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Abstract
Models of ecological response to multiple stressors and of the consequences for ecosystem services (ES) delivery are scarce.
This paper describes a methodology for constructing a BBN combining catchment and water quality model output, data, and
expert knowledge that can support the integration of ES into water resources management. It proposes “small group”
workshop methods for elucidating expert knowledge and analyses the areas of agreement and disagreement between experts.
The model was developed for four selected ES and for assessing the consequences of management options relating to no-
change, riparian management, and decreasing or increasing livestock numbers. Compared with no-change, riparian
management and a decrease in livestock numbers improved the ES investigated to varying degrees. Sensitivity analysis of
the expert information in the BBN showed the greatest disagreements between experts were mainly for low probability
situations and thus had little impact on the results. Conversely, in our applications, the best agreement between experts
tended to occur for the higher probability, more likely, situations. This has implications for the practical use of this type of
model to support catchment management decisions. The complexity of the relationship between management measures, the
water quality and ecological responses and resulting changes in ES must not be a barrier to making decisions in the present
time. The interactions of multiple stressors further complicate the situation. However, management decisions typically relate
to the overall character of solutions and not their detailed design, which can follow once the nature of the solution has been
chosen, for example livestock management or riparian measures or both.
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Sensitivity analysis

Introduction

There is growing pressure to manage environmental resour-
ces in a manner that is sustainable, resilient and protects and
values healthy functioning ecosystems and the services they

provide, (Costanza et al. 2014; Rova et al. 2019). Protection
of natural capital and ecosystem services is central to recent
policy initiatives such as in the European Green Deal (Eur-
opean Commission 2019) and the EU wide Biodiversity
Strategy for 2030 (European Commission 2020). Although
ecosystem services (ES) are not explicitly mentioned in the
Water Framework Directive, consideration of ES can greatly
assist decision making by taking into account the widest
range of benefits and, where possible, assessing their value
(COWI 2014). However, efforts to mainstream ES into water
resources management are progressing relatively slowly and,
an ‘implementation gap’ needs to be bridged between the
concept of ES and Integrated Water Resources Management
(Cook and Spray 2012). The slow progress partly relates to
the paucity of guidance and effective methodologies as well
as data gaps (Grizzetti et al. 2016).

A number of papers have proposed assessment frame-
works or templates that consider the pressures on freshwater
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resources, the resulting changes in water quality and
responses in ecological processes/biodiversity through to
the consequences of these changes for ES (Keeler et al.
2012; Grizzetti et al. 2016). A final step involves valuation
of ES. The most challenging step relates to linking the
complex ecosystem processes of the ecological components
to ES delivery (Fu et al. 2013; Huang et al. 2018) and to
human wellbeing (Wang et al. 2017).

Modelling is a key tool in the ES framework and is
essential to informed management of ecosystems but faces
challenges because of the complexity of the systems being
managed and particularly when biological and ecological
responses to multiple pollutants and other anthropogenic
stressors must be considered (Martín-López et al. 2014;
Hallouin et al. 2018). At the very minimum, models of the
catchment’s hydrology and physical water quality must be
linked through models of the biological and ecosystem
responses to predict the resulting changes in ES. On the
surface, this seems a straightforward, albeit complex, task.
However, while there are many well-proven models relating
the hydrological response of catchments to the variation of
river flows and physical water quality (Hrachowitz et al.
2016; Wilusz et al. 2017), modelling the biological
responses, e.g., of vegetation, macroinvertebrates, fish, or
birds, to changes in flows and water quality is still a major
challenge (Hallouin et al. 2018; Reid et al. 2019). Although
there are large amounts of empirical data and field obser-
vations, extracting usable, multi-stressor, numerical model
components from these data is difficult and has been done
only for a limited number of specific interactions (Hunting
et al. 2019; Blöcher et al. 2020). Despite this lacuna in
multi-stressor biological modelling, informed management
requires that some type of model capable of representing the
biological response must be developed to simulate the
effects of management decisions on ecology and ES. This
paper shows that Bayesian Belief Network (BBN) models
have the potential to fill this gap.

A BBN is a particular type of directed network model
where probabilities are key (Uusitalo 2007). It consists of a set
of nodes and directed connecting links representing cause-
effect relationships. The nodes have state variables that are
related through conditional probability tables (CPTs) that
allow probability distributions of the model inputs to be
combined with user-supplied evidence of model states to
determine the probability distributions of model output vari-
ables. A key advantage is that qualitative expert knowledge
can be used to form the CPTs for the nodes, allowing that
knowledge to be used in a quantitative way in the model. This
also promotes the engagement of expert stakeholders and in
identifying trade-offs in multi-criteria situations (Barton et al.
2020). Although BBN models have been used in several
studies relating to water resources/environment/ES (e.g.,
Aquilera et al. (2014); Lehikoinen et al. 2014; Landuyt et al.

2013, 2014; Forio et al. 2015; McVittie et al. 2015 and
Kaikkonen et al. 2021), their potential within a modelling
framework for linking ecosystems services with water
resources management has not been fully demonstrated yet.

This paper presents a methodological framework incor-
porating biophysical and BBN models that were developed,
in a project funded by the Irish Environmental Protection
Agency (EPA), as a demonstration for three test rivers in
Ireland linking catchments inputs to selected ES (Kelly-
Quinn et al. 2020). The three rivers were chosen to repre-
sent a range of different riverine settings. The paper outlines
the methods used to (a) develop the BBN, (b) populate the
CPTs, (c) determine the physico-chemical inputs from the
catchment, (d) assess the response of selected ES to man-
agement interventions, and present results in terms of the
predicted changes to ES from the management interventions
investigated. Finally, the paper addresses (i) the uncertainty
associated with the information from the experts, who were
mainly aquatic biologists, ecologists or fisheries scientists,
and (ii) the resulting sensitivity of the estimates of changes
to ES due to management options. The general methodol-
ogy described here can be extended and used in many other
countries/regions.

Methods

Selected ES and Modelling Framework

The Common International Classification of Ecosystem
Services (CICES 2016) was produced by the European
Environment Agency to provide a standard classification
structure that could be used worldwide in environmental
accounting. Using this classification system, a review of the
freshwater ES in Ireland most likely to respond to catch-
ment management measures was undertaken (Feeley et al.
2017), from which three services (one provisioning and two
cultural services), and four associated indicators, were
prioritized for this project, shown in (Table 1). This was
done at the first project workshop which was attended by
fifty-five participants from a wide range of stakeholder
organisations, including Government departments, non-
governmental environmental organisations, local autho-
rities and interest groups, such as anglers. The participants
were first introduced to the ES approach and then to the
major issues facing Irish freshwater ecosystems. Then the
participants were divided into small groups of five or six
people. Each group was assigned a rapporteur and was
asked to recommend (i) the ES to be included in the study
and (ii) the management measures that should be modelled.
The rapporteur for each group reported on their delibera-
tions and recommendations in a final plenary session and
the final choice was by consensus from this session.
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For wildlife appreciation, representative proxies were cho-
sen, mayflies, two bird species (dipper and kingfisher) and
otters, as measures of a potential service rather than the actual
benefit received such as the time people spend appreciating the
wildlife. The mayfly and dippers were also chosen because of
their sensitivity to water quality and the general health of the
aquatic ecosystem. The sensitivity of mayfly species to water
quality in Europe has been reported by Vilenica et al. (2019)
and in other continents by (Ramulifho et al. 2020), and for
dippers by (Sorace et al. 2002). Kingfishers and otters were
chosen because they are of special conservation importance in
Ireland, (Igoe 2016). Angling, particularly for salmonids, is a
popular pastime in Ireland both for local people and for
tourists and there is a strong network of angling associations in
the country. The choice of algae as an indicator of water
quality for drinking water abstraction is because their presence
is an indicator of elevated nutrients and they have often been
used as indicators of health, (Willby et al. 2012). While these
are only a small subset of all services that could be chosen,
they allow us to show how BBNs can be constructed and used.

The first workshop also chose riparian buffer strips and
changes in livestock numbers (both increases and decreases)
as the management options to be considered, as being the
most likely to be implemented. The modelling framework
linking management options to physico-chemical/biological
conditions and to the selected ES is shown in Fig. 1.
Catchment conditions, e.g., weather, hydrology, topo-
graphy, soils, geology, land-use etc. together with catch-
ment management decisions, such as landuse change,

(Zhang et al. 2021), natural flood retention measures,
(Collentine and Futter 2018), riparian buffers, (Young et al.
2019) directly influence river flows and bio-physical water
conditions. These, in turn, influence the ecological respon-
ses and the associated ES. A large number of physically-
based or conceptual catchment models are available to
estimate the flows and bio-physical water conditions.
However, there are fewer models for the responses of the
ecosystems, ecology and any dependent ES to a realistic set
of multiple stressors, e.g., from combinations of nutrients,
sediment, flow and temperature regime changes. Such
models have had limited distribution, (Orr et al. 2020).
Nevertheless, there are some data on responses to multiple
stressors used to build regression relationships, (Sannigrahi
et al. 2020) or production functions, (Bruins et al. 2017).
But these are experts who have spent entire careers working
in specific areas, e.g., aquatic ecology or fisheries, and have
developed individual conceptualisations of how such sys-
tems behave. BBNs can capture some of this expert
knowledge and harness it in a decision support framework.
The background to BBNs and their use is described by
others (Grover 2013; Uusitalo 2007; McVittie et al. 2015)
so will not be repeated here as we describe how our model
was constructed and used.

Constructing the BBN

Construction of the BBN started with the ES indicators on
the right-hand side of Fig. 1 by determining the major

Fig. 1 Modelling framework

Table 1 Ecosystem services and
indicators used in the test
catchments

Ecosystem service Quantitative indicator used in BBN

Wildlife appreciation Number of mayfly species, and number of dippers (Cinclus cinclus
hibernicus), kingfishers (Alcedo atthis) and otters (Lutra lutra)

Clean water (quality) for
drinking water supply.

Presence/absence of algal scum and filamentous algae (%
riverbed cover)

Angling Number of catchable fish in good condition

Environmental Management (2022) 69:781–800 783



factors influencing them and the connections between these
factors and the biophysical water conditions. The challenge
was to show a realistic network of linkages while keeping
the network as simple as possible in terms of the number of
nodes and connections to each. Simplicity is important
because it controls the number of model parameters to be
determined either from experts or calibrated from data and
as this number grows so also does the uncertainty in their
calibration, (Shaw et al. 2016), and the risks of equifinality
issues, (Beven and Freer 2001). In a BBN, as the number of
connections to an individual node increases, the number of
parameters needed also increases multiplicatively. Con-
siderable work has been done on efficient methods for
deriving large numbers of conditional probability values,
(Das 2004) who, while recognising the subjective nature of
experts’ experiences and opinions, derived a weighted sum
approach with a linear increase in complexity for additional
connections to nodes, and more recently in a two stage
approach that allows experts establish an initial approximate
CPT and subsequently refine it (Hassall et al. 2019) and in a
Bayesian inference approach applied to a partial analysis,
(Barons et al. 2021). These techniques were not needed
here, as we had sufficient time to elicit most of the CPT
information directly from the experts, or from measured
data. We also valued simplicity because it also allows the
end-users to better understand how the model works, and
this often promotes confidence in using its outputs. How-
ever, the usefulness of the model should not be sacrificed
for simplicity. Achieving this was an iterative process
involving the project team and additional specialists in
fisheries, aquatic biology and hydrology, consulted

individually. The initial conceptualisation produced by this
process was presented to external experts in the first part
(morning) of a second workshop, focused on the BBN, and
modified based on their feedback. There were twelve
attendees at this workshop, invited because of their exper-
tise on aquatic biology or fisheries. The resulting network,
Fig. 2, shows for instance, that for angling, the density and
condition of both trout and salmon are important and these
are affected by the availability of food. Instream habitat
availability and the presence of coarse (i.e. non-salmonid)
fish also influence trout density, the latter due to predation
and competition. Habitat availability, eutrophication risk
and dissolved oxygen influence grazers which can control
algal scum. Moving to the left of Fig. 2, these factors are
linked with biophysical factors such as nutrient excess
(nitrates, phosphorus and organic matter). In addition,
sediment influences habitat and both ammonium and
unionization ammonia have distinct influences on fish
densities. Sunlight and flow regime influence water tem-
perature which influences eutrophication risk. Many of the
biophysical factors are themselves determined by the indi-
vidual catchment setting and can be influenced by man-
agement practices in the catchment.

The relationship between this BBN and the major con-
ceptual components of the modelling approach are identi-
fied in Fig. 3. At the very left-hand side are two parent
nodes (highlighted in the coloured oval shapes) which can
accept user input. One box allows the user to choose the
catchment to be analysed. The second box allows the user
select from a list of management strategies. There are four
management options built into this prototype (no change,

Fig. 2 Structure of the BBN
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riparian buffers to intercept nutrient inflows, increasing
livestock numbers (intensification) and decreasing livestock
numbers (extensification). More options can be added if
their effect on the nodes representing physical character-
istics of the water in the model are quantified.

At the right-hand side of Fig. 3 are four output nodes that
show the effect of the choice of catchment and management
intervention on the chosen ES. Two boxes show the effect
on wildlife and biodiversity (via the selected surrogates,
dipper density and mayfly (Ephemeroptera) species rich-
ness, which is considered a cultural service (CICES clas-
sification 3.1.1.2). Water Quality for drinking water
abstraction is a provisioning service (CICES classification
4.2.1.1) represented here by the nuisance algal scum node.
The second cultural service is related to recreational angling
quality (CICES classification 3.1.1.1). For simplicity,
coarse fishing was not considered for its angling service
here, as the three studied systems are primarily used as
salmonid (game) fisheries. Coarse fish were considered only
in terms of their potential impact, due to predation on
juveniles, on the salmonid fishing service, a dis-service to
game anglers.

Details of the definition and meaning and levels of nodes
in the BBN are summarised in Table 2. The number of
levels used in each node was the smallest practicable. This
is because the number of conditional probability values
needed for a node increases multiplicatively with the
number of levels used to describe the node state. This is a
dimensionality issue like that described above in relation to
the number of connections to a node. Here we usually had
three levels that included the highest and lowest cases likely

to occur and at least one mid-range level corresponding to
normal conditions. In a few cases, two levels were suffi-
cient, e.g. the presence or absence of coarse fish, or whether
the unionised ammonia levels were toxic or non-toxic. Also,
a small number of cases had more than three levels, such as
mayfly species richness, where the additional detail was
considered useful. The specifications for each level were
determined typically by thresholds in environmental reg-
ulations, analysis of data or expert opinion. The CPTs for
each node were then determined either (i) from expert
groups in the second part (afternoon) of the second (BBN)
workshop and was, in some cases, refined by subsequent
discussion, or (ii) by separate data analysis or numerical
model output as described in the right-most column of
Table 2. The biotic nodes were completed by the experts at
the workshop and the abiotic nodes from data or models as
illustrated in Fig. 3.

Populating the Conditional Probability Tables (CPTs)

The CPTs associated with the BBN nodes relating to eco-
system components/functions were populated at the second
(BBN) workshop with twelve external experts and four
project investigators. These experts were a sub-set selected
from those who had contributed, in the first workshop, to
the selection of the ecosystems services and management
options to be used in the BBN. The experts were divided
into four groups and each group was assigned a project
investigator as a moderator. Each group was presented with
a set of blank CPTs and asked to fill them in with percen-
tage probabilities corresponding to their own knowledge

Fig. 3 Components of the BBN and overall modelling approach
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Table 2 Details of all nodes in the BBN

Node Levels Descriptors and states

Management (input node) No change Unchanged

Riparian Management Increase in length of riparian buffers to achieve a 50%
reduction in inputs the maximum possible, see
“Effectiveness of riparian management measure” below

Livestock numbers
increase

50% increase in number of dominant livestock species,
see section “Modelling physico-chemical factors”. This
was considered the maximum achievable

Livestock numbers
decrease

20% decrease in number of dominant livestock species,
see section “Modelling physico-chemical factors” The
maximum reduction considered acceptable to farmers

Catchment (input node) Dodder Individual annual average nutrient load and flow regime
for selected catchmentMoy

Suir

River Reach Headwaters Typically upland—eroding, smaller, steeper, faster

Lower Reaches Typically lowland—depositing, larger and slower

Alkalinity/pH High >100 mg/L CaCO3/pH > 8.09 (see notea)

Medium 20–100 mg/L CaCO3 / 8.09 > pH > 6.15

Low <20 mg/L CaCO3 /pH < 6.15

Coarse Fish Present Presence or absence in chosen catchment

Absent

Sediment Load High >30 t/km/y

Medium 10–30 t/km/y

Low <10 t/km/y
Note: Irish rivers tend to have less sediment than other
European rivers so these ranges are country specific

Light Open canopy <25% of water surface shaded

Medium canopy 25% < water surface shaded <75%

Closed canopy >75% water surface shaded

Flow variability Spateyb Responds rapidly to rainfall (hours)

Non-spatey Does not respond rapidly to rainfall

Deposited sediment High >50% bed cover

Medium 20%< bed cover <50%

Low <20% bed cover

Phosphorus High >0.035 mg/L

Medium 0.025–0.035 mg/L

Low <0.025 mg/L (see notec)

Organic Matter/Biological Oxygen
Demand(BOD)

High >1.5 mg O2/L

Medium 1.3–1.5 mg O2/L

Low <1.3 mg O2/L (see notec)

Nitrate High ≥2 mg/L N

Medium 0.8–2.0 mg/L N

Low ≤0.8 mg/L as N (see noted)

Total Ammonia High ≥0.065 mg/L as N

Medium 0.040 - 0.065 mg/L as N

Low ≤0.04 mg/L as N (see notec)

Unionised Ammonia risk Toxic >0.2 mg/L N

Sub-toxic ≤0.2 mg/L N

Water Temperature High >15 °C

Medium 10–15 °C

Low <10 °C

Dissolved Oxygen High >80% saturation

Medium 30–80% saturation

Low <30% saturation

Nutrient Excess High Based on various combinations of BOD, Nitrate and
Phosphorus. Typically, if any two are high then nutrient
excess has a high probability of being high.

Medium

Low

Eutrophication Risk High

Medium

786 Environmental Management (2022) 69:781–800



and expert opinion. A simple procedure was followed for
each node examined;

(a) The experts were asked to first consider the best case
combination for all inputs to the node and assign a high
percentage probability (e.g >90%) to the most likely
corresponding outcome and a low percentage probability
(<10%) to the other less favourable outcomes.

(b) The experts were then asked to consider the worst
case combination of all inputs to the node and
assign a high percentage probability to the worst
corresponding outcome and a low percentage
probability to the other more favourable outcomes.
Generally, they found these steps easy and they
defined the best and worse case outcome for
each node.

Table 2 (continued)

Node Levels Descriptors and states

Refers to risk of algal bloom/fish kill. Mainly influenced
by nutrient excess and temperature, but there is some
small influence from sediment.

Low

Instream Habitat Good Good— Physical and chemical conditions suitable

Moderate Poor— Poor physical habitat, excessive algae and/or
sediment Moderate is neither Good nor Poor.Poor

Fish and Dipper Food Abundant Abundant — doesn’t limit population

Sufficient Scarce — individuals starve. Sufficient is when food is
neither abundant nor scarceScarce

Trout conditione Good Good—Majority displaying a healthy condition factor,
(K > 1.3)

Medium Medium—Mixed or majority displaying a moderate
condition factor between 1.0 and 1.3

Poor Poor—Majority displaying an unhealthy condition
factor (K < 1.0)

Trout density High >0.08 fish/m2

Medium between 0.08 and 0.03 fish/m2

Low <0.03 fish/m2

Salmon conditione Good Good—majority displaying a healthy condition factore,
(K > 1.3)

Medium Medium—mixed or majority displaying a moderate
condition factor (K) between 1.0 and 1.3

Poor Poor—majority displaying an unhealthy condition factor
(K < 1.0)

Salmon density High >0.22 fish/m2

Medium 0.22–0.03 fish/m2

Low <0.03 fish/m2

Coarse fish density High Abundant and dominant to out-compete other spp.

Medium Between dominant and scarce

Low Scarce and low impact on other spp.

Trout angling Good Good density, good condition

Medium Some catchable fish in good condition

Poor Low density, poor condition

Salmon angling Good Good density, good condition factor Poor—low density,
poor condition factorMedium

Poor Some catchable fish in good condition

Few fish

Angling High If either trout angling and/or salmon angling is Good

Medium Otherwise

Low If both trout angling and salmon angling are Poor

aDefinitions from Irish Statutory Instrument SI 272 2009
bSpatey is synonymous with “Flashy” and refers to a flood prone river regime, typically in smaller rivers, in which unexpectedly rapid increases in
flow can occur (Baker et al. 2004)
cThresholds for good status from Irish Statutory Instrument SI 272 2009
dBased on (Environmental Protection Agency 2011) and (Camargo et al. 2005)
eBased on condition factor (Ricker 1975) often called Fulton’s condition factor (Fulton 1902), it is proportional to the weight of the fish divided by
its length cubed
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(c) Following that, the experts were asked to consider
what combination(s) of input levels would produce
mid-range outcomes and to assign appropriate
percentage probabilities to these. We found that
they were comfortable expressing the probabilities
in multiples of 10% with occasionally a plus or
minus 5% to separate two slightly different cases.

(d) The preceeding three steps would typically result in
values at the top, bottom and middle of the tables.
The experts then filled in the intermediate rows,
either moving down from the completed top rows
or up from the completed bottom rows towards the
centre taking care to maintain consistency in the
changes in probabilities.

Most tables were completed by more than one expert
group and the probabilities from each group were averaged to
produce the definitive table for each node. The differences in
probabilities estimated by each group was also analysed to
produce an indication of agreement or disagreement between
the experts about the behaviour of that node. This uncertainty
analysis is described later in this paper. An example of one
small and one large CPT are shown in the Appendix.

A heuristic validation was undertaken in the final session
of the second workshop. In a live demonstration, the experts
were shown the predicted change in ES for each manage-
ment option represented in the BBN and also the results for
the intermediate nodes which explained how these produced
the change, and were asked to comment on the direction of
change shown by the BBN for each option and each river.
There was agreement amongst the experts that the direction
of change was consistent with their knowledge and
experience for both the ES and the important internal nodes.

Modelling Physico-Chemical Factors

Many of the nodes on the left-hand side of the BBN relate
to catchment, hydrological and biophysical factors and their
values depend mainly on the choice of catchment. The most
influential of these relate to the nutrients, nitrogen and
phosphorus, sediment, and alkalinity. The range of con-
centrations of the ions PO4, NO3 and NH4 and their annual
averages are different for each catchment and also depend
on the chosen management scenario. To estimate con-
centrations for any of the management scenarios con-
sidered, values for flows and nutrient loads are required.
These were simulated by two numerical catchment models
(i) SLAM (Source Load Apportionment Model) for nutri-
ents (Mockler et al. 2017) and (ii) SMART (Soil Moisture
Accounting and Routing for Transport) model for flows
(Mockler et al. 2016). SMART combines a catchment
component with a river routing component. Because the
hydrology and biophysical conditions will be different for

different catchments, the three test catchments in Ireland
were chosen as examples of different sizes and physical
features (Fig. 4) in which to apply the model.

The Moy is in the north-west of Ireland and drains into the
Atlantic Ocean. The catchment area is 2201 km2 and it has two
major lakes, Lough Conn (47 km2) and Lough Culin (10 km2).
The main land cover is pasture (51%) and inland wetlands
(27%) (Lydon and Smith 2014). The remainder is a mixture of
heterogeneous agricultural areas, forestry and scrub vegetation.
The Suir, in the south of Ireland drains into the Celtic Sea. Its
lower reach is influenced by sea-levels and salt-water intrusion,
so to avoid tidal influence only the upper, non-tidal, part of the
river (to the flow gauge at Cahir Park), was considered for this
study. This upper catchment covers an area of 1586 km2. The
land cover is primarily agricultural (73% pasture and 6% ara-
ble), 6% is covered with forests, 6% wetlands, and 5% scrub
vegetation (Lydon and Smith 2014). The Dodder, draining
eastwards into the Irish Sea is the smallest catchment, with an
area of 121 km2. It is 61% urbanised, flowing through Dublin
city, with its urban fabric, industrial areas and parks. A rela-
tively small area, 18% of the total, is agriculture (mostly pas-
ture), 11% is inland wetlands and 5% is forests (Lydon and
Smith 2014). The Dodder was chosen to provide a contrast in
river setting and pressures (steep and partly urbanised).
Nevertheless, it does have a strong angling community (trout)
as does the Moy (trout and salmon).

The rainfall-runoff model SMART was used to calculate
the river flows in the study catchments because it has already
demonstrated its suitability and robustness across a wide
range of Irish catchments (Mockler et al. 2016). The model
structure is made up of connected soil moisture accounting
and linear routing components. The model parameters are
regionalised such that its parameter values can be determined
for ungauged catchments from physical catchment descriptors
(Mockler et al. 2014). The model inputs are daily or sub-daily
rainfall and potential evapotranspiration time series.

For the three study catchments, the SMART model was
run on a daily time step for the period from October 1990 to
September 2016, and average annual discharge calculated
from the simulated outputs. The Suir and the Moy catchments
feature hydrometric gauges at their outlet, so that the perfor-
mance of the simulations was assessed. Table 3 shows the
percent model bias and the Nash–Sutcliffe Efficiency (NSE,
its ideal value is one). The percent bias is low (close to zero)
for the Suir and Moy catchments, and the NSE value is high
(above 0.9 for the Suir and above 0.8 for the Moy). For these
two catchments the measurements of the flow gauges could
also have been used to estimate annual averages, however this
was not done here as we required a method that could also be
used for all catchments, including ungauged catchments. For
the Dodder, there were no measured discharges at the
catchment outlet, so the SMART model output was used but
could not be independently assessed.
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The SLAM is a nutrient modelling framework that makes
use of the most detailed and up-to-date data about nutrient
management in Irish catchments (Mockler et al. 2017). The
SLAM considers both diffuse and point sources of pollu-
tion, including diffuse agricultural sources (arable, pasture,
peatlands, forestry), diffuse urban sources, atmospheric
deposition, as well as direct point discharges (industry,
urban wastewater, and septic tank systems). The model
estimates nutrient retention in the catchment and nutrient
attenuation in lakes to predict average annual nutrient
exports for all catchments in the Republic of Ireland.

The SLAM model estimated the long term annual
average export of total nitrogen and total phosphorus from
the three study catchments. These and the load source
apportionment from the models are illustrated in Fig. 5 for
each catchment separately. The main sources of N export
are pasture and diffuse urban runoff for the Dodder,

pasture for the Suir, and pasture for the Moy. For phos-
phorus, the Dodder’s export is dominated by diffuse urban
runoff, while the sources for the Suir and the Moy are
much more diverse, with the main contributor still coming
from pasture, but also with contributions from a range of
point sources.

The total nitrogen output from the SLAM model aggre-
gates organic and inorganic nitrogen. The inorganic nitrogen
itself is the aggregation of mainly nitrate and ammonia, and
the total phosphorus aggregates orthophosphate with other
forms of phosphorus. To estimate the separate concentra-
tions of nitrate and ammonia, and orthophosphate in the
river, monitoring data in the three study rivers for the period
2015–2018 were used to determine the average partitioning
of total nitrogen as organic/inorganic nitrogen, the parti-
tioning of inorganic nitrogen as nitrate/ammonia, and the
portion of total phosphorus as orthophosphate (Table 4).

Fig. 4 Location of study
catchments
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These ratios are used to determine the annual catchment
loads of nitrate, ammonia, and orthophosphate from the
total nitrogen and the total phosphorus exports predicted by
the SLAM model. The organic matter/Biological Oxygen
Demand (BOD) for each river was estimated from annual
reports of wastewater treatment plants on their effluent
discharges to the river. These are different for each catch-
ment and so depend on the catchment chosen and on the
management measures implemented in the catchment.

These modelling results are one of the inputs into setting the
high, medium and low categories used for the three BBN nodes
relating to Nitrate, Organic matter/BOD and Phosphate. The
major influences are the thresholds already specified in legis-
lation (Irish Statutory Instrument SI 272 2009, which imple-
ments the European Community surface water environmental
requirements) and in guidance from Environmental Protection
Agency (2011). For instance, for phosphorus, the “high” con-
centration level is set at greater than 0.035mg/L, i.e. worse than
good status level in the legislation and the “low” level is less
than 0.025mg/L, i.e. better than the high status level. The
medium level is between these values. An analagous procedure
is used wherever legislative or official guidance (as for nitrate)
is available. Where such guidance is not available the thresh-
olds are set considering the upper and lower limits and median
values of the parameter from analysis of measured data.

Both phosphorus, nitrate and organic matter concentra-
tions are combined to determine the Nutrient Excess node.
This node has three categories (High, Medium, and Low)
determined by expert opinion about the effects of various
combinations of the concentration levels of nitrate (High,
Medium, Low), phosphorus (High, Medium, Low) and
organic matter (BOD) (High, Medium, Low).

The SILTFLUX research project measured sediment
concentrations, calculated loads and reviewed existing
sediment data for Irish rivers (Bruen et al. 2017). Annual
suspended sediment loads per km2 varied between 3.89 and
38.23 t/km/y and were in reasonable agreement with values
of between 2.1 and 48.2 t/km/y that have been reported for
other Irish catchments (Harrington and Harrington 2013;
Kiely et al. 2007; May et al. 2005; Sherriff et al. 2015;
Thompson et al. 2014). Accordingly, the levels for the
sediment node in the BBN were defined as high being

greater than 30 t/km/y and low being less than 10 t/km/y as
shown in (Table 3). Medium is for loads between these
values. These ranges are country specific and are typically
lower than values reported for other temperate and rela-
tively flat regions of Western, Northern and Central Europe,
where ~50% of the annual loads are reported to be less than
40 t/km/y, with c. 80% being less than 200 t/km/y, (Van-
maercke et al. 2011).

The SILTFLUX project also measured the area of riv-
erbed covered by deposited fine sediment in Irish rivers and
found a large variation from 10 to 90%. These measure-
ments and a review of the published literature suggested
that deposited sediment covering areas greater than 50% of
the channel bed should be considered High and that less
than 20% of the channel bed covered with sediment had a
negligible effect and could be considered as Low.

Uncertainty Analysis

Some uncertainty exists in all aspects of BBN model for-
mulation (Brugnach et al. 2011; Salliou et al., 2017) and
different approaches have been used for dealing with it. Two
of the approaches of (Brugnach et al. 2011) have been used
here, as the workshop deliberations are a form of “persuasive
communication” in which the title and meaning of the node
descriptors are debated and agreed by consensus. In addition,
their “rational problem-solving approach” was adopted in
defining the levels for each node, e.g. in defining the terms
“high”, “medium” and “low”. As far as possible these were
linked to regulatory thresholds familiar to catchment man-
agers and scientists or to thresholds evident from data analysis
that produced general agreement. In addition, for the CPTs,
the areas of agreement and disagreement (i.e., uncertainty in a
consensus) between the expert groups were studied by
examining the relative range of the estimates in the CPTs
from each group. For each element of a CPT, this was cal-
culated as the difference between the highest and lowest
probability estimates for that element from the groups, scaled
by dividing by the average of all the probabilities. Table 5
shows an example of this for the Dissolved Oxygen node.
Columns 1 to 3 of the table show all possible combinations of
the influencing input factors while columns 4 to 6 show the
average of the probabilities of the node states (rounded to
whole numbers) assigned by the groups of experts. Columns
7 to 9 show the relative range (the difference between the
maximum and minimum divided by the mean) indicating the
degree of unanimity or divergence between the groups filling
the same table. These values are colour-coded, with the higher
relative ranges (lack of agreement) in blue and the lower
values (agreement between experts) in green, with inter-
mediate values in black. For instance, the value in blue, for
the case of medium water temperatures, high BOD and high
eutrophication has a relative range of 2.00 which means the

Table 3 Average annual discharge values simulated with the SMART
model in each study catchment

Catchment Average annual
discharge

Percent bias Nash–Sutcliffe
Efficiency

Suir 1.1 × 109 m3/year −1.59% 0.922

Moy 1.8 × 109 m3/year +3.53% 0.813

Dodder 8.6 × 107 m3/year n/aa n/aa

aMeasured discharges at catchment outlet were not available so
SMART output could not be assessed
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difference in probabilities assigned to that element by each
group is 2.00 times the mean value indicating a large relative
difference. In contrast, the relative range for Low dissolved
oxygen when the water temperature is High, the BOD is
Medium, and the eutrophication risk is Medium is 0.0 shown
in green indicating complete agreement on that probability
between the groups. Note, a 0.0 value could also occur if only

one group estimated a probability value, but that situation did
not occur in the example shown.

Most of the higher uncertainties between the groups (the
blue values) were associated with the low average prob-
ability values (8% or lower). Where the probabilities were
higher the relative difference between expert groups tended
to be relatively smaller (the green values). Since it is the

Table 4 Average break-down of
total nitrogen and total
phosphorus based on EPA
monitoring data for the period
2015–2018 (five monitoring
stations in the Dodder, 13
monitoring stations in the Moy,
and 44 monitoring stations in
the Suir)

Catchment Total N as inorganic N/Total N
as organic N

Inorganic N as ammonia/
inorganic N as nitrate

Total P as orthophosphate

Suir 80.7% / 19.3% 1.92% / 98.08% 32.9%

Moy 32.4% / 67.6% 7.14% / 92.86% 26.4%

Dodder 81.1% / 18.9% 7.60% / 92.40% 37.8%

Fig. 5 Annual total Nutrient export and load apportionment determined with the SLAM for the study catchments
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higher probability values that have most influence on the
probability for each state of the node, the good relative
agreement between expert groups for these higher prob-
ability outcomes is encouraging as they have most influence
on the result, since the lower probability values, for which
there is greater disagreement, have much less influence on
the most likely state of that node and thus on the output of
the model. Also, most of the disagreement was for the
combinations that give high dissolved oxygen and there was
general agreement for the conditions causing low dissolved
oxygen (Table 5). Typically, there was good agreement on
probabilities for the worst- and best-case scenarios and
generally for the mid-range of influences. (Stritih et al.
2019) reported similar behaviour in an avalanche protection

study, in which the areas with higher protection were
identified with greater certainty. This is just one aspect of
uncertainty analysis, which has been categorised into epis-
temic, ontological or ambiguous uncertainty, (Salliou et al.,
2017). In their classification, our analysis mainly addresses
epistemic uncertainty as it considers only the distribution of
probabilities and did not examine the direction of change,
although it does reveal some ambiguities reflected in dif-
ferences of opinion between experts. Many variations on the
classification and treatment of uncertainties exist, see for
instance Yassine et al. (2020), who list approaches such as
mind maps, multi-criteria methods, and systems dynamics
models (Pagano et al. 2019). The network structure itself
can be used to communicate the uncertainties in individual

Table 5 Relative range of probabilities for dissolved oxygen (the values are colour-coded, with the higher relative ranges (lack of agreement) in
blue and the lower values (agreement between experts) in green, with intermediate values in black)

Influencing (input) factors

Mean conditional 

Probability (%) for DO 

states

Relative range of 

probabilities

for DO states

Water 

Temp BOD

Eutrophi-

cation risk

High Medium Low High Medium Low

High High High 0 0 100 0.00 0.00 0.00
High High Medium 3 10 87 2.00 0.00 0.06

High High Low 8 13 80 2.00 1.20 0.00

High Medium High 3 22 75 2.00 0.67 0.13

High Medium Medium 10 30 60 0.00 0.00 0.00

High Medium Low 23 27 50 0.22 0.18 0.00

High Low High 3 20 77 2.00 0.00 0.06

High Low Medium 30 25 45 0.00 0.40 0.22

High Low Low 80 12 8 0.00 0.40 0.67

Medium High High 3 7 90 2.00 0.67 0.00

Medium High Medium 5 15 80 2.00 0.67 0.00

Medium High Low 8 17 75 2.00 1.43 0.13

Medium Medium High 5 25 70 2.00 1.20 0.29

Medium Medium Medium 18 30 52 0.29 0.00 0.10

Medium Medium Low 25 33 42 0.40 0.15 0.12

Medium Low High 5 23 72 2.00 0.67 0.07

Medium Low Medium 40 25 35 0.00 0.40 0.29

Medium Low Low 85 12 3 0.12 0.40 2.00

Low High High 3 15 82 2.00 0.67 0.06

Low High Medium 5 20 75 2.00 1.00 0.13

Low High Low 10 20 70 0.00 1.00 0.29

Low Medium High 13 22 65 1.20 0.67 0.46

Low Medium Medium 20 30 50 0.00 0.33 0.20

Low Medium Low 30 40 30 0.67 0.00 0.67

Low Low High 5 28 67 2.00 0.91 0.22

Low Low Medium 42 33 25 0.12 0.15 0.40

Low Low Low 100 0 0 0.00 0.00 0.00

792 Environmental Management (2022) 69:781–800



links by superimposing this information on the network
diagram (Zorrilla et al. 2010).

Using the BBN to Quantify Effects of Catchment
Management

The focus here is on the change that management interventions
or options may have on the ES provided by a catchment so a
“no change” or baseline scenario, corresponding to the current
situation in the catchment, is included for comparison with the
other options. The options demonstrated in this study were
increases (intensification) or decreases (extensification) in
livestock numbers, and the construction of riparian buffers. To
establish the current (baseline) situation, the predictions from
the hydrological and nutrient models, described above, were
first combined to characterise the current nutrient concentra-
tion situation in the three study rivers. Using nutrient con-
centrations at the outlet of the catchment, the average annual
discharge (m3/y) simulated with the SMART hydrological
model and the average annual nutrient (t/y) simulated with the
SLAM model were combined to determine a representative
(average) concentration (mg/L) in nitrate, ammonia, and
orthophosphate in each river. Then, the three other very dif-
ferent catchment management scenarios were analysed. These
were two diverging scenarios relating to an increase (intensi-
fication) or a decrease (extensification) in livestock numbers in
the catchment, and a scenario relating to remediation measures
(such as buffer strips) to reduce the amount of nutrients dis-
charged into the river (riparian management). Realistic pro-
jections of the change in nutrient loads in the study catchments
were determined for each scenario, by assuming that nutrient
loads were proportional to livestock numbers occupying pas-
ture lands as described in section “Increasing or decreasing
livestock numbers” and that additional buffers would be
designed to provide a 50% reduction in nutrient inputs, close
to their upper performance limits, as described in section
“Effectiveness of riparian management measure” below.

Increasing or decreasing livestock numbers

The scenario of increased livestock numbers was simulated
by increasing the number of animals for the dominant
species of animal raised in each study catchment by 50%,
that is dairy cows in the Suir catchment, and sheep in the
Moy and the Dodder catchments. This was considered the
maximum possible increase that the farming system, both
for grazing animals and fodder for winter housing, could
support. Similarly, a reduction in livestock numbers was
implemented by decreasing the number of animals of the
dominant animal type in each study catchment by 20%.
This was considered the reduction limit that a farming
system could sustain without a major refocus of the busi-
ness. A range of percentage changes were simulated for

both increases and decreases but only the maximum and
minimum are reported here as they represent the possible
limits of the range between extensification and intensifica-
tion management options. This percentage change in
stocking density was applied to the baseline nutrient exports
given by the SLAM to determine the projected increase or
reduction in nutrient loads reaching each of the study rivers.
This increase or reduction was only applied to the propor-
tion of nutrient export attributed to pasture in the SLAM
model and amounted to an 18% increase in nutrient export
due for the case of increased animal numbers and a 35%
decrease for the case of a decrease in animal numbers.

The average annual concentrations of nutrients for all three
rivers under each scenario are shown in Table 6. Note that for
some nutrients and rivers the baseline is not necessarily pris-
tine. The BBN model described above then estimated the
changes in the ES caused by the different scenarios.

Effectiveness of riparian management measure

Riparian management was interpreted as the introduction of
vegetated buffer strips along the riverbanks to retain some
of the nutrient or sediment carried by surface runoff over the
land surface and to prevent it from reaching the river
courses. The most up to date knowledge on the efficiency of
buffer strips to trap nutrient runoff estimates up to 60%
reductions for nitrate, 70% for ammonia, and 30% for
phosphorus (EU Cost Action 15206, unpublished literature
review). Moreover, the sediment retention efficiency can be
expected to go up to 50% (Newell Price, 2011). During the
development of the bankside vegetation, these maximum
efficiency values may not be achieved, and the actual result
will depend on many factors, some of which are catchment
specific. Because of this, we assume here that 50% of the
maximum possible performance can be achieved.

Results

Angling and Mayfly Richness

The output from the modelling framework is a measure of
the changes (from the current baseline) to be expected in the
selected ES due to the management interventions described
above. These changes are shown both as absolute differ-
ences and as percentages of their baseline value. As might
be expected, riparian management and decreasing livestock
numbers lead to an increase in mayfly species for all rivers.
Mayflies are food for salmonid fish, so riparian management
in the Moy is predicted to lead to a 10% increase in angling
and the corresponding values for the Dodder and Suir are
6% and 11% respectively, as shown in Table 7. In all cases,
increasing livestock numbers leads to a decline in the ES
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considered, while riparian management and reducing live-
stock numbers lead to increases in these services.

The impact of the management measures on Mayfly
richness is shown in Table 8. As with angling, both
reductions in livestock numbers and riparian management
increased the expected number of species, while an increase
in livestock numbers is associated with a decline in number
of species. A very similar pattern is derived for the effect of
the management option on the extent of algal scum and
Dipper numbers (Kelly-Quinn et al. 2020).

Investigating the BBN Sensitivity to the Most
Uncertain Probabilities

The sensitivity of the model outputs to uncertainties in the
individual probabilities in the BBN can be investigated by
varying these probabilities to see how they influence the above
results. For instance, for the dissolved oxygen node, all of the
conditional probability values for which there was a large
relative difference between estimates from the expert groups
(i.e. the rows with blue coloured probabilities) in Table 5 are

Table 6 Predicted annual average nitrate, ammonia, and phosphorus concentrations in each river for each combination of catchment and scenario

(Coloured dots correspond to EPA thresholds for high (blue), medium (yellow) and low(green) concentrations)

Table 7 Effect of management interventions on angling

Probabilities (%) of number of catchable sized fisha

per 20 m reach of river of average width of 10 mb
Expected number of
catchable fish per
20 m reach

Change
from
baseline

Relative (%)
Change from
baseline

Catchment Management option High
Typically 5 fish

Medium
Typically 2 fish

Low
Typically 1 fish

Dodder No change/baseline 41.8 18.5 39.8 2.9 – –

Riparian management 46.5 17.9 35.6 3.0 0.18 6%

More livestock 38.7 18.7 42.6 2.7 −0.12 −4%

Fewer livestock 43.2 18.2 38.6 2.9 0.05 2%

Moy No change/baseline 40.6 18.1 41.2 2.8 – –

Riparian management 47.8 17.9 34.3 3.1 0.29 10%

More livestock 37.6 18 44.4 2.7 −0.12 −4%

Fewer livestock 43.7 18.1 38.1 2.9 0.12 4%

Suir No change/baseline 38.4 18.1 43.5 2.7 – –

Riparian management 45.6 17.9 36.5 3.0 0.29 11%

More livestock 34.9 17.9 47.2 2.6 −0.14 −5%

Fewer livestock 40.9 18.1 40.9 2.8 0.10 4%

aCatchable size is greater than 25 cm
bbased on analysis of electrofishing data from Inland Fisheries Ireland for Irish rivers covering a range of water quality conditions
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listed in Table 9. The first three columns in this Table show the
combinations of influencing factors associated with these
conditional probabilities with the most uncertainty. The fourth
column gives the dissolved oxygen level linked to the prob-
ability. Columns 5 and 6 show the highest and lowest prob-
ability respectively from the estimating expert groups. Note
that all the probabilities are low, i.e., 15% or less, indicating
that the most relative disagreement between the expert groups
was in relation to the weaker effects (with lower probabilities).
For each of the rows in the CPT for dissolved oxygen, shown
in Table 4 above, the BBN was re-run with the lowest of the

expert group estimates of the probability and the expected
value of the four ES was re-calculated. Then the BBN was run
again with the highest value of the expert group estimates for
that case and again the expected value for the ecosystems
service was re-calculated. For each case, the differences in
expected values using the minimum and maximum prob-
abilities given by expert groups were calculated and expressed
as a percentage of the appropriate baseline expected value and
are tabulated in columns 7 to 10 of Table 9. The calculations
used three significant digits for the probabilities and two
decimal places for the resulting percentages. All the percentage

Table 8 Effect of management options on Mayfly richness

Catchment Management option Probabilities (%) of number of Mayfly species Expected number
of species

Change from
baseline

Relative (%) change
from baseline

8 species 6 species 3 species 1 species none

Dodder No change/baseline 13.8 16.1 23.6 9.64 36.6 2.9 – –

Riparian management 22 16.3 22.6 9.14 29.9 3.5 0.63 22.0%

More livestock 9.99 15.6 24.2 9.92 40.2 2.6 −0.31 −10.9%

Less livestock 17.4 16 23.1 9.22 34.3 3.1 0.26 9.1%

Moy No change/baseline 20.4 15.8 22.1 9.36 32.2 3.3 – –

Riparian management 38.1 14.5 18 7.6 21.7 4.5 1.20 35.9%

More livestock 13.2 15.8 23.5 10 37.5 2.8 −0.53 −15.8%

Less livestock 29.4 15.1 20 8.3 27.2 3.9 0.60 18.1%

Suir No change/baseline 19 15.5 22.2 9.35 33.9 3.2 – –

Riparian management 34.5 14.8 18.9 7.97 23.7 4.3 1.09 33.8%

More livestock 12.3 15.1 23.3 9.73 39.5 2.7 −0.52 −16.3%

Less livestock 25.6 15.2 20.8 8.61 29.8 3.7 0.46 14.4%

Table 9 Percentage change in expected values for the most uncertain probabilities (for the dissolved oxygen (DO) CPT)

Parent nodes Conditional probability (%) for dissolved
oxygen (DO) classes

Percentage change from baseline in
expected values for probabilities from
lowest (col.5) to highest (col.6)

Temp BOD Eutrophication risk DO level Lowest prob. Highest prob. Mayfly Dipper Algae Angling

High High Medium High 0 5 0.00 0.00 0.00 0.00

High High Low High 0 15 0.00 0.00 0.00 0.00

High Medium High High 0 5 −0.45 −0.13 0.03 −0.16

High Low High High 0 5 −0.17 0.00 0.03 0.00

Medium High High High 0 5 −0.17 0.00 0.03 0.00

Medium High Medium High 0 10 0.00 0.00 0.00 0.00

Medium High Low High 0 15 0.00 0.00 0.00 0.00

Medium Medium High High 0 10 −0.62 −0.27 −0.10 −0.13

Medium Low High High 0 10 −0.28 0.00 0.03 0.00

Medium Low Low Low 0 5 1.15 0.20 −0.06 0.10

Low High High High 0 5 0.00 0.00 0.00 0.00

Low High Medium High 0 10 0.00 0.00 0.03 0.00

Low Low High High 0 10 0.00 0.00 0.00 0.00
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differences are small (many being 0.00 and the largest only
1.15%). This supports the earlier observation that the condi-
tional probabilities with the most relative difference (i.e., dis-
agreement) between expert groups tend to be the smaller
probabilities and that they have little influence on the resulting
expected values of the ES.

Discussion and Conclusions

This paper describes a new modelling framework demon-
strating how existing catchment data and bio-physical
models can be linked to a BBN model to estimate the
expected changes in freshwater ES in response to some
catchment management interventions. This enables a
valuation of the change in ES from a baseline “business as
usual” scenario. The framework addresses the lack of for-
mal models of the complexity of ecosystem response by
incorporating expert knowledge within the BBN. The final
structure of the BBN evolved over many discussions
between the project team and independent biological and
ecological experts.

A key component in the framework was the use of a
workshop with experts to finalise the structure of the BBN
and to populate the CPTs in the BBN. This aligns with the
advice of Kuhnert and Hayes (2019) who recommend that
BBNs should undergo rigorous development in work-
shops with a range of experts. This paper describes a
methodology for facilitating the contribution of such
experts to quantifying the CPTs at a workshop. These
probabilities established the maximum and minimum
range of values to be used for the remaining intermediate
combinations. By adopting this approach, the experts
were able to fill in quite lengthy CPTs, see further
examples of these in (Kelly-Quinn et al. 2020). While this
approach was implemented here in an actual workshop, it
also lends itself to the possibility of implementation in a
web-based tool that can allow experts to contribute
remotely (Eggers et al. 2019).

Some work has already been done on aspects of uncer-
tainties in BBN models and how they can be addressed,
particularly in relation to the precise meanings and inter-
pretations of the terms used, (Brugnach 2011). Here, we
also show how individual probability estimates can be
associated with their relative uncertainties between experts
and how to evaluate the sensitivity of the BBN outputs with
respect to the most uncertain of the probability estimates.
While differences in value judgements between stake-
holders are often analysed (Schmitt and Brugere 2013), the
differences in opinions between individual experts or
groups of experts when populating the CPTs have been less
explored. An exception is the study of uncertainty by Sal-
liou et al. (2017). They allowed each stakeholder to

determine their own conditional probabilities (the network
structure was fixed) and effectively produced an ensemble
of BBNs and explored how the differences between them
characterised the nature of the uncertainties involved. They
showed that the differences in outcomes predicted by these
BBN ensembles could be large (ranging from −24 to +12%
change from the base case in their apple pests example)
reflecting the beliefs of individual stakeholders. The issue is
even more complex if stakeholders can also change the
network structure to produce an ensemble of possible
structures. Finding a consensus structure can be difficult and
there may be multiple solutions (Peña 2011). Nevertheless,
in other scientific domains the ensemble BBN approach has
been shown to be better than individual BBNs and allows
the uncertainty to be quantified (Cobb et al., 2019; Hellman
et al. 2012) as we have done here. We believe these dif-
ferences convey information on uncertainty. In our case,
most disagreements between experts occurred for the lower
probability cases and thus had only minor effects on the
results. This is especially important since formal validation
of BBN models is difficult, mainly due to scarcity of data.
For instance, in a review of ecological BBNs (Landuyt et al.
2013) found that only one third were validated with data.
Also, there is no consensus on methods to address valida-
tion (Kleemann et al. 2017). However, heuristic validation
with experts or sensitivity analyses, both of which were
done here, were undertaken in about 50% of cases. In these
circumstances, our evaluation of the degree of agreement
between experts can contribute to confidence in the BBN,
although not matching the rigor of formal validation with
independent data.

Freshwater resources management takes place at many
scales, from the large scale national or international scales
of policy formation to the local or regional scales at which
individual catchment managers or scientists are commu-
nicating with stakeholders, such as farmers, wastewater
treatment plant designers and operators and the public, see
for instance (Daniell et al., 2014). The goal is to promote
behavioural changes that improve water use and quality
and benefit the environment (Steg and Vlek 2009), and to
understand the reasons for behavioural change, which
include knowledge sharing/communication, (Choubak
et al. 2019). Models have a role to play in this, although
they are underused to date (Salmon et al. 2020), and BBN
models are particularly well suited to address this need.
Their uses include training local and regional water
advisors and managers as well as being a visual tool for
their use in stakeholder participatory settings, for both
model development and evaluation, (Yuniarti et al. 2021)
and communicating uncertainties, (Zorrilla-Miras et al.
2010). The network structure of the BBN facilitates
explaining, in a visual way, the often-complex nature of
the system by visually separating out individual
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interactions. It can also be used to communicate the
overall conceptual framework. In a workshop setting, a
BBN allows for quick calculation to explore the con-
sequences of any of the options being discussed. Often,
the network structure and conditional probabilities can be
changed during the workshop, and the resulting effects
demonstrated as discussions proceed. In our BBN work-
shop, we found that all of this contributed to stakeholder
confidence in the resulting models.

Overall, the methodology demonstrated is flexible and
the conditional probability values can be updated to
reflect any new information on the corresponding eco-
logical and ES responses to changes in the water condi-
tions and management interventions. If ES are to be
integrated into management of freshwaters, then the key
challenges moving forward are (i) ensuring that model-
ling frameworks are flexible and can incorporate the
diversity of model types needed, and (ii) that data on key
ES and their attributes are collected at better temporal
and spatial scales (see Guswa et al. 2020) sufficient to
characterise and model their dynamic behaviour. In par-
ticular, BBNs can incorporate multi-stressor effects, for
instance of complex ecosystem networks, e.g. (Bulmer
et al. 2022) or of individual species, e.g. (de Vries et al.
2021).

Finally, to bring the above analysis into the larger scale
management or policy context, the changes to ES are often
considered in cost-benefit analysis (TEEB 2010; Zanchi
and Brady 2019). This requires the economic evaluation of
the welfare impacts of the changes to ES associated with
the alternative management scenarios. In the ESManage
project (Kelly-Quinn et al. 2020), such analysis was
undertaken using the stated preference, choice modelling
method. In the choice model, members of the public were
presented with a series of choice scenarios that reflected
different levels of ES and a cost attribute (increased tax).
Analysis of response choices allows the estimation of
economic values for unit changes in service delivery.
These can then be multiplied by the actual change in
services associated with different catchment scenarios, as
given by the BBN model described here and then aggre-
gated to the affected population, to provide estimates of
the economic benefit provided by the scenarios. When
compared with the costs of implementing the scenarios,
the most cost-effective management practices can be
identified. Thus, the framework presented here can be used
to better support decision making by illustrating the effect
of interventions on the widest range of the goods and
services we obtain from freshwaters to justify the inter-
ventions needed to protect them.
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