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Abstract Submerged macrophytes play an important role
in maintaining good water quality in shallow lakes. Yet
extensive stands easily interfere with various services pro-
vided by these lakes, and harvesting is increasingly applied
as a management measure. Because shallow lakes may
possess alternative stable states over a wide range of
environmental conditions, designing a successful mowing
strategy is challenging, given the important role of macro-
phytes in stabilizing the clear water state. In this study, the
integrated ecosystem model PCLake is used to explore the
consequences of mowing, in terms of reducing nuisance and
ecosystem stability, for a wide range of external nutrient
loadings, mowing intensities and timings. Elodea is used as
a model species. Additionally, we use PCLake to estimate
how much phosphorus is removed with the harvested bio-
mass, and evaluate the long-term effect of harvesting. Our
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model indicates that mowing can temporarily reduce nui-
sance caused by submerged plants in the first weeks after
cutting, particularly when external nutrient loading is fairly
low. The risk of instigating a regime shift can be tempered
by mowing halfway the growing season when the resilience
of the system is highest, as our model showed. Up to half of
the phosphorus entering the system can potentially be
removed along with the harvested biomass. As a result,
prolonged mowing can prevent an oligo—to mesotrophic
lake from becoming eutrophic to a certain extent, as our
model shows that the critical nutrient loading, where the
lake shifts to the turbid phytoplankton-dominated state, can
be slightly increased.

Keywords Model - Aquatic plant - Harvesting *
Phosphorus * Resilience * Ecosystem services

Introduction

Shallow lake ecosystems depend on the presence of sub-
merged aquatic plants (macrophytes) for good water quality
and high biodiversity (Heimans and Thijsse 1895;
Carpenter and Lodge 1986; Jeppesen et al. 1998). There is a
positive feedback between aquatic plants and water clarity,
through which the plants enhance their own growing con-
ditions (Van Donk and Van de Bund 2002; Scheffer 2004).
Such self-stabilizing mechanism causes a tendency of the
system to resist changes in external environmental condi-
tions, i.e. it promotes a clear water state within the context
of alternative stable states in lakes (Scheffer 2004).
During the second half of the twentieth century, sub-
merged macrophytes disappeared from many shallow lakes
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in temperate regions because of external nutrient loading
from mainly anthropogenic sources (Gulati and Van Donk
2002; Korner 2002). Lakes switched from a clear-water state,
dominated by macrophytes, to a turbid-water state with few
plants, prone to harmful cyanobacterial blooms (Scheffer
et al. 1993; Carpenter et al. 1999). For many years since,
tremendous management effort has been devoted to the
restoration of aquatic plant communities, mainly through the
reduction of external nutrient loading, especially phosphorus
(P) (Cullen and Forsberg 1988; Jeppesen et al. 2005; Hilt
et al. 2006). Although lakes in the turbid state may also be
resilient to changes in external environmental conditions
(Hosper 1998), reduction of external nutrient loading is
effective in the long run (Jeppesen et al. 2005), and many of
the impacted lakes have recovered or are now recovering to a
clear-water state with submerged macrophytes (Sondergaard
and Moss 1998; Gulati and Van Donk 2002).

Almost inevitable, the return of aquatic plants is accom-
panied by nuisance caused by these plants (e.g. van Donk
1990). The nutrient availability in restored lakes is generally
still rather high, which in combination with improved light
conditions allows for rampant growth of rooted macrophytes
(Lamers et al. 2012). These dense stands of aquatic plants
cause nuisance to bathers and swimmers, which generally
dislike the touch of plants and because invertebrates living on
the macrophytes may cause itches and rash of the human skin
(Van Donk 1990). Dense stands can also cause nuisance for
fisherman as lines easily get stuck and because a high mac-
rophyte cover can have a negative effect on fish abundance
(Bickel and Closs 2009). Moreover, dense stands can impair
(recreational) boat traffic and can decrease lakefront property
values. In fact, many functions and ecosystem services may
be impacted by the presence of plants (e.g. Van Nes et al.
1999; Anderson 2003). As a result, current management
practices are more and more focusing on the reduction of
aquatic plants, even though the re-establishment of an aquatic
plant community is still considered a prerequisite for the
long-term success of lake restoration measures (Van Nes et al.
2002). In many rapidly developing countries nuisance growth
of aquatic plants is also readily apparent (Van Ginkel 2011).
There, the increased availability of nutrients stimulates plant
growth in precedence of a regime shift to a phytoplankton
dominated state—a part of eutrophication which also occur-
red in the temperate lakes before the submerged macrophytes
disappeared en mass during the last century (Hasler 1947).

A common human response to excessive growth of sub-
merged macrophytes is mechanical cutting and harvesting
(Hilt et al. 2006; Hussner et al. 2016). However, when lakes
have alternative stable states, defining a sustainable mowing
regime is challenging, given the important role of macro-
phytes in stabilizing the clear water state. Theory predicts that
when a critical, in practice unknown, amount of vegetation is
removed, positive feedbacks propel the system to the turbid
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state with phytoplankton dominance (Scheffer et al. 1993;
Van Nes et al. 2002). When less vegetation is removed, on
the other hand, the system may show a swift recovery back to
the vegetated equilibrium state, undoing the impact of
mowing. Van Nes et al. (2002) applied two dynamic aquatic
plant models of different complexity to analyze the response
of aquatic plant populations to harvesting and concluded that
it may be almost impossible to maintain vegetation biomass
at any desired intermediate level. Consequently, Van Nes
et al. (1999, 2002) suggest it may be more fruitful to assign
just a few key functions to entire lakes, than to pursue a
compromise between conflicting destinations. In most cases
however, lake managers do not have the luxury to divide
functions over different lakes, for example due to legal
obligations, such as the Water Framework Directive (Eur-
opean Union 2000).

A potentially viable option is to aim for a temporal relief
of nuisance following a discrete mowing event. When this
period of relief coincides with the moment users are relying
on the services provided by the lake, mowing can be con-
venient despite eventual recovery to the vegetated equili-
brium state. Van Nes et al. (2002) did not consider the
temporal aspects of mowing in their plant modeling study,
as they assumed continuous cutting strategies for simplicity.
Yet it remains a tall order for water quality managers to
estimate the amount of plant volume that can be safely
removed, and predict the period of relief of nuisance after
mowing. The numerous field and laboratory studies that
have investigated the response of macrophytes and phyto-
plankton to harvesting (e.g. Engel 1990; Nichols and
Lathrop 1994; Barrat-Segretain and Amoros 1996; Morris
et al. 2003; Bal et al. 2006; Morris et al. 2006) did not bring
general applicable insights as the results were ambiguous.
Moreover, lake managers in NW Europe often lack
experience as submerged macrophytes were missing for a
long time, while formal decision support schemes are
basically absent (Hilt et al. 2006). We argue that there is a
need for an integrated analysis to obtain a better under-
standing of the general consequences of plant removal in
relation to trophic state and ecosystem resilience.

In this research we use a comprehensive dynamic eco-
system model—PCLake—to study the effect of mowing on
shallow lake ecosystems with alternative stable states. This
model describes the main nutrient and food web dynamics
of a non-stratifying shallow lake in response to eutrophi-
cation and re-oligotrophication (Janse and van Liere 1995;
Janse 1997), including many feedback mechanisms and
processes that have been associated with plants and alter-
native stable states in lakes. PCLake is frequently used by
scientist and water quality managers, mainly in the Neth-
erlands and Denmark, to analyze the complex dynamics of
shallow lake ecosystems and to evaluate the effectiveness of
potential restoration measures (e.g. Van Liere and Janse
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1992; Janse et al. 1993; Janse et al. 1998; Nielsen et al.
2014; Trolle et al. 2014). The model has been calibrated
with data from more than 40 temperate shallow lakes
located in the Netherlands, Belgium and Ireland (Janse et al.
2010). The aim of this calibration exercise was to obtain a
best overall fit for the whole set of lakes, rather than
achieving an optimal fit for one specific lake at the expense
of others. As a result, the model has a fairly wide geo-
graphic applicability and is suitable for generalized studies
on temperate shallow lakes (Janse et al. 2010). Hence,
PCLake provides a consistent framework that can be used to
study how alternative stable states come about, and how
they affect ecosystem functioning and ecosystem manage-
ment. For example, Janse et al. (2008) used the model to
study how general lake features, such as depth, fetch and
sediment type determine the resilience of shallow lakes to
external nutrient loading. Likewise, PCLake has been used
to evaluate the importance of rising temperatures (Mooij
et al. 2007, 2009), littoral-pelagic coupling (Sollie et al.
2008), allochthonous particulate organic matter (Lischke
et al. 2014), tube-dwelling invertebrates (Holker et al. 2015)
and herbivory by birds (Van Altena et al. 2016).

We designed our study to cover several important aspects
of mowing that are relevant to ecosystem managers. Firstly,
we evaluate how the impact of mowing depends on the
trophic status of the lake (i.e. external nutrient loading),
mowing intensity and timing of mowing during the growing
season. We express the effect of mowing both in terms of
remaining plant cover, and in terms of days without nui-
sance caused either by macrophytes or cyanobacteria. This
exercise also allows us to evaluate under which conditions
mechanical cutting of macrophytes results in a critical
regime shift to the alternative turbid state. Secondly, we use
the model to obtain quantitative estimations of the amount
of P that can be removed from the system via harvesting of
macrophytes. Removal of P may help to remediate eutro-
phication effects in the lake, and potentially can be recov-
ered for sustainable reuse. Finally, we explore the long term
impacts of mowing to analyze whether mowing is a mea-
sure that also can be applied to help prevent undesired
eutrophication effects in shallow lakes.

Methods

Model Description

General Features

PCLake consists of a number of coupled ordinary differ-
ential equations and auxiliary equations which describe the

most important biotic and abiotic components of both the
water column and the sediment top-layer of a non-

stratifying shallow lake (Janse 1997). By putting equal
emphasis on the biotic and abiotic components, the model is
unique in its kind (Janssen et al. 2015). Primary producers
are represented by submerged macrophtyes and three
groups of phytoplankton (diatoms, green algae and cyano-
bacteria). The food web is completed by detrivorous mac-
rozoobenthos,  zooplankton,  zooplanktivorous fish,
benthivorous fish and piscivorous fish. The abiotic com-
ponents in the sediment and in the water column are det-
ritus, inorganic material, dissolved phosphorus, ammonium
and nitrate. All organic components are modeled in dry-
weight (DW), nitrogen (N) and phosphorus (P), and hence
the nutrient-to-dry-weight ratios of the organic components
are variable. Internal fluxes of nutrients between the sedi-
ment layer and the pelagic zone, including internal loading,
are accounted for and modeled dynamically. Processes such
as diffusion, adsorption, burial, sedimentation and resus-
pension are included (see Bryhn and Hakanson 2007 for
details). The main inputs to the model are: dimensions
(depth and fetch), water inflow, nutrient loading, particulate
loading, temperature, irradiation and sediment character-
istics. PCLake has been calibrated following a beyasian
approach to parameter estimation and uncertinty analysis
(Aldenberg et al. 1995; Janse et al. 2010). The calibration
focussed on higher level variables that are of interest to
water quality mangers, including chlorophyll-a, Secchi
depth, vegetation cover and nutrient concentrations in the
water column (Janse et al. 2010). In a recent multi-model
ensemble study using an independent dataset, PCLake came
out as the most accurate model out of a set of three tested
aquatic ecosystem models (Trolle et al. 2014). Although
PCLake has mainly been applied to temperate lakes in NW
Europe, successful case studies in Mediterranean Greece
(Mellios et al. 2015) and Subtropical China (Kong et al.
2016) suggest that the model may also be of value outside
the temperate zone. A full description of the model is pre-
sented by Janse (2005). A schematic overview of PCLake is
presented in Online Resource 1.

Alternative Stable States

The PCLake model shows a nonlinear response to changing
nutrient loadings, similar to examples studied in the field
(Janse 1997). Lakes with a low external nutrient loading are
in the clear-water macrophyte-dominated state with low
chlorophyll-a concentrations. Lakes that receive a high
external nutrient input reside in a turbid phytoplankton
dominated state. In between, a fairly abrupt shift between
the contrasting states takes place. The critical nutrient
loading for a shift from a clear to a turbid state during
eutrophication (CNL,,) is at a much higher value than the
critical nutrient loading where the reverse switch takes
place, back to clear conditions during re-oligotrophication
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(CNL,jigo). Hence, at intermediate loading levels both the
clear-water state and the turbid water state can exist as
alternative stable states and the prevalent state depends on
the foregoing conditions—a phenomenon known as hys-
teresis. Between the critical nutrient loading values, strong
perturbations, such as discrete mowing events, may insti-
gate a regime shift from one state to the other (Janse et al.
2008). Classical alternative stable states theory predicts that
a lake is more vulnerable to disturbances closer to a tipping
point, while the time it takes to recover from a perturbation
increases (Van Nes and Scheffer 2007). Previous analyses
with PCLake indicated that alternative stable states are most
likely to occur in lakes that are shallow (<4 m depth) and
have a relatively small fetch (<3000 m) (Janse et al. 2008).

Macrophytes

The submerged macrophytes in PCLake represent Water-
weeds in general (Elodea spp.). Waterweed species are non-
native yet widespread in NW Europe and they are often
among the first macrophytes to return after restoration
measures have been taken (Heimans and Thijsse 1895;
Perrow et al. 1997; Pot and ter Heerdt 2014; Immers et al.
2015). They are documented to cause nuisance by their
mass development and are subject to mowing management
(Hilt et al. 2006; Zehnsdorf et al. 2015). In PCLake, the
growth of the submerged macrophytes (Fig. 1) is dependent
on nutrient availability, temperature and under-water light
availability. Plants take up phosphate, ammonium, and
nitrate from both water column and soil pore water to
achieve optimal P:biomass and N:biomass ratios (Droop
1974; Madsen and Cedergreen 2002; Angelstein and
Schubert 2008; Baldy et al. 2015; Christiansen et al. 2016).
Ammonium is preferred, but when the ammonium con-
centration is low, the plants switch to nitrate uptake. The
available light for primary production forms a gradient with
depth (Lambert—Beer’s law) and is controlled by the light
intensity at the water surface, which is set by a seasonal sine
curve (based on long-term averages for Dutch solar

irradiance), and by the light attenuation by the plants
themselves (self-shading), phytoplankton, detritus and
inorganic matter in the water column as well as background
extinction. It is assumed that the growing season starts when
a critical spring water temperature (9 °C) is reached. This
happens in mid-April, given the long-term averaged
seasonal water temperature in Dutch lakes. The growing
season ends half September onwards, when part of the
above-ground biomass is allocated to the below ground
biomass, and the mortality of the plants is raised for 2 weeks
such that 30% of the original biomass survives, i.e. the
over-wintering parts.

The submerged macrophytes are involved in several
positive feedbacks with water clarity that have been linked
to the emergence of alternative stable states in shallow lakes
(Sondergaard and Moss 1998; Scheffer 1999; Horppila and
Nurminen 2003; Janse et al. 2008). For example, they are
able to suppress phytoplankton growth by being strong
competitors for nutrients while having a relatively low light
extinction coefficient. Moreover, they provide shelter for
phytoplankton grazing zooplankton, and reduce the resus-
pension caused by wind and benthivorous fish. Further-
more, vegetation promotes growing conditions for
piscivorous fish which exert top-down pressure on zoo-
planktivorous fish. Finally, aquatic plants have the potential
to lower the total amount of available nitrogen in the system
by promoting denitrification.

A mowing function is available in PCLake, which
requires defining a date when the mowing event takes place,
the duration of the mowing event and a mowing intensity
(i.e. fraction of the biomass that is removed). The mowing
intensity is independent of the duration of the mowing
event: a natural logarithm is used to calculate the amount of
biomass that is removed per day: h = -In(1.0—f)/p*V, where
h is the harvested biomass (gm >day "), fis the intensity
(-), p is the duration (days) and V is the total aquatic plant
biomass in the lake (g m ™). We applied a 'clean’ mowing
strategy throughout this study, whereby all biomass is
removed from the lake. We did briefly consider potentially

Fig. 1 Basic processes of the Mowing . | Mowing -
aquatic plants in PCLake. The Birds Dry-weight processes i Birds Nutrient Processes
modeled processes are nutrient ) e A —— Water
uptake, production, respiration extraction Aquatic plants| | extraction Aquatic plants
and nutrient excretion, mortality, ) E § : % 5%
grazing by birds and mowing. primary. o : Ky uptake
. production ———) % d ; % g
The nutrient processes are o Y i
modeled both in phosphorus and respiration 4——— % S : ———»
nitrogen. Herbivory by birds A‘\ || Detritus l T
was not considered in this study. dieoff ¥ ! )
. ! die-off
The figure is adapted from Janse : ! l .
(2005) - die-off : die-off : uptake
/ : Detritus I excretio;
— - ! ——————— :
respiration i Sediment
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harmful side effects of mowing, including enhanced resus-
pension and incomplete removal of plant material from the
water column, but present these findings as an appendix as
they did not affect the conclusions of our main analyses (see
Online Resource 2).

Implementation

We used default parameter settings describing a lake that is
representative for many shallow lakes in the temperate zone,
with a mean depth of 2 m, a 1000 m fetch, a water inflow of
20 mm day ' (100 day residence time), a lightly clayish soil
(30% dry matter, of which 10% organic matter, and 10%
lutum), no infiltration or seepage and no surrounding wet-
land area (c.f. Janse et al. 2010). The N:P ratio of the
external nutrient loading was set at 13, i.e. the estimated
average N:P ratio for agricultural runoff in the Netherlands
(Wolf et al. 2003). In this set-up, the calculated CNL,, and
CNL,jigo values are 1.6 and 0.9 mg P m >day ' respec-
tively. To run simulations we used a C++4- compiled version
of the PCLake model called from GRIND for MATLAB
(Mooij et al. 2014).

Model Simulations
Nutrient Loading, Mowing Intensity and Timing

In this study on the impact of mowing on the lake we varied
three independent variables of the model that can be con-
trolled by lake managers: (1) external nutrient loading, (2)
mowing intensity and (3) timing of the mowing. We first
focused on the interplay between the first two. We simu-
lated different combinations of external P loading, ranging
from 0.7 to 1.7 in steps of 0.05 (mgm *day '), and
mowing intensity, ranging from O to 0.9 in steps of 0.1 (—).
We did not consider P loadings above 1.7 mgm ™ *day ' as
the modeled lake then resides in the turbid water state
without macrophytes. Each simulation was started from a
clear water state and we ran the model for 20 years before
starting the mowing procedure to ensure the lake to be in
(seasonal) equilibrium. Note that internal nutrient loading in
PCLake is not an independent variable, and by running the
model 20 years we achieve that the internal loading in the
system associates with the corresponding levels of external
P loading. The initialization period was followed by three
succeeding years where a mowing event took place. We
considered 3 years to include the effect of mowing on the
biomass in the next year (Kimbel and Carpenter 1981).
Each of the mowing years comprised one discrete mowing
event, taking place on July 1st. This is in compliance with
the guidelines provided by Rijkswaterstaat, responsible for

the management of the main waterways and water systems
in the Netherlands, who discourage mowing during the
avian breeding season (Rijkswaterstaat 2012). The duration
of the mowing event (p) was kept at the default value of
10 days in all of these and subsequent cases. Next, we
repeated the foregoing simulations, but this time focusing
on different combinations of mowing intensity and timing.
Again the mowing intensity ranged from O to 0.9 in steps of
0.1, while the mowing dates ranged from June 1st to Sep-
tember 1st in steps of 7 days. We performed this analysis for
three different nutrient loading settings (0.8, 1.1, and 1.4 g P
m > day ', respectively).

To evaluate the effects of the mowing actions we ana-
lyzed the summer average (June 10th—September 15th)
vegetation cover and cyanobacterial chlorophyll-a con-
centration in the final year of the simulations.
In the model, the vegetation cover increases linearly with
the dry weight (DW) of submerged plants until 200 g DW
m 2 is reached and the cover is 100%. Also, we calculated
the days with nuisance during the peak of the holiday
season (beginning of July until the end of August) caused
by either submerged water plants or cyanobacteria. We
presumed that water plants cause nuisance when they cover
more than 40% of the area (Gettys et al. 2014). For the
cyanobacteria, we followed the Dutch cyanobacteria
protocol and took 12.5 mg m > cyano-chlorophyll as a limit
above which nuisance occurs (National Water Overleg
2012). Short-time human exposure to concentrations higher
than this value can cause skin rashes or gastrointestinal
sickness, and this risk should be communicated to bathing
guests.

Additionally, we zoomed in on one intermediate nutrient
loading (1.3 mg P m 2 day ') and present the within-season
dynamics of the vegetation cover and chlorophyll-a
in response to several different mowing intensities, to
also obtain a more detailed view on the dynamics of the
lake.

Nutrient Removal by Harvesting

We kept track of the amount of P stored in aquatic plant
biomass harvested from the system in the final (third) year
of mowing, to evaluate the potential to impoverish the lake.
The amount of P removed from the system via harvesting
provides an indication of the P that can potentially be
recovered for reuse. In addition, we calculated the relative
removal of P, that is, the ratio of P in the harvested biomass
to the total amount of P added to the system via external
loading. The relative removal thus allows to assess the
extent to which harvesting may contribute to the closing of
the P cycle.
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Prolonged Mowing and the Resilience to Nutrient Loading

We used PCLake to analyze whether harvesting of
macrophytes has the potential to forestall eutrophication
effects in the long run. More precisely, we analyzed how
repeated annual harvesting changes the CNL,, of the lake,
that is, the amount of external nutrient loading the lake can
withstand without switching to a phytoplankton-dominated
turbid state. Following Janse et al. (2008), we calculated
CNL., values for different combinations of mowing
intensity and timing, for which we took the same ranges as
presented in the foregoing analysis. For each combination
the model was evaluated for P loading rates ranging from
0.1 to 4mg P m “day " in steps of 0.1. Each simulation
started with a clear and oligotrophic lake. The summer
average Secchi depth (m) after 20 years was used to
evaluate the state of the lake, to determine which P loading
is the CNL.,. Previous analyses have shown that the
ratio of Secchi depth to lake depth is a suitable response
variable to determine the CNL., (c.f. Witteveen+Bos
2010; Lischke et al. 2014): above a ratio of 0.5 the lake is
defined as clear, while below this ratio the lake is defined as
turbid. Mowing took place in each of the 20 years and
comprised one discrete mowing event lasting the standard
10 days.

Results
Nutrient Loading and Mowing Intensity

The model shows that the summer average plant cover can
be reduced by mowing (Fig. 2a). When external nutrient

loading is low, and no alternative equilibrium exists, plant
cover shows an almost linear decrease with increasing
mowing intensity. At high nutrient loadings however,
mowing can trigger a regime shift to an alternative state
with high phytoplankton concentrations (Fig. 2b). The
mowing intensity that leads to a regime shift shows a
nonlinear relationship with nutrient loading; the critical
mowing intensity decreases sharply when the external
loading approaches the critical nutrient loading (1.61 mg
m~2day ). In the vicinity of the critical nutrient loading, a
mowing intensity of >30% is sufficient to trigger a col-
lapse when mowing is applied in three succeeding years.

Zooming in on the seasonal dynamics clearly reveals the
time window where plant cover is reduced due to mowing
lasting for at least several weeks (Fig. 3a). It also shows that,
apart from the average plant cover, the maximum plant cover
reached during the growing season is also lowered with
increasing mowing intensity. A detailed look reveals the
importance of considering three succeeding years: the 90%
mowing treatment triggers a regime shift, which only becomes
apparent in the second and 3rd year, when the plant community
collapses and phytoplankton blooms start to occur (Fig. 3b).

An important question is how the response of the eco-
system to mowing translates to nuisance experienced by
lake users. Our approach illustrates that there is a sharp
boundary between nuisance caused by macrophytes and
nuisance caused by cyanobacteria when the nutrient loading
is high (Fig. 4a—c). On the other hand, when the nutrient
loading is fairly low (<1 mg m Zday '), mowing can
create conditions where hardly any nuisance is experienced
during the peak of the summer holiday season (Fig. 4c),
given that a substantial fraction of the submerged macro-
phytes is removed (>50%).
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loading on summer average s To T e (ol oo o 0100
plant cover (a) and chlorophyll- 16 % 2 1110 ol o 8181911
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Timing of Mowing

The impact of harvesting varies during the growing season
(Fig. 5), particularly when the external nutrient loading is
high (Fig. 5a and b) and the lake is susceptible to a regime
shift (Fig. 2a and b). When the nutrient loading is high, the
modeled lake is most vulnerable in late summer, when har-
vesting a fraction of 40% is sufficient to instigate a regime

a) go
/7
g //A
|/
8 \/
= /
S ¥
o
==\,
b) 100
No mowing
— — —  30% mowing A
— god———— 60% mowing /I \
& 1=-————- 90% mowing 1 \
£ I
£ 60 ! \
3 1 \
: o
a 40 A ! \
o
g ]
S ]
S 201 !
0 T

21
Time (Years since start)

Fig. 3 Effects of mowing on July 1st on summer average plant cover
(a) and chlorophyll-a (b) in three succeeding years for a lake receiving
1.3mg P m~>day ™'

Days with nuisance
caused by submerged macrophytes

Days with nuisance
caused by cyanobacteria

shift to the phytoplankton dominated state. To a somewhat
lesser extent, also mowing in early summer eases a shift to
the turbid state. The resilience to perturbations of the mod-
eled lake is highest during mid-summer, as up to 80% of the
vegetation can be removed, resulting in a halving of the
summer average plant cover (Fig. 5a and b). The timing of
mowing is not particularly important when the external
nutrient loading is low (Fig. Se and f). Large fractions of the
plant biomass can be removed almost the entire growing
season without risking a regime shift, allowing to reduce the
summer average plant cover up to 40%.

Nutrient Removal by Mowing

The amount of P harvested from the lake during a mowing
event increases with mowing intensity and nutrient loading,
and is highest close to the point where mowing leads to a
regime shift, reaching a maximum of almost 230 mg P m 2
(Fig. 6). The relative removal of P increases with mowing
intensity and can be as high as 58%. However, the relative
removal decreases with increasing nutrient loading. The
associated dry-weight of the harvested plant biomass is
presented in Online Resource 3.

Prolonged Mowing and Resilience

Our model exercises show that in the long run repeated
mowing is able to enhance the resilience of the clear water
state to nutrient loading for a wide range of mowing
intensities and mowing dates, as it leads to an increase
(max. 7%) of the critical nutrient loading (CNL., > 1.61 mg
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Fig. 4 Combined effects of mowing intensity and nutrient loading on
days with nuisance caused by aquatic plants (a), cyanobacteria (b) or
both aquatic plants and cyanobacteria (c¢) during July and August (peak
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of the holiday season in the temperate region) in the final year of the
simulations. Mowing starts on July 1*
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Fig. 5 Combined effects of
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P m *day '; Fig. 7). Mowing during July and August in
combination with an intermediate mowing intensity is most
beneficial for enhancing the CNL.,. Mowing in early-
summer or in late-summer can lead to a reduced resilience
to nutrient loading (CNL., < 1.61 mg P m2 dayfl).

Discussion
Temporal Relief of Nuisance

Our modeling study shows that mowing can result in a
temporal reduction of plant cover for a range of nutrient
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loadings and mowing intensities. These reductions of plant
cover can reduce nuisance for up to several weeks, espe-
cially when the mowing intensity is fairly high and the
external nutrient loading is low or moderate. Our model
thus indicates that mowing can facilitate multiusage of
shallow lake ecosystems. At lower intensities mowing also
reduces the summer average plant cover, but this may be
not sufficient to actually reduce nuisance as the remaining
cover still exceeded the threshold level, which we fixed at
40%. Our model analyses indicate that it becomes more
difficult to design a convenient mowing strategy when the
external nutrient loading is high; the attraction of the
alternative equilibrium is so strong that a rather small
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Fig. 6 The amount of P (mgm 2 year ') extracted from the system
via harvesting of plant biomass during the last year of mowing, for
different combinations of external nutrient loading and mowing
intensity. The color indicates the quantity. The relative removal, that
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Fig. 7 Effect of prolonged (long term) mowing on the CNL,, (mg P
m *day '), i.e. the amount of nutrient input the lake can withstand
without shifting to the turbid water state, for different combinations of
mowing intensity and timing (start of the mowing procedure). The
colors indicate whether mowing leads to an increase (white) or
decrease (dark gray) of the critical nutrient loading (default 1.61 mg
m 2 day ")

reduction in plant volume may be sufficient to trigger a shift
to phytoplankton dominance. Interestingly, our results elu-
cidate that a reduction of external nutrient loading alone is
not an effective measure to drive back nuisance caused by
aquatic plants (Fig. 4), which emphasizes the need for

is, the ratio of P in the harvested biomass to the total amount of P
added to the system via external loading, is presented between squared
brackets (%)

mowing. Because the risk of inducing a regime shift by
mowing increases with external nutrient loading, the suc-
cessfulness of mowing to reduce macrophyte nuisance goes
hand in hand with the reduction of external nutrient loading.
At what percentage of cover lake users perceive plants as a
nuisance will vary between lakes and types of users. We took
40% because this number is frequently used in the gray lit-
erature, mostly in relation to growth of largemouth bass—a
popular target species for sport fisheries (e.g. Gettys et al.
2014). However, we can hypothesize that when lake users
already perceive nuisance at a lower plant cover (<40%) it
will become increasingly difficult, or even impossible, to
manage the vegetation successfully by harvesting while
maintaining clear water. Vice versa, if local lake users would
be more tolerant to the aquatic vegetation and perceive nui-
sance at higher percent cover (>40%), it will be more easy to
reduce nuisance and maintain a clear-water ecosystem,
especially when the external nutrient loading is not close to
the critical nutrient loading level (Fig. 4). Hence, before
designing a management scheme it is important to identify
which stakeholders need to be served and at what percentage
of plant cover they actually perceive plants as a nuisance.

The Importance of Timing
Our model analyses indicate that the highest reductions of

plant biomass can be achieved by mowing in mid-summer,
while mowing in late summer appears to be least
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recommendable. The latter is not just because the peak of
the holiday season (and thus recreational usage) is in mid-
summer, but also because the risk of inducing a regime shift
increases when mowing is conducted later in the growing
season. In our model, mowing late in the growing season
provides the aquatic plants with little opportunity to regain
biomass before the growing season ends. This is in line with
Engel (1990), who observed slow regrowth after mowing in
July compared to mowing in June, and ascribed this to
declining day length and water temperature. Consequently,
in the following spring the macrophytes may start the
competition with phytoplankton on their back foot, which
eases a shift to phytoplankton dominance (Scheffer 2004, p.
280). Mowing too early in the growing season also bears a
certain risk of triggering a regime shift, as our study
showed, particularly when the external nutrient loading is
high. We hypothesize that this is because the inter-specific
competition with phytoplankton in early June is still rather
strong, and setting back the submerged macrophytes favors
phytoplankton growth. At the peak of the growing season,
on the other hand, the intra-specific competition among
macrophytes becomes more controlling, and mowing reliefs
this intraspecific competition. Hence, the net growth rate of
the macrophytes directly after mowing relates positively to
mowing intensity (e.g. Fig. 2: the net growth rate after 30
and 60% mowing is 0.017 and 0.022 day ', respectively).
This compensatory growth is not sufficient however to
compensate for the entire loss of biomass, as plant cover
does not recover to pre-harvesting levels (Fig. 2).

The effect of timing on the impact of mowing may be
different in field situations, particularly when the macro-
phyte community comprises growth forms that—unlike e.g.
Elodea canadensis—produce overwintering organs (Schef-
fer 2004, p. 279). Hence, in case of propagule forming
macrophyte species such as several Potamogeton and
Mpyriophyllum species, these propagules may have already
been formed when harvesting takes place late in the
growing season, wherefore the impact on the next growing
season is much smaller. Harvesting earlier in the season
would then be an effective way to reduce the potential for
macrophyte plant growth in the succeeding year, as that
would prevent the formation of propagules (Wade 1990).
Interestingly, a reduction of plant volume in the succeeding
year is generally considered as a positive result of har-
vesting (e.g. Dall’ Armellina et al. 1996), while our model-
ing study hints that this strategy is not without risks when
lakes have alternative stable states and the external nutrient
loading is high.

Restrictions to Harvesting

In our model study we harvested fractions of the macro-
phytes to levels that may be unfeasible in real field situations.
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For example, there are practical reasons which frustrate
harvesting large quantities of aquatic plants, as it is a labor-
intensive and expensive activity. A simple calculation learns
that for our modeled (circular) lake with a diameter of 1000
m, when receiving 1.2mg P m *day ', a harvesting inten-
sity of 80% implies removing more than 650 tons of fresh
biomass in just a short time span, assuming a fresh-weight:
dry-weight ratio of 10 (e.g. Boiché et al. 2011; Dorenbosch
and Bakker 2011; Online Resource 3). Secondly, local laws
and regulations, such as the Dutch flora and fauna law, may
impose restrictions on harvesting intensity and timing. Plants
provide habitat and food for many species and it has been
reported that significant amounts of fish and macro-
invertebrates are removed along with the plants during har-
vesting (Engel 1990), which may include protected species.
Furthermore, removing large quantities of plants may conflict
with the protection of waterbirds that feed on the plants or the
fauna living in macrophyte beds. A third reason is that in a
field situation it will always be difficult to estimate the
amount of aquatic plants that should be present to safeguard a
clear water state, forcing lake managers to take a con-
servative approach when designing their plans. Hence, even
though a submerged plant cover as low as 20% may coincide
with good water quality (e.g. Portielje and Van der Molen
1998; Yanran et al. 2012), Hilt et al. (2006) advise to take
50% vegetation cover as a rule of thumb, and suggest that
remaining stands after harvesting should still cover 50% of
the lake. Also the Dutch authorities advise to remove maxi-
mally 50% of the plant cover, and even suggests to mow only
10% in case of native plant species (Rijkswaterstaat 2012). In
our study we used Elodea sps. as model macrophytes, which
are invasive in Europe. Our results show that part of the
macrophytes should be retained under mowing management
to prevent phytoplankton blooms under more eutrophic
conditions. Implicitly this suggests that non-native macro-
phytes may be able to fulfill some of the ecosystem functions
of native submerged macrophytes, in this case maintaining
water clarity (Carpenter and Lodge 1986). This is in line with
recent findings that non-native macrophytes may fulfill eco-
system functions similarly to their native counterparts and
that their effectiveness depends rather on species traits than
their origin (Grutters et al. 2015, 2016). Hence in manage-
ment, complete removal of non-native macrophytes may be
counterproductive for the ecosystem, if there are no native
macrophytes to fill the empty place (Hussner et al. 2016).

Spatial Heterogeneity

From our analyses it appears that harvesting 10% of the
standing crop has only a marginal effect on reducing nui-
sance. This situation may change however when it is pos-
sible and desirable to spatially divide functions over the
lake area. By harvesting in such a way that only certain
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patches are cleared, it may become possible to reduce nui-
sance locally e.g. in a zone designated for swimming or a
channel for navigation. The model we used (PCLake) is not
spatially explicit and is therefore not suited to evaluate the
effect of a local disturbance by harvesting, as it is intended
to provide a general indication of the harvesting pressure
the lake can withstand. There is only little known about the
effect of spatial heterogeneity on alternative stable states in
shallow lakes. Theoretical studies suggest that the potential
of local disturbances to instigate an ecosystem-wide regime
shift increases with interconnectedness (dispersion) within
the system (Van Nes and Scheffer 2005), and decreases
with spatial heterogeneity (Van de Leemput et al. 2015).
These studies thus suggest that alternative stable states are
unlikely to persist side by side in lakes which are very
homogenous. This means that local mowing becomes risky
as over-harvesting has catastrophic consequences for the
entire lake, albeit the regime shift may be gradual (Bel et al.
2012; Van de Leemput et al. 2015). When lakes do exhibit
spatial heterogeneity e.g. in terms of depth, fetch or sedi-
ment composition, the response to a local perturbation
becomes much more difficult to predict (Van de Leemput
et al. 2015), but this heterogeneity can potentially lead to
coexistence of contrasting states. The latter would create
opportunities for localized harvesting practices. A follow up
step is to couple the ecological modules of PCLake to 2D-
hydrodynamic models to analyze harvesting in a spatial
hydrodynamic context. This development is still in its
infancy however (e.g. Van Gerven et al. 2015).

Collateral Effects

Generally, not all cut plant biomass is removed from the
lake due to inefficiency of the harvesting equipment
(Hussner et al. 2016). The fragments that are not collected
start to decompose in the water column, thereby releasing
nutrients and contributing to the depletion of oxygen which
in turn can stimulate internal nutrient loading from the
sediment (Hilt et al. 2006). Additionally, cutting machinery
may cause resuspension of sediments, which may reduce
transparency and stimulate nutrient recycling. These side-
effects of mowing are expected to be detrimental to eco-
system functioning (Rijkswaterstaat 2012), but it is difficult
to quantify their true importance in the field. For simplicity
reasons, we did not consider the effect of collateral dis-
turbance in our main analyses. Yet, we did briefly look into
their relative importance (presented as Online Resource 2),
which revealed that, for the modeled circumstances and
assumptions, the effect of collateral damage is marginal.
This finding is in line with Carpenter and Gasith (1978)
who reported short lived or insignificant effects on the lit-
toral environment after clearing a 0.2 ha patch. Only when a
regime shift has already been initiated, our model shows

that the collateral effects of mowing stimulate the upheaval
(Online Resource 2). However, we did not consider all
potential side effects of mowing invasive aquatic macro-
phytes. For example, a factor we did not consider in this
study is that many nuisance species (including Elodea spp.)
spread by vegetative fragmentation (Hilt et al. 2006;
Redekop et al. 2016). Mowing can stimulate dispersal of
non-native nuisance species when fragments are produced
that easily ride with the flow and settle at new places
(Abernethy et al. 1996; Zehnsdorf et al. 2015). Especially
when surrounding lakes or waterways are still free of these
exotics, the vegetative dispersal capacity of the nuisance
species that is being managed should be taken into con-
sideration (Zehnsdorf et al. 2015). Recently, Hussner et al.
(2016) reviewed how management aimed at the reduction or
eradication of invasive aquatic plants can impact other
(native) species present in the ecosystem. Interestingly,
these effects can be both positive and negative. For exam-
ple, Dawson et al. (1991) reported a case where 30 mac-
roinvertebrate individuals were removed per gram dry
weight of cut aquatic plants, while Bickel and Closs (2009)
showed that total invertebrate biomass and abundance was
significantly higher in the areas where mowing took place
compared to the untreated macrophyte beds. Moreover,
while Engel (1990) reported that up to 450 fish were
removed per 100 kg fresh weight of cut aquatic plants, the
potential for improving growth and size structure of fishes
by reducing macrophyte density has long been recognized
(e.g. Wiley et al. 1984; Olson et al. 1998). Furthermore,
vegetation is a major food source for many waterfowl
species aquatic and it is known that herbivorous birds such
as coots (Fulica) can have a large impact on vegetation
density (Van Altena et al. 2016). Interestingly, this trophic
interaction may give rise to an interaction effect between
mowing and herbivory. Hence, if a large quantity of vege-
tation is removed by means of mechanical mowing, this
may either cause waterfowl to leave, but it may also cause
birds to put extra pressure on the remaining vegetation,
potentially triggering a critical regime shift to the turbid
state (Van Altena et al. 2016).

Removal and Recovery of Nutrients

Because there are nutrients stored in plant tissue, as well as
in material attached to the plant surface such as periphyton
and calcite incrustations, the removal of submerged mac-
rophytes may help to remediate the detrimental effects of
eutrophication, both in the lake where the plants are
removed from, and in downstream aquatic ecosystems
(Carpenter and Adams 1977). Our modeling scenarios
indicate that the highest amount of P is extracted from the
system when both the external P loading and the mowing
intensity are high. The relative removal however, which
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tells more about the capacity to actually prevent further
enrichment of the system via harvesting, increases with
decreasing nutrient loading, maximally reaching 58% in our
analyses. While it should be noted that periphyton and
calcite incrustations are not explicitly modeled by PCLake,
we find these numbers to be grossly in line with estimations
presented in the literature. For example, for a eutrophic lake
with 30% plant cover, Carpenter and Adams (1977) esti-
mated that a relative removal of 37% of the P loading could
be established if all plants would be harvested. Conyers and
Cooke (1983) reported that a relative removal of 44% could
be reached in a mesotrophic lake with 43% plant cover.
Moreover, Wile (1978) presented a case where harvesting
operations resulted in the removal of 560kg P, and esti-
mated the relative removal to be 47%. It is important to
realize however that these numbers refer to the relative
removal of P from the system as a whole, and not solely
from the water column (Burton et al. 1978). Although many
rooted macrophytes species are well capable of assimilating
nutrients directly from the water column through their
shoots (Madsen and Cedergreen 2002; Angelstein and
Schubert 2008; Christiansen et al. 2016), at least part
of their nutrients may be obtained from the sediment,
especially in systems where large amounts of P are available
in the sediment. As a consequence, removal of plant bio-
mass does not axiomatically offset the external loading of P
into the water column, and hence the incoming nutrients
may perpetuate eutrophication. We postulate that the effect
of harvesting rooted macrophytes on ecosystem functioning
is highest when the macrophytes take up most of their
nutrient directly from the water column. Furthermore, while
harvesting alone may not be able to completely offset the
incoming nutrient fluxes (Burton et al. 1978), we argue that
the usefulness may be enhanced by the joint application of
complementary management measures, such the application
of phosphorus adsorbing natural soil and modified clay.
Harvested plant tissue can potentially serve as a source of
nutrients, instead of only being waste material. The use of
aquatic plant biomass to fertilize agriculture fields is an old
practice (Roger and Watanabe 1984), which is still carried
out in many parts of mainly the developing world. Recently
harvesting aquatic plant biomass has been put forward as a
way to close the P cycle (Quilliam et al. 2015). Although
excessive growth of macrophytes indicates a local surplus
of nutrients, P is a scarce element in many places, leading to
phosphate starvation in crops, and global phosphate sources
are declining rapidly (Cordell et al. 2009; Childers et al.
2011). The recovery of valuable P thus has the potential to
increase the viability of harvesting as a management mea-
sure, which is otherwise a costly procedure (Hilt et al.
2006). Currently there is no agreement on how to maximize
P uptake and removal by macrophytes (Quilliam et al.
2015). Our model results suggest that it is beneficial for lake
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managers to reduce the external nutrient loading as much as
possible, as that will reduce the possibility of harvesting
triggering an unwanted regime shift to a state without
macrophytes, and increase the relative removal of P.

Prolonged Harvesting

Model analysis of the long-term effects of harvesting sug-
gests that harvesting can potentially be used to prevent
nutrient over-enrichment by increasing the resilience of the
system to external loading, that is, by increasing the CNL,,
(Fig. 7). It is important to note however that in this analysis
harvesting was executed every year, and that we started off
with a clear and oligotrophic lake—in the domain where no
alternative state is apparent. Because of the latter, almost all
macrophytes can be removed at the start of the analysis
without risking a shift to the alternative state, as there
simply is none. In turn, the removal of macrophytes pre-
vents the accumulation of nutrients in the system, post-
poning the formation of an alternative equilibrium and
hence increasing the CNL,,. This implies that the history of
the lake is an important factor to consider when designing a
mowing strategy. If nutrients have been able to accumulate
in the lake prior to the mowing activities, as in our first
analyses, the resilience of the lake to perturbations such as
mowing may have already decreased and fairly small frac-
tions of macrophyte removal may be enough to instigate a
regime shift (see Online Resource 4 for an illustrative
example). Thus, based on the long term mowing scenarios
we argue two points. The first is that phytoremediation can
be a worthwhile measure to prevent a lake from becoming
eutrophic when it is still oligotrophic and its capacity to
withstand perturbations is still high. The second is that it is
much more difficult to use phytoremediation to impoverish
a lake when it is already eutrophic, even though the absolute
removal of nutrients is high, because the capacity to with-
stand perturbation is much reduced. As many vegetated
lakes in NW Europe have only recently recovered from the
turbid state, and their sediments are likely to be saturated
with nutrients, mowing schemes should be designed with
great care.

From Model to Practice

An important question is how the results of this theoretical
exercise should be interpreted by managers and can be
useful in contemporary ecosystem management. Our point
of departure is that every water system is unique (n = 1), but
that there are general mechanisms that are key to the eco-
logical functioning of every lake. PCLake has been devel-
oped to include the most important biotic and abiotic
processes and lake characteristics (Janse et al. 2008).
Moreover, to strive for generality, the model has been
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calibrated with data from >40 lakes with the aim to get the
best overall fit (Janse et al. 2010). Hence, PCLake provides
a coherent framework to investigate the effect of mowing
within an ecosystem context with alternative stable states,
allowing us to focus on important aspects of mowing, such
as the intensity and timing, while keeping other factors
constant. An important purpose of such analysis is to pro-
vide scientists and managers with working hypothesis about
the way ecosystems function, and to contribute to the
development of theory. The insights that are obtained by
simulations cannot easily be derived from any other type of
study, as the analyses would be too costly or unethical to do
in natural systems. As such, these insights complement the
insights obtained by alternative approaches, such as lab
experiments and field observations (Peck 2004; Scheffer
2004, p. 313). PCLake is one of the very few integrated
ecosystem models available for this kind of simulations
(Janssen et al. 2015)

On one hand, we argue that the insights obtained by our
simulations are widely applicable, as the model is built up of
many general prevailing processes and principles. For
example, although Elodea is used as a model species, we
expect that, at least in qualitative terms, the response of other
yet similar submerged angiosperms, such as Lagarosiphon
major or Egeria densa, will be comparable. Moreover, lake
characteristics have been chosen such that the model
describes a hypothetical lake that is representative for many
small and shallow lakes in the temperate zone. Interestingly,
PCLake has even shown to be useful outside the temperate
zone (e.g. Mellios et al. 2015; Kong et al. 2016).

On the other hand we acknowledge that the results of
PCLake are highly dependent on the lake characteristics
modeled. For example, Janse et al. (2008) showed that the
resilience of shallow lakes decreases with increasing depth
and fetch, implying that in larger and deeper lakes mowing
can more readily result in a regime shift to the
phytoplankton-dominated turbid state. Also the choice for a
specific threshold level where lake users perceive plants as
nuisance has implications for our results. When for a given
case study, these controlling factors deviate too much from
the settings used in this study, the calculations presented
here should be redone for the new setting. Please note that
such limitations apply to any type of experiment focusing
on few independent variables.

Of course, it is conceivable that the ecology of certain
lakes may differ fundamentally from the system currently
portrayed by PCLake. For example, Blindow et al. (2014)
distinguish between a charophyte-dominated clear water
state and an angiosperm-dominated clear water state, and
report on notable differences in the strengths of the exerted
positive feedback loops with water clarity. Effects may be
even more profound when a certain process has a strong
effect on the functioning of a specific lake, but is not

covered by the model. For example, grass carp (Cteno-
pharyngodon idella) has a strong trophic interaction with
aquatic plants (Hussner et al. 2016), however this fish
species is currently not included in PCLake. In all cases, a
customized PCLake study, whereby the model is adapted,
calibrated and validated for a specific case, will provide the
most accurate predictions which can be readily employed in
ecosystem management (e.g. Witteveen+Bos 2010; Nielsen
et al. 2014; Trolle et al. 2014; Kong et al. 2016). The
present study provides a clear example of how to set up a
model analysis with PCLake to evaluate the effect of
mowing on shallow lake ecosystem functioning.

Conclusions

Our integrated modeling analysis of a typical shallow lake
in the temperate zone indicates that harvesting submerged
macrophytes can be effective in temporarily reducing nui-
sance in lakes which are oligo—or mesotrophic, particularly
when mowing is executed in mid-summer. Designing a
successful mowing strategy becomes less easy with
increasing nutrient loading. More eutrophic lakes are less
resilient to perturbations, and when the external nutrient
loading approaches the critical level, relatively small
reductions in plant cover are sufficient to trigger an
unwanted shift to the alternative phytoplankton dominated
state. By extracting nutrients from the lake, negative effects
of eutrophication may be partially remediated. Our model-
ing indicates that the largest amounts of P can be recovered
close to the tipping point, although the highest removal of P
relative to the input of P is realized when the external P
loading is low. Particularly when a lake is still oligotrophic,
phytoremediation can be an effective measure to counteract
slowly increasing nutrient inputs, while it appears more
difficult to use harvesting to impoverish a lake which is
already eutrophic, as more eutrophic lakes are also more
sensitive to perturbations. These insights provide a basis for
more tailored studies on the effects of harvesting in specific
lakes systems.
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