
percentages of pinyon-juniper cover class 1 (1–10% cover;
r= 1451 m) and bare ground (r= 439 m) were below
average (Table 2). With respect to topography, nest sites
occurred where surface curvature values (r= 1451) were
above average (more concave; Table 2). Nest site locations
also occurred closer to perennial streams and where inter-
mittent stream densities (r= 75 m; Table 2) were above
average compared to available locations, and where nega-
tive anthropogenic effects included proximity to primary or
secondary road (avoided, relative to available locations;
Table 2). Nest site selection increased strongly with proxi-
mity to active leks (Table 2). The distribution of selected
nesting resources predicted across the predicted pre-fire
study area is shown in Fig. 1. Posterior distributions of

model coefficients are shown in Supplementary Materials
S6 (Figs. S6–1).

Nest Survival

Due to a smaller effective sample size (e.g., 70 failed nests),
habitat predictor covariates were subject to greater uncer-
tainty in the estimation of their effects of nest survival. For
example, the 95% CRIs for all predictor effects from the
frailty model included 0 (Table 3). However, the following
covariates had high probability (>0.85) for affecting nest
survival, based on the probability of direction (pd;
Makowski et al. 2019) or proportion of the posterior dis-
tribution having the same sign as the median β value: sur-
face curvature (r= 75 m, β=−0.152, 95% CRI=
−0.429–0.051, pd= 0.910), NDVI (r= 1451 m, β=
−0.163, 95% CRI=−0.496–0.068, pd= 0.898), and
sagebrush height (r= 439 m, β=−0.132, 95% CRI=
−0.415–0.050, pd= 0.885). Each of these effects repre-
sented a negative influence on the hazard (i.e., reduced risk
of nest failure) with increasing values of the covariate being
more positively related to nest survival. In addition, nest
survival was generally lower early in the season, based on
the estimated effect of nest initiation date, and increased
later in the season (Table 3). The study area predicted pre-
fire 38-day cumulative nest survival surface is shown in

Fig. 1. Posterior distributions of model coefficients are
shown in Supplementary Materials S6 (Figs. S6–2).

Loss from Wildfire and Restoration of Nesting
Habitat

Predicted losses of selected nesting habitat within the
burned area approached nearly 100% of initial habitat
values in some areas near existing leks (Fig. 1c), while the
loss of potential nest survival probability within the burned
area reached 0.6 and was consistently >0.1 throughout the
burned area (Fig. 1d). The restoration index, representing
four classes from low (1) to high (4) restoration suitability
in terms of the habitat lost (i.e., restoration potential),
revealed spatially explicit information to focus potential
restoration efforts on areas where habitat quality was pre-
viously greatest prior to wildfire (Fig. 2).

Following 30- and 50-years recovery within the wildfire
perimeters, we identified 308 and 316 hectares of sagebrush
that could be recovered through passive restoration,
respectively, 399 and 410 hectares that could be recovered
through grazing exclusion, respectively, 660 and 677 hec-
tares that could be recovered through seeding, respectively,
and 1367 and 2092 hectares that could be recovered through
seedling transplanting within the entire burn scar after 30
and 50 years. Additionally, we combined the two highest
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classes of the restoration index with spatially explicit pat-
terns of post-fire sagebrush recovery to identify areas with
the highest potential for restoration success under different
management scenarios (Fig. 3). With further refinement to
focus on priority areas, passive restoration yielded 185 and
191 hectares, grazing exclusion yielded 249 and 257 hec-
tares, seeding yielded 397 and 412 hectares, while planting
seedlings yielded 832 and 1083 hectares after 30 and 50
years, respectively. Thus, active restoration approaches of
seeding or planting seedlings produced nearly 2.1 and 4.5
times more habitat, respectively, than passively allowing
recovery.

Discussion

We provide a multi-scale decision-support framework that
operationalizes concepts of ecological resilience to better

inform implementation and effectiveness of passive and
active restoration efforts through the lens of sage-grouse
population performance (Chambers et al. 2017; Ricca et al.
2018; Ricca and Coates 2020). This quantitative framework
helps minimize the spatial and temporal lag between tradi-
tional measures of ecosystem resilience and more immedi-
ate population responses to wildfire by combining
fundamental soil and plant community processes with
metrics of sage-grouse habitat selection and survival
(Chambers et al. 2017; Ricca and Coates 2020). Our fra-
mework allows users to jointly prioritize areas that are
crucial to sage-grouse populations and improve efficiency
of restoration efforts by targeting areas with the highest
capacity for recovery after wildfire. Our framework also
provides the ability to estimate and compare the timeframe
for expected outcomes of passive and active restoration
projects to sage-grouse life history requirements and
population trends. This model helps prioritize areas for the
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Fig. 1 Predictions of (a) pre-fire sage-grouse nest habitat suitability
index (HSI); (b) pre-fire sage-grouse nest survival map; (c) projected
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habitat contributions to nest survival from wildfire within the Virginia

Mountains region of Nevada, USA. Pre-fire data were specific to the
breeding seasons of study years 2009–2016. Wildfire events occurred
during the summers of 2016 and 2017.
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three restoration activities and given the high proportion of
low resilience and resistance and the relatively slow growth
rate of the sagebrush communities within this site, seeding
and seedling transplanting will be required to expeditiously
recover sage-grouse habitat across most of the site. Our
recovery model can be refined as better estimates of seeding
and transplanting recovery rates are established, as livestock
grazing and exclusion impacts are quantified, and as
improved measures of resilience and resistance are
developed.

We accounted for four restoration options across a range
of intervention efforts: passive, grazing exclusion, seeding,
and seedling transplant. Excluding livestock following
wildfire promotes the regrowth of native herbaceous vege-
tation that can compete with non-native invasive annual
grasses (Reisner et al. 2013; Ellsworth et al. 2016; Condon
and Pyke 2018), reduces additional disturbance to biocrust
communities that infill the interspace that annual grasses
colonize, and disrupts the spread of annual grass seed
throughout the burn scar. Therefore, the primary benefit of
our livestock exclusion scenario was an improved prob-
ability of sagebrush establishment, a benefit that would be
realized within a few years post-wildfire and would not
impose long-term grazing exclusion or significant costs to

implement. Federal land management agencies often pre-
vent livestock grazing on active allotments for two years
following wildfire (U.S. Bureau of Land Management 2007;
Williamson et al. 2020). However, additional exclusion
time may be required as annual grass has been shown to
continue to outcompete native herbaceous species up to
twelve years post-wildfire (Miller et al. 2013).

The intention of sagebrush seeding is to replenish sage-
brush seed availability and promote establishment across a
broad extent (Pyke et al. 2020) and can be effective given
cool, moist site conditions and seed mixes with species
adapted to local conditions (Arkle et al. 2014; Brabec et al.
2015; Richardson et al. 2015). However, seeding in warm
and arid conditions can have low establishment success
(Knutson et al. 2014; Shriver et al. 2019) and does not
provide the more immediate benefits that transplanting
sagebrush seedlings confers, such as increased cover and
height advantages (Pyke et al. 2020). Based on our current
recovery model, our results indicate transplanting is more
useful for achieving accelerated habitat recovery to the
required 20% sagebrush cover threshold within a time frame
that is applicable to sage-grouse. These results generally
align with empirical evidence presented in Pyke et al.
(2020), who found that plots treated with seedling

Table 3 Posterior distribution estimates of habitat predictor covariates from a hierarchical model of nest survival (nest frailty) in the Virginia
Mountains region of Nevada, USA

Habitat predictor Scale bβ (50th) 2.5th 97.5th pd Influence Source

Day of season −0.264 −0.554 −0.018 0.985 + Original data collection

Curvature r= 75 m −0.152 −0.429 0.051 0.910 + https://viewer.nationalmap.gov/basic/

https://evansmurphy.wixsite.com/evansspatia
l/arcgis-gradient-metrics-

Normalized difference
vegetation index

r= 1451 m −0.163 −0.496 0.068 0.898 + https://doi.org/10.5067/MODIS/MOD13Q1.
0062015

Sagebrush height r= 439 m −0.132 −0.415 0.072 0.885 + https://www.mrlc.gov/data

% Cover other sagebrush r= 439 m −0.080 −0.356 0.110 0.791 + https://www.mrlc.gov/data

% Cover annual grass r= 439 m −0.073 −0.401 0.129 0.755 + https://www.mrlc.gov/data

% Cover litter r= 167 m 0.041 −0.146 0.285 0.684 − https://www.mrlc.gov/data

% Burned areab r= 167 m 0.039 −0.164 0.317 0.664 − https://www.mtbs.gov

Topographic roughness r= 1451 m −0.020 −0.269 0.179 0.598 + https://viewer.nationalmap.gov/basic/

https://evansmurphy.wixsite.com/evansspatia
l/arcgis-gradient-metrics-

Medium-voltage power line Exp.
Decaya

−0.008 −0.475 0.409 0.528 + https://www.spglobal.com/platts/en/products-
services/electric-power

Hen age −0.004 −0.397 0.375 0.512 + Original data collection

Data were specific to the breeding seasons of study years 2009–2016, prior to significant wildfire events that occurred during the summers of 2016
and 2017. Estimates used to generate spatially explicit predictions of 38-day cumulative nest survival, converted from the hazard function of a nest
frailty model, are denoted as bβ, the median coefficient values of the posterior distribution. The term pd is the probability of direction statistic, used
to indicate the proportion of the posterior distribution with the same size as bβ, while “Influence” represents the effect on nest survival, where +
indicates reduced hazard and greater survival closer to, or with increasing values of the feature, and - indicates increased hazard and lower survival
closer to, or with increasing higher values of the feature.
aExponential distance decay function; coefficient estimate represents proximity (nearness)
bCumulative burned area represents effects of area burned during the previous 10 years
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transplants met height requirements faster than seeded plots
and that in order for seeding growth rates to match trans-
planted seedlings, survival must be equal. Our model can be
refined as estimates of seeding and seedling transplant
growth rates and resilience and resistance improve, with
additional consideration given to their interactions. Our
model also assumes seeding and seedling transplants are
stocked from local sources and retain the adaptations to
local climate and soil conditions of the pre-disturbance
sagebrush community (Bower et al. 2014; Germino et al.
2019). Seed sources lacking local adaptations could limit
establishment or survival (Brabec et al. 2015; Richardson
et al. 2015; Germino et al. 2019).

While active restoration may be more efficient for
restoring sage-grouse habitat, there are known cost and
logistical constraints that can prohibit restoration over large
extents (Dettweiler-Robinson et al. 2013; Grant-Hoffman
and Plank 2021). Costs of seed treatments are impacted by
seed density requirements, limited seed longevity, and
seeding method (Shriver et al. 2018; Germino et al. 2018),
while seedling transplant projects are restricted by seedling
growing cost and availability (Grant-Hoffman and Plank

2021). From an economic perspective, high rate seeding
may be an attractive alternative to transplanting to achieve
sagebrush densification within restored patches (Pyke and
Archer 1991). Pyke et al. 2020 found that seeding growth
rates are competitive with transplanted seedlings under the
assumption of equal survival. However, achieving nesting
habitat restoration through seeding is difficult (Arkle et al.
2014). Due to low success (Knutson et al. 2014), the cost of
seeding may ultimately meet or exceed the cost of trans-
planting (Boyd and Davies 2012; Dettweiler-Robinson et al.
2013; Pyke et al. 2020). The fine resolution of our selection
and survival maps allow users to target and precisely
delineate the areas that are predicted to have the greatest
benefit for sage-grouse, potentially reducing the cost of
treatment compared to delineating sites by other methods.
Additionally, by downloading our prioritization map, users
can refine priority areas with other GIS boundaries of
interest such as land ownership, terrain profiles, distance to
roads, etc. to customize a treatment site based on accessi-
bility. Further, our simulations found that less costly man-
agement options such as grazing exclusion can effectively
improve sagebrush recovery. Excluding grazing diminishes
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Fig. 2 Habitat restoration index based on the intersection of loss of
habitat selected by sage-grouse and loss of habitat contributions to nest
survival following wildfire. Four classes were created by reclassifying
the differenced nest Resource Selection Function (RSF) map based on

relative losses in habitat selected pre-fire >0 (2 classes, low vs. high)
and the differenced nest survival map based on the 50th percentile of
loss of cumulative 38-day nest survival (2 classes, low vs. high)
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annual grass invasion which can increase sagebrush estab-
lishment by reducing competition through maintenance of
soil-resource partitioning and reducing litter that can pre-
vent sagebrush germination (Germino et al. 2016). For these
reasons, the Bureau of Land Management currently
employs grazing exclusion for 2 years following wildfire
(U.S. Bureau of Land Management 2007). Grazing exclu-
sion is not without cost as it will have immediate economic
impacts on local ranching operations. However, strategi-
cally timed grazing may provide a management option to

reduce economic losses. Fall-winter grazing has been
shown to reduce non-native invasive annual grass cover and
increase native perennial vegetation following fire (Davies
et al. 2021).

Our finding that projected sage-grouse nest survival was
negatively impacted by burned areas further highlights the
need for active habitat restoration. Unfortunately, passive
recovery of sagebrush to the minimum required cover for
sage-grouse nests may lag behind habitat requirements to
preserve sage-grouse populations (Arkle et al. 2014; Coates
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Fig. 3 Established sagebrush recovery (>20% cover) within the 2016
and 2017 Virginia Mountain fires after 50 years under (a) passive, (b)
seeding, (c) outplanting, and (d) grazing exclusion restoration efforts.

Recovered sagebrush in priority nesting habitat is distinguished from
non-priority recovery by darker shading
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et al. 2016a; Anthony et al. 2021; Dudley et al. 2021),
especially where increasing fire intensity severely degrades
sagebrush canopy structure (Brooks et al. 2015). Compared to
seedling transplants, seeding treatments can have lower
establishment and slower growth (Arkle et al. 2014). Addi-
tionally, sage-grouse show strong fidelity to pre-fire nesting
areas, despite apparent fitness consequences (Foster et al.
2018, O’Neil et al. 2020, Anthony et al. 2021). While
recovery to pre-fire sagebrush conditions may take more than
a decade even with restoration (Germino et al. 2018; Pyke
et al. 2020), active efforts to help accelerate recovery could
serve to minimally meet life history requirements to sustain
local populations. Our approach considers sagebrush to be
successfully restored at the minimal cover required for sage-
grouse (Connelly et al. 2000; Smith et al. 2020). Application
of our restoration suitability framework can reduce the tem-
poral lag between resilience and habitat quality according to
this benchmark. Spatially explicit frameworks like ours help
to identify sites where restoration would be most effective for
nest selection and survival and can guide the placement of
islands of habitat (Hulvey et al. 2017). We modeled transplant
recovery rates based on current densities of 1 plant m−2

(Wirth and Pyke 2011). However, the degree to which pre-fire
sagebrush cover is restored will further depend on the density
of transplants (Pyke et al. 2020) and increasing the density of
transplants can decrease recovery time (Pyke et al. 2020). Our
quantitative framework can be adjusted to reflect planned
densities as recovery rates for different seedling densities are
established.

The framework we have outlined implements some of the
proposed improvements discussed in Ricca and Coates (2020)
to other models of operationalized resilience that incorporate
resilience and resistance into conservation planning for sage-
grouse habitat and distribution restoration (e.g., Chambers
et al. 2017; Barnard et al. 2019). We explicitly modeled the
post-restoration impact on both sage-grouse nest selection and
survival by predicting sagebrush community specific recovery
under scenarios of both passive and active restoration. In
addition, our framework mitigates potential for incomplete
predictions of habitat by combining predicted surfaces of nest
selection and nest survival into a single index of restoration
suitability that captures potential for species reproduction in
addition to distribution. This allows users to rank potential
restoration sites not only by selection/occupancy, but also by
metrics such as survival that are often more representative of
true habitat quality (Gaillard et al. 2010). In this way, the
framework facilitates consideration of source-sink dynamics
(Matthiopoulos et al. 2015) and the potential for ecological
traps, which contain detrimental habitat components along-
side attractive components which are selected by sage-grouse
(Aldridge and Boyce 2007; Coates et al. 2017; Foster et al.
2018; Heinrichs et al. 2018; O’Neil et al. 2020). Notably, we
prioritized restoration categories based on selection patterns,

above survival patterns, because these areas are most likely to
be used, and thus restoration would have the greatest potential
to improve habitat for the largest number of birds as well as
potentially restore areas that may have previously served as
traps. This framework can also be used with spatially explicit
layers that quantify overall ecosystem health rather than a
sensitive species of interest, such as ecosystem resilience and
resistance, soil characteristics, or disturbance response infor-
mation (Ricca and Coates 2020).

Caveats for Use

This study was not without constraints. Although this fra-
mework focuses on nest habitat, including responses from
other sage-grouse life history stages will likely provide a
more complete picture of predicted restoration effectiveness
on population performance. For example, recent evidence
suggested that wildfire was responsible for reduced adult
female survival in Oregon (Foster et al. 2018). Our frame-
work can be adapted to incorporate survival and other
modeled parameters across multiple life stages contingent
on data availability. The methodological framework can be
modified for other sagebrush-obligate species that might not
fall under the umbrella of sage-grouse conservation (Hanser
and Knick 2011; Carlisle et al. 2018) conditional upon the
availability of spatially explicit data (Suding 2011), where
occupancy and/or fitness information is available. Lastly,
because recent evidence suggests that sage-grouse func-
tional responses to vegetation components vary among
sagebrush ecosystems at different spatial and temporal
extents, such as Great Basin (Coates et al. 2020; Smith et al.
2020) and range-wide (Doherty et al. 2016), our modeled
parameters may be unique to our study area. However, the
increasing availability of spatially explicit sage-grouse vital
rate data and access to multi-scale landscape covariates
promotes expansion of our framework into a generalizable
model that incorporates multiple sites and years (O’Neil
et al. 2020, Ricca and Coates 2020). Such a generalizable
model would allow users to evaluate where and how to
carry out restoration strategies immediately following
wildfire in areas without pre-wildfire data.

Our framework specifically focuses on disturbance from
wildfire and does not explicitly account for additional dis-
turbances such as grazing or soil surface disruption. There is
evidence of increased grazing pressure following fire, even
with rest from grazing (Condon and Pyke 2018), and under-
standing the historic grazing regime of our site could better
indicate the potential for transitions to alternative states. Due to
data limitations on grazing regimes across our site, we were
unable to assess pre-fire grazing impacts on nest selection and
survival, or the potential for post-fire grazing to delay the
recovery of perennial grasses that provide nesting habitat for
sage-grouse or increase non-native invasive species cover
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(Fisher et al. 2009; Souther et al. 2019). Our post-fire sage-
grouse selection and survival models assumed exclusion from
grazing across the study site, simulating partial recovery of
perennial grasses nearly immediately (<5 years) after the
wildfires occurred (Arkle et al. 2014). The framework could be
greatly improved with the availability of data that quantify
direct and indirect impacts of livestock grazing specific to
perennial grass and sagebrush recovery. This is dependent on
spatially explicit records of grazing timing, intensity, and
history on the landscape. Also needed are data that quantify
the response of plant communities (i.e., percent cover and
height increases) to grazing exclusion, especially in areas with
concomitant disturbances such as wildfire. Additionally, our
model prioritized sagebrush recovery for nesting habitat and
did not estimate the value of the sagebrush community com-
position on additional life history requirements such as winter
forage (Frye et al. 2013; Fremgen-Tarantino et al. 2020),
although our threshold of 20% cover also pertains to winter
habitat needs (Connelly et al. 2000; Fremgen-Tarantino et al.
2020). Additionally, a growing body of literature indicates that
biocrusts are a major component in passive recovery of
sagebrush steppe (Su et al. 2009; Condon and Pyke 2020).
Because the models of surface cover (Xian et al. 2015)
available in our study area did not estimate biocrust, we relied
on resistance and resilience classes to quantify the ecological
capacity which are derived from similar soil components and
are currently a standard measure of operational resilience
(Chambers et al. 2019, Ricca and Coates 2020). Remote
sensing models to detect surface cover of biocrust need to be
developed to provide a more nuanced estimate of recovery in
future decision-support tools.

Our metrics of ecological resilience could be supple-
mented with data derived from more rigorous monitoring of
restoration outcomes. The resilience and resistance mapping
used in our study (Maestas et al. 2016) reflected static
profiles, but recent evidence suggest that these are projected
to shift at an approximated date of 2070 towards warmer
and wetter soil types (higher soil temperature, more cool
season moisture) in Great Basin sagebrush (Bradford et al.
2019). Such a shift will result in more moderate resilience
and resistance and less high and low resilience and resis-
tance. Incorporating decadal outcomes derived from more
realistic maps that depict temporal shifts would be valuable
as these spatial layers become available.

In conclusion, we have developed a quantitative decision-
support framework that allows users to evaluate predicted
effectiveness of restoration strategies aimed at reducing
immediate impacts of wildfire to sage-grouse populations.
Our framework operationalizes concepts of resilience and
resistance to facilitate rapid return of sagebrush in areas that
are most conducive to nesting, which might otherwise result
in ecological traps based on sage-grouse nest site fidelity. This
framework has broader decision-support applications within

the sagebrush ecosystem. Use of this quantitative framework
can be expanded to other sagebrush-obligate species with the
development of predictive surfaces of their population
dynamics. While the applications presented herein were spe-
cific to wildfire, this framework is readily adaptable to various
drivers of habitat loss within sagebrush ecosystems as it
quantifies operational resilience irrespective of the type of
catastrophic disturbance that has occurred. Therefore, users
can adapt this framework to guide land reclamation or miti-
gation actions in response to other disturbances to the sage-
brush ecosystem such as agricultural expansion, energy
development, and unsustainable livestock grazing practices.

Data Availability

Data supporting the results of this analysis will be madea-
vailable to the public via the USGS ScienceBase data
repository (data; sciencebase.gov; https://doi.org/10.5066/
P96K6X05; Roth et al. 2022).

Code Availability

Code is made available as supplemental material with this
manuscript.
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