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Abstract
Remediation methods are gaining acceptance as effective and inexpensive techniques used in the reclamation of degraded areas.
The reclamation of post-mining sites has become important for the conservation of soil and vegetation. An assessment of potential
productivity of plants based on the depth of their root zone is crucial for the validation of properties of post-mining soils. Our aim
was to present soil productivity parameters that would facilitate assessment of various post-mining objects. Soil productivity index
(SPI) was calculated to assess soil quality, mainly in areas degraded by hard coal mining. It is based on an equation determining
the relationship between the productivity index and the physical, chemical, and hydrological properties of soil. Our study
demonstrated the positive effects of enriched sewage sludge with amendments on newly formed soil and plants. The soil
productivity index was 0.81, demonstrating the suitable condition of the initial soil resulting from reclamation. This parameter
might be important for post-industrial reclamation, such as wasteland intended to be transformed into woodland. Considering the
composition of sewage sludge amendments, it can be successfully used as an effective method of restoring and improving both the
physical and chemical properties of soils, thus effectively replacing mineral fertilisers. The use of sewage sludge in soil
reclamation will be an important method of managing this waste material in post-mining areas.
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Technosol

Introduction

Modern bioremediation offers a number of solutions for
effective soil reclamation (Wadgaonkar et al. 2018). Fur-
ther, a land restoration strategy is a crucial aspect of
managing degraded areas (Chang et al. 2011; Toktar et al.
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2016). Healthy soil should be present in reclaimed areas, as
this is important for maintaining the management of the
degraded areas (Acton et al. 2011; Gomes 2012; Avera et al.
2015; Thijs et al. 2017). This is particularly vital for vas-
cular plants covering those areas (Skubała 2011). Plant
growth is one of the primary aims of biological reclamation
(Zipper et al. 2011; Yang et al. 2012; Fields-Johnson et al.
2014; Halecki and Klatka 2017). Selecting plant species and
their cultivation to ensure protection against surface erosion
is a very important phase of the reclamation process (Zhao
et al. 2014). Therefore, an evaluation of soil conditions of
post-mining areas is essential (Bes and Mench 2008; Lors
et al. 2011; Lal 2015). Proper soil structure is also vital if it
is necessary to replace plant species through revegetation
(replanting) (Zhang et al. 2015) and to avoid the current
migration of heavy metals to soil (Pellegrini et al. 2016).
The assessment of soil organic carbon (SOC) and devel-
opment of grasses (Wu et al. 2010) in soil productivity
studies (Klatka et al. 2014), as well as filtration coefficient
and bulk density (Bi et al. 2014), are indispensable para-
meters for the evaluation of reclamation activities (Liu et al.
2012).

It was found that 6 years after a reclamation treatment
can already be observed soil aggregates sizes appropriate
for the retention of soil organic matter (Yin et al. 2016),
which is considered an indicator of soil quality in reclaimed
post-mining areas (Bodlák et al. 2012). Hitherto, little is
known of the possible negative consequence of using
sewage sludges in soils, and of their long-term behaviour.
Therefore, supplementation with organic composite mate-
rials that stabilises trace elements in the soil is required
(Kim et al. 2016). Further, additional treatments and various
substrates and auxiliary preparations that enhance bior-
emediation are necessary (Singh et al. 2009). Moreover, the
durability of sewage sludge, and the toxicological effects of
using it for reclamation of post-mining areas, can only be
assessed in long-term studies (Halecki and Klatka 2018).

In ecological engineering projects, the scale of research
and performance indices should depend on uniform indi-
cators of soil quality (Constantini et al. 2016). Evaluation of
soil productivity may be performed for area reclamation
purposes (Kiniry et al. 1983), or to determine the degree of
soil erosion and degradation for agricultural purposes
(Gantzer and McCarty 1987). The aim of this paper was to
demonstrate changes in physical and chemical properties of
post-mining soil after an application of Carbocrash substrate
(Halecki and Klatka 2018). Post-mining areas present many
challenges, mainly due to unfavourable physical and che-
mical properties. Considering these, our study was focused
primarily on: (i) assessment of the suitability of a new
mixture (composition) of sewage sludge (Carbocrash) as a
substrate for reclamation of degraded soils; (ii) determina-
tion of the usefulness of soil productivity index in an

evaluation of potential degrees of degradation caused by
enriched sewage sludge, (iii) comparison of physical and
chemical properties of initial soil at two depths where trees
and shrubs were planted; (iv) establishing the main factors
affecting the soil restoration process using multivariate
analysis. Our research attempted to verify the following
research hypothesis: Enriching post-mining area with Car-
bocrash substrate will improve initial soil quality.

Material and Methods

Study Area

During an 8-year field experiment conducted on a slag-heap
land from post-mining activities located in the Silesia, a
polluted site in Poland, the influence of the application of
Carbocrash substrate (industrial waste) was investigated.
The study was conducted on a mine created among slag
heaps where rock raw materials (primarily coal) were stored
(Fig. 1). The site was chosen because there were technical
shortcomings in the relief formation by overburdening the
excavated rocks, and the area lacked drainage. Prior to
biological reclamation, the area was generally neglected in
terms of the dumping ground management. We provided a
sewage sludge-amended biosolids substrate, which we
called ‘Carbocrash’ (35% by weight municipal organic
sewage sludge, 30% post-flotation waste (from a coal
mining plant), 20% crushed stone (angular sandstone), and
15% fly ash). The research involved experimental plots
established on a drainage layer made of waste rock. This
was valueless rock excavated as a gangue ore, covered with
a layer of Carbocrash substrate of mean thickness 50 cm.
The factor limiting proper plant development in dumping
grounds is a layer of soil that is too thin, and often with
insufficient nutrient content. This is why the Carbocrash
layer was 50 cm thick. Total dimensions of the plots were
21 × 18 m, and they incorporated nine 7 ×6 m sectors
(research areas).

Trees and Shrubs Planted in the Post-mining Area

From 2010 to 2017 the experimental plots harboured the
following species of trees and shrubs: oleaster (Elaeagnus
angustifolia), smallflower tamarisk (Tamarix parviflora),
and common sea-buckthorn (Hippophae rhamnoides) have
been located in study plots 1–3, while black locust (Robinia
pseudoacacia), silver birch (Betula verrucosa), maple ash
(Acer negundo) and Douglas fir (Pseudotsuga menziesii)
have been planted in study plots 4–6. These are the species
often used in biological reclamation of post-industrial areas,
owing to their high resistance to difficult growing condi-
tions. These plant species can be considered as the most
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suitable for biological reclamation of brownfields with
Carbocrash substrate. Crop species have been cultivated
within 7–9 study plots.

When planting trees and shrubs, it is necessary to make a
hole deep enough for the plant roots to develop. The holes
for the trees were 40 × 40 × 50 cm, whereas for the shrub
seedlings they were 30 × 30 × 40 cm. The spacing between
seedlings was 1 m. Following planting, weeding was per-
formed on the entire reclamation area for 2 consecutive
years. Seedling rooting rate and viability were observed
during the vegetative period in both spring and autumn, and
dead seedlings were replaced in the spring. The seedlings
that were partly dead (dead crowns but alive lateral shoots
from the trunk or root collar) were left in place and carefully
examined in the autumn. Autumn was also the season for
plant treatments such as pruning the branches.

The assessment of the health of trees and shrubs on the
experimental plots was conducted at the end of the growing
season each year. Further, schemes of distribution of indi-
vidual species are included in the research reports from

previous years. The measurements were made taking into
account two important parameters—height and diameter at
breast height (DBH). To determine the height of the trees
under investigation, a Sunnto altimeter type PM-5/1520 was
used, and the DBH was measured using a Sandvik 32 cm
diaphragm. Further, the thickness classes were specified to
better illustrate the stand, and the distances between trees
and bushes were measured. Only plants with good health
were considered for inclusion in the measurements, there-
fore withering or broken were not considered. An inventory
of trees and shrubs, and their distribution on experimental
plots, were also included in previous studies (Halecki and
Klatka 2018).

Laboratory Techniques Used to Calculate the Soil
Productivity Index

Samples for laboratory tests were collected at five locations
from each plot during the growing season
(April–November). Forty-five samples were collected in

Fig. 1 a Location and
experimental design in research
area. In order to produce a
complete stand trees and shrubs
were planted from plots 1 to 6.
Plots 7, 8 and 9 was dedicated
for native mixture of grass and
herbaceous perennial plants (not
described in this paper).
b Vegetation growing on a
weathered post-mine soil
(Silesia Province, Poland) in
consecutive years
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each season. Consequently, 360 sample data were employed
as the final basis for the research. The study area was
divided into nine plots to facilitate easier comparison of
Carbocrash substrate in each site. The sampling collection
sites and the plot plan are presented in Fig. 2. Properties of
the investigated substrate were determined in a series of
laboratory tests. Soil texture (granulometric composition)
was measured by the sieve and aerometric Bouyoucos
method, as modified by Casagrande and Prószyński (Ryżak
et al. 2009). Bulk density and porosity were measured by
the Kopecky method (Dedousis and Bartzanas 2010).
Compactness was measured with a cone penetrometer.
Organic matter was determined by a modification of the
Tiurin method (Ostrowska et al. 1991). Infiltration was
determined by a field method of double rings (Doorenbos
1977). Filtration coefficients in the Darcy’s law-based
apparatus (Baver et al. 1972) were measured with adjustable
water pressure and electronic water volume readings. The
potentiometry technique was applied for pH in H2O mea-
surements. Specific electrical conductivity was obtained by
a Slandi CM 204 conductometer in aqueous solution with a
water-to-soil ratio of 5:1. The specific electrical con-
ductivity was then converted into the content of easily
soluble salts, based on a standard curve for potassium
chloride. Aggregate stability was measured with a Zwick/
Roell testing machine, as described by Dexter and Kroes-
bergen (1985). This test involved air-dry aggregates of
10–15 cm in diameter. Finally, the potential available water
content was determined based on water characteristic curves
prepared for pressure chambers with porous ceramic plate
and parametrised van Genuchten’s equations (Wösten and

van Genuchten 1988) as follows:

θ ¼ θr þ θS � θr
1þ α � hj jnð Þm

where: θ—current volumetric water content in the soil
(cm3·cm−3), θr—air dry volumetric water content in the soil
(cm3·cm−3), θs—volumetric water content in the soil at full
saturation (cm3·cm−3), h—suction pressure (cm), α, n, m—

equation parameters determined by statistical methods.
The organic carbon content was determined by multi-

plying with 0.58, as soil organic matter is assumed to
contain 58% of organic carbon (Pribyl 2010). Total nitrogen
was determined by the modified Kjeldahl method (ISO
1995) in solutions after soil mineralisation with H2SO4 and
H2O2. ICP-AES JY-238 Ultrace emission spectrometer in a
solution after soil mineralisation with aqua regia was used
to calculate the content of phosphorus (P), potassium (K),
sodium (Na), calcium (Ca), magnesium (Mg), chromium
(Cr), zinc (Zn), cadmium (Cd), copper (Cu), nickel (Ni),
lead (Pb), manganese (Mn), and iron (Fe). The mineralisa-
tion of solid substrate was performed according to the
standard ISO-1146: Soil quality—extraction of potentially
toxic elements (PTEs) in aqua regia. To determine the
content of most common cations and anions not bound
interchangeably with the soil sorption complex, aqueous
soil solutions with water-to-soil ratios of 5:1 were prepared,
as described by Richards (1954). The suspensions were then
filtered, and the filtrate was used to measure: content of
Ca2+, Na+ and K+ with a flame photometer, and content of
Mg2+ with an atomic absorption spectrophotometer. The
resulting content of Na+ ions was used to calculate the
sodium adsorption ratio (SAR), describing relative activity
of sodium ions in exchange reactions according to the
following formula:

SAR ¼ Naþffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Caþ þMg2þ

2

q

Soil productivity index (SPI) was calculated as pro-
posed by Hu et al. (1992). The method was developed to
assess soil quality, mainly in areas degraded by hard coal
mining. It is based on an equation determining the rela-
tionship between the productivity index and the physical,
chemical, and hydrological properties of soil. It takes into
account the following soil properties: soil texture (gran-
ulometric composition), bulk density (g·cm−3), com-
pactness (MPa), filtration coefficient (cm·h−1), easily
available water content (%), infiltration (cm·h−1), poros-
ity (%), soil pH, organic matter content (%), electrical
conductivity (mS·cm1), root zone depth (cm), aggregate
stability (%), sodium content, and stone share (%). All
these parameters were used to calculate the sufficiency
functions. SPI was calculated based on the followingFig. 2 Sampling scheme in study area
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equation (Horn, 1971; Neill 1979; Hu et al. 1992):

SPI ¼
Xn

i¼1

wi � rið Þ

where: SPI—soil productivity index, n—number of soil
parameter, wi—weight coefficient for individual soil
parameters, when:

Xn

i¼1

Wi ¼ 1

ri—sufficiency coefficient for i-th soil parameter for a
homogeneous soil profile.

Input data for the calculations were the determined
properties of the material and assumed sufficiency functions
ri, according to Hu et al. (1992). The receive input para-
meters grouped under the soil conditions aim at disen-
tangling some mathematical aspects related to SPI for
meaningful analysis. A further important aspect prior to
proceeding with fuzzy set was selection of weight to make
the number’s effect on the computation reflect its impor-
tance. As immediately appears, such coefficient (only the
latter restricted number of factors) basically play the role in
calculation by taking the lower reference category between
elements of the dataset and values in the interval [0,1]. We
applied 14 soil substrate parameters in the calculation of the
SPI. Weight coefficients (wi) for almost all analysed prop-
erties were assumed to be 0.07, because of sum the
weighting coefficients according to the equation should
be 1. An exception was specific electrical conductivity, the
values of which were higher than the limits for irrigated
soils (Boroń et al. 2016). A weight coefficient of 0.09 was
assumed for this parameter. As it follows from considera-
tions concerning fuzzy data analysis, intermediate values
cannot be equally important. Fundamental statistical
requirement has been partly directly captured by a self-
assessed variables considered sufficient for best represent-
ing the data. The use of homogeneous materials (such as
sewage sludge mixtures) for reclamation purposes would
not require separate expert opinions for various
degraded soil.

Fuzzy Set Theory and Statistical Analysis

An approach using fuzzy logic to determine the degree of
degradation of the ideal solution was applied. The calcu-
lated sufficiency function was used in accordance with the
rules of fuzzy logic. Fuzzy logic and fuzzy set theory are
useful tools to calculate the uncertainty and inaccuracy of
input data and they are described by means of a membership

function. The fuzzy classification was determined by means
of functions with groups of fuzzy classes (S).

S1; S2; :::; Sk 1 < k < nð Þ
In a fuzzy classification, an object (dataset) belongs to

different fuzzy classes with different degrees of
membership.

In our study, we used a fuzzy method of linear ordering
and building a ranking of importance for each layer divided
into: 0–20 and 20–50 cm. The parameters for each fuzzy
number were estimated based on the minimum, dominant,
and maximum values obtained for the test sample. The
following conditions were met (Wolski, 2008).

0 � fsj Pið Þ � 1 i ¼ 1; :::; n; j ¼ 1; :::; kð Þ

where: j—indicates the number of fuzzy classes, fsj (Pi)—
designates the degree of association of Pi object to Sj class:

Xk

j¼1

fsj Pið Þ ¼ i ¼ 1; :::; nð Þ

Loading factors obtained from a correlation matrix were
included in factor analysis. Physical, chemical and hydro-
logical properties of the initial soil (considered when
describing its degradation degree) were verified by means of
Detrended correspondence analysis (DCA) using Canoco
4.51 software to select the most important parameters. A
hypothetical model was created consisting of two layers
with thicknesses of 0–20 and 20–50 cm. The experimental
data were divided into layers to compare the importance of
soil properties of the tested Carbocrash substrate. Values
exceeding 0.7 were marked in bold. Finally, only the values
with the highest loading factors are shown in the ordination
chart and Table 2. Multivariate regression was used in the
assessment of predictors, and a model was built with Gretl
statistical package version 1.9.9, however, only for the most
important parameters. The results were verified with Mul-
tivariate analysis of the variance (MANOVA) approach
using PAST software version 3.0.

Objects were classified to fuzzy classes based on the
evaluation of depth intervals. Moreover, the usefulness of
SPI was related to soil properties closely associated with
plant growth and yield.

Results

The Height of Trees and Shrubs Measurement

In the study area, various species of trees and shrubs were
evaluated. The dominant species among the trees was
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Robinia pseudoacacia (24) and Betula verrucosa (20),
while among the shrubs it was Elaeagnus angustifolia (35)
and Tamarix parviflora (17). The tallest of the Robinia
pseudoacacia was 6.81 m, while Betula verrucosa reached
a 6.42 m. The height of Elaeagnus angustifolia was esti-
mated as 4.54 m, and Tamarix parviflora was 3.12 m. The
tallest among Hippophae rhamnoides was 2.24 m. It should
be noted that almost all of the invented trees and shrubs had
good health. The DBH (1.3 m) measurements indicated that
most of investigate plants were assigned a thickness class of
2–4 cm. Only trees and shrubs with a height of more than
150 cm were considered, therefore, Pseudotsuga menziesi
and others were not included.

Plant species characterized by resistance to soil salinity
were established on the plots, as evidenced by the intense
dynamics of plant growth in subsequent vegetation seasons.
The assessment of the woody and shrubs condition in the
experimental plots showed relatively high growth. Robinia
pseudoacacia and Betula verrucosa have revealed a
fairly increase since the first plantings were made. Overall,
it was found that the introduced revegetation method con-
tributes to vigor plant health and appropriate growth
parameters.

Physical, Chemical, and Hydrological Properties of
Soil

The basic physical and chemical parameters are presented in
Table 1. A minimum thickness of reclamation cover is
crucial for hydrological, drainage and maintenance pur-
poses of the post-mining area. The results of the multi-
variate analysis (DCA) indicated that organic matter (R2=
0.78) was the most important variable among the investi-
gated parameters influencing SPI (Table 2). Infiltration
negatively correlated with EC, while aggregate stability
positively related with potential available water content, and
there was a strong positive correlation between macro-
porosity and infiltration rate (Fig. 3). Factor loadings
showed correlation affecting soil productivity by sewage
sludge amendments (Table 3). The mean total organic car-
bon content for the Carbocrash substrate was 21.67%. The
mean total nitrogen was 0.48%, and total phosphorus was
0.06%. Content of calcium was 0.44, and 0.43% for mag-
nesium. In the case of sodium the mean content, with the
values of 0.03%, and 0.71% for potassium were recorded.
Volumetric water content at the point of field water capacity
(pF= 2.5) was 0.39 cm3 cm−3 for the investigated Carbo-
crash substrate. Volumetric water content in the soil that
was inhibiting plant growth (pF= 3.2) was 0.33 cm3 cm−3.
At permanent wilting point (pF= 4.2) this value was
~0.27 cm3 cm−3. The supply of readily available water in
the 50 cm layer was 2.53 cm, and total available water in
this layer was 5.70 cm.

Soil Productivity Index Based on Fuzzy Set theory

The evaluation of Carbocrash substrate usefulness in the
reclamation of post-industrial wasteland using fuzzy logic
depends on the accuracy of selecting the form of member-
ship function. The reclamation concept proposed in this
paper was based on the function of depth intervals. The SPI
determined for Carbocrash substrate was 0.81. Further, the
properties of the reclaimed soil and waste used for its
reclamation must complement each other, and create
favourable conditions for plant growth and development.
SPI based on the fuzzy set theory was very well suited for
assessing degradation of the post-mining area only for
macroporosity, potential available water content and
aggregate stability (Figs. 4, 5, and 6).

Discussion

Physical and Chemical Properties of Carbocrash
Substrate

Composition of the created initial soil was similar to that of
sandy loam, and its hydraulic properties were suitable for plant
growth. Further, organic matter content was particularly high
(Table 1). Multivariate analysis demonstrated that generally
available water, porosity, infiltration and aggregate stability

Table 1 Initial properties of the Carbocrash substrate

Variable Unit Mean ± SD

Bulk density g cm−3 1.05 ± 0.29

Penetrometry Mpa 0.69 ± 0.12

Infiltration rate cm h−1 3.26 ± 0.98

Hydraulic conductivity (saturated) 1.51 ± 0.57

Electrical conductivity dS m−1 1.51 ± 0.45

Sodicity (SAR) 0.04 ± 0.01

pH – 6.76 ± 1.52

Root media depth cm 35.0 ± 5.78

Macroporosity % 48.96 ± 4.69

Aggregate stability 38.5 ± 3.02

Stone content 20.0 ± 2.95

Organic matter 26.5 ± 4.01

Potential available water content 24.62 ± 2.76

Zn mg kg−1 217.30 ± 32.23

Cu 42.09 ± 12.42

Ni 31.55 ± 1.53

Cd 0.62 ± 0.12

Pb 59.20 ± 2.23

Cr 42.15 ± 2.40

Mn 270.63 ± 29.24

Fe 874.28 ± 53.34
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were the most important among the investigated physical and
chemical properties (Fig. 3). We recommend these parameters
to be the first ones taken into account when assessing the
degradation degree. Physical and chemical properties should
be evaluated as the highest priority when introducing sewage
sludge into the soil (Singh et al. 2011). The layers of 0–20 cm
and 20–50 cm were important for multivariate regression, and
differed significantly from the other layers. Infiltration is also
essential. The F4 factor, in which infiltration was considered,
had a well-adjusted regression model with the R2 coefficient
equal 0.75 (Table 2). This demonstrated that water flow within
the reclamation areas could affect other factors, and
possibly limit them, particularly in deeper layers. Conversely,
potential available water content was not dependent on any
soil characteristic and varied weakly between 20 and 50 cm
(Table 2).

In another study, the outcomes of a 10-year reclamation
indicated that the average plant available water content in
the first year after planting ranged between 2.3 and 5.9%.
This was significantly higher than in the area of open pit
coal mine reclaimed for a shorter time and in shallower
layers (0–60 cm), where it ranged from 1.1 to 2.5% (Lei

Table 2 Effects the most
important Carbocrash substrate
properties selected from DCA
and predictors of multivariate
regression model

Dependent
variable

Regression
summary

F1 F2 F3 F4

R2 p Potential available
water content

Macroporosity Infiltration rate Aggregate
stability

Organic matter 0.78 <0.01 0.17* 0.43** 0.40** 0.69

Root zone depth 0.75 <0.05 −0.22** −0.63 0.78 0.57**

Bulk density 0.57 >0.05 0.84 0.76 −0.78 0.48

Depth (0–20 cm) 0.70 >0.05 0.60* 0.10 −0.54** 0.26

Depth (20–50 cm) 0.54 >0.05 −0.84 −0.15* 0.56 0.34

*P < 0.05; **P < 0.01

Fig. 3 DCA plot. Open squares represent depth layer from 0–20 cm
and diamonds indicate range between 20 and 50 cm depth. Eigen-
vectors designate factors affecting soil productivity by sewage sludge
amendments. An analysis explained 68.2% of a total variance (42.1%
for the first axis and 26.1% for the second one)

Table 3 Factor loadings of Carbocrash substrate properties calculated
by Detrended correspondence analysis

Variable FC 1 FC 2 FC 3 FC 4

Bulk density −0.22 −0.73 0.78 0.57

Penetrometery 0.60 0.10 0.54 0.26

Infiltration rate 0.57 −0.45 0.56 0.34

Electrical conductivity 0.81 −0.65 0.42 0.40

Hydraulic conductivity (saturated) −0.52 −0.86 0.04 0.02

Sodicity −0.56 0.69 0.39 0.18

pH −0.46 0.27 0.17 0.40

Root zone depth 0.11 0.19 0.02 0.38

Macroporosity 0.46 0.54 0.15 0.39

Aggregate stability 0.63 0.58 0.22 0.07

Stone content 0.48 0.18 0.46 0.58

Organic matter 0.62 0.28 0.63 0.62

Potential available water content 0.74 −0.51 0.48 0.05

Indicators were ranked in ascending or descending order. The most
important eigenvalues were bolded

FC means factor component
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et al. 2016). The properties of the reclaimed soil and of the
waste material used for this purpose may be assessed using
the depth function, which evaluates active penetration of the
root zone that provides soil protection. Our research
implementation of this new remediation technology
demonstrated that evaluation until 50 cm depth is necessary
to plant development. Józefowska et al. (2017) claimed
physical properties and biological conditions of reclaimed
areas were appropriate at a depth of 0–20 cm. However, this
conclusion might be misleading, as in degraded areas the
physical, chemical, and hydraulic properties may vary at
different depths. Our results indicated that after eight years
of reclamation the 0–20 cm layer was different to deeper
layer of 20–50 cm (Fig. 3). Moreover, in reclamation pro-
jects, the biological activity (Li et al. 2012) and fluctuations
in physical and chemical properties should be conducive
monitored over a long period of time (Juwarkar et al. 2010;
Song et al. 2012; Helman et al. 2014; Huang et al. 2015).

Challenges of Using Sewage Sludge in Biological
Reclamation

Sewage sludge with amendments improving the chemical
and physical properties, used for the reclamation of post-
industrial wastelands, would contribute to the formation of

better quality post-mining soils. Susceptibility of pollutants
to degradation should be assessed in both physical and
chemical terms prior to the implementation of bioremedia-
tion techniques (Kumpiene 2010). Other studies have pro-
vided further insights into the effects of intervention
techniques. Fly ash and sewage sludge affects plants bio-
mass, availability of nutrients, and soil properties (Tsadilas
et al. 2014). Introduction of ashes into a sandy soil improves
its structure and enhances its water capacity (Kumpiene
et al. 2007). The mechanism of pollution retention by fly
ash during soil reclamation involves mainly increasing soil
pH, precipitation of pollutants and their sorption (Kumpiene
2010).

Data on electrical conductivity suggest that sewage sludge
contains large amounts of dissolved salts. Further, the elec-
trical conductivity of ash rock ranged from 1.12 to 1.28mS cm
−1 (Gilewska 2006). In our study, average electrical con-
ductivity after 8 years of biological reclamation was 1.15 dSm
−1. The most favourable changes in the investigated soil
parameters were observed for high doses of sewage sludge,
such as 40 and 60 t∙ha−1 (Antonkiewicz et al. 2016).

Our study showed that Carbocrash substrate could be
useful in restoring the areas degraded by mining operations.
This was indicated by the high content of organic matter
and strong impact of potential available water content
(Table 2). The use of biodegradable waste supplemented
with Carbocrash substrate should be considered as
improvements of the phytostabilisation process. An
important international problem in degraded areas is expo-
sure to heavy metals, and sewage sludge can have an impact
in the accumulation of heavy metals in soil and plants
(Kumar and Chopra 2014; Kumar et al. 2016). However,
translocation of heavy metals from Carbocrash substrate to
plants only presents a risk for Cd bioaccumulation (Halecki
and Klatka 2017).

Soil Productivity Index

Conventional methods of plant species selection prove to be
insufficient (Ding et al. 2007; Zou et al. 2012). This is due to
imprecise evaluation and not fully defined factors affecting the
fertility of newly created initial soil. To overcome these
obstacles, a multi-criterial decision method based on the fuzzy
set theory was proposed. Average soil bulk density in our
study was 1.05mgm−3 (Table 1), and our analysis demon-
strated its weak effects on hydraulic, physical and chemical
properties (Fig. 3). However, results of the multivariate
regression model (summarised in Table 2) verified that mac-
roporosity tends to have a high positive correlation with bulk
density. The criteria currently in use prevent reliable com-
parison of reclamation efficiency for different objects, or
accurate assessment of applied reclamation methods (Halecki
et al. 2016, Kim et al. 2018).
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Our research indicated that the 8-year reclamation was
the optimal way of managing mixtures containing Carbo-
crash substrate. Organic additives may enhance reclamation
of contaminated soils, especially by improving physical
properties around the plant root zone (Park et al. 2011).
Further, the introduction of depth intervals for measuring
individual parameters was important for the assessment of
biological remediation. Hu et al. (1992) claimed the max-
imum value of the SPI to be 1.0. Moreover, an SPI ≤ 0.5
indicates strong degradation of soils, and an SPI > 0.8 is
associated with low intensity of degradation processes. Our
study demonstrated the most important physical properties
of Carbocrash substrate in individual layers (Table 2). Soil
productivity index has been associated with increased value
of macroporosity (Fig. 4), potential available water content
(Fig. 5), and aggregate stability (Fig. 6). Hence, we believe
that accurate assessment of the materials used for recla-
mation of post-mining areas is the factor most profoundly
affecting the effectiveness of projects aimed at improving
productivity of post-industrial lands. The selection of proper
soil properties, and the post-mining area, depends on
numerous criteria and is a serious strategic challenge when
deciding on a specific reclamation approach (Parraga-
Aguado et al. 2014). Our study confirmed that not all of the
factors contributing to soil properties need to be measured.
Furthermore, root media depth was not a good predictor for
the evaluation of a post-mine waste remediation procedure
(Table 3).

The suitability of Carbocrash, a substrate material used in
this study, may be assessed based on depth function to
determine the degree of root zone penetration. Water
availability for plants depends on how deeply it is stored, its
mobility, and the chemical composition of the soil. Elevated
values of electrical conductivity recorded on experimental
plots in the first years of the research period indicated high
concentrations of soluble salts. This manifested due to the
increasing osmotic pressure of the soil solution. It was
concluded, therefore, that using Carbocrash substrate could
result in limited water availability in the initial period,
which highlighted the importance of irrigation. We assumed
that current remediation strategies on rehabilitating areas
must be widely discussed. Thus, appropriate studies aimed
at partial, or complete management of the reclaimed areas
are necessary.

Conclusions

Eight years of reclamation with sewage sludge enriched with
amendments was long enough to improve the physical prop-
erties of post-industrial soils. Uniform indicators would be a
useful diagnostic tool in post-mining areas, especially in the
context of monitoring changes in soil properties, development

of habitats and potential productivity of plants. Soil substrate
(“post-mining soil”) should be the basis for the diagnosis of
habitats in reclaimed areas, and a desirable approach would be
to identify indicators of soil evaluation in reclaimed areas.
Reclamation of dumps does not fully account for specific
conditions of these habitats, and does not always adjust the
quality of applied methods to their specific requirements.
Therefore, the evaluation of post-mining soils should account
for increasing the significance of sewage sludge mixtures that
improve the geomechanical properties of soil in a relatively
short time. Further, the management of post-mining areas
should focus primarily on biological reclamation with Car-
bocrash substrate, which is a highly effective substrate for
post-mining soil. However, it is necessary to consider dynamic
changes in the properties that are manifested during the
reclamation procedure. The use of Carbocrash substrate
improves the physical and chemical properties of initial soils in
degraded areas. The productivity index was high in the
areas reclaimed with Carbocrash substrate, which sug-
gested a low level of soil degradation. The results of our
study showed high usefulness of indicator methods based
on properly constructed fuzzy sets and soil parameters.
These would hugely simplify the reclamation technology,
as they would require an assessment of soil productivity at
the initial stage of reclamation for each post-mining area.
Restoring functional quality and biological productivity
might be faster with the use of Carbocrash substrate
compared to mineral fertilisers. Environmental manage-
ment systems should consider this biosolid in the inte-
gration of the reclamation process and improvement of
hydraulic properties. Carbocrash substrate is especially
recommended for the reclamation of soilless areas, coal-
mining wasteland, landfills accepting metallurgical waste,
and rock raw materials without humus layer. Introducing
plant seedlings is a technical challenge of the reclamation
process aimed at obtaining tree-covered land. This is why
properly conducted remediation and revitalisation of post-
mining areas should include profound changes in the
assessment of plant production capacity within degraded
areas. Further reclamation research should also take into
account the phytoremediation ability of plants, which
might accumulate contaminants from the post-mining
areas. Studies and analyses investigating environmentally
friendly methods of management of this innovative soil
substrate will improve biological improvement of land-
fills, limit their negative impact, and reduce the amount of
waste. This will facilitate proper shaping and protection of
the natural environment.
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