Skip to main content

Advertisement

Log in

Comparing the Antimicrobial Effect of Silver Ion-Coated Silicone and Gentamicin-Irrigated Silicone Sheets from Breast Implant Material

  • Original Article
  • Basic Science/Experimental
  • Published:
Aesthetic Plastic Surgery Aims and scope Submit manuscript

Abstract

Background

Post-operative infection is a significant complication of breast implant surgery that may require extensive use of antibiotics and surgical interventions. Here, we developed a biomaterial coating that is chemically bonded to silicone implants which delivers antimicrobial ions over time.

Methods

After coating the silicone implants with a “mediator” polymer (γ-PGA), the implants were impregnated with silver (Ag) ions. Antimicrobial effects of these implants were assayed with modified Kirby-Bauer disk diffusion method. The silicone disks were transferred to a plate with fresh bacteria. Control was intended to simulate an intra-operative wash.

Results

The Ag-γ-PGA coated silicone demonstrated antimicrobial effects against the most common etiological agents of breast implant infections, including Pseudomonas aeruginosa, Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli and Klebsiella pneumoniae. There was no effect of inhibition of bacterial growth around the control silicone or the silicone coated only with γ-PGA. The zone of inhibition was generally larger around the Ag-γ-PGA coated silicone as compared to the silicone irrigated with gentamicin, and continued antibacterial effect was also observed at 48 hours in the Ag-γ-PGA coated silicone for all bacteria groups with the exception of P. aeruginosa. Gentamicin-irrigated silicone did not inhibit bacterial growth at 48 hours.

Conclusion

The observed antibacterial performance of the Ag-γ-PGA coating as compared to simulated intra-operative antibiotic wash is promising and should be further evaluated to develop the next generation of implants with diminished risk for post-operative implant infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bray F, Ferlay J, Soerjomataram I et al (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68:394–424. https://doi.org/10.3322/caac.21492

    Article  PubMed  Google Scholar 

  2. DellaCroce FJ, Wolfe ET (2013) Breast reconstruction. Surg Clin North Am 93:445–454. https://doi.org/10.1016/j.suc.2012.12.004

    Article  PubMed  Google Scholar 

  3. Gardani M, Bertozzi N, Grieco MP et al (2017) Breast reconstruction with anatomical implants: a review of indications and techniques based on current literature. Ann Med Surg 21:96–104. https://doi.org/10.1016/j.amsu.2017.07.047

    Article  Google Scholar 

  4. Albornoz CR, Bach PB, Mehrara BJ et al (2013) A paradigm shift in U.S. breast reconstruction: increasing implant rates. Plast Reconstr Surg 131:15–23. https://doi.org/10.1097/PRS.0b013e3182729cde

    Article  CAS  PubMed  Google Scholar 

  5. American Society of Plastics Surgeons (2020) Plastic surgery statistics report. Am Soc Plast Surg 1–23

  6. Champaneria MC, Wong WW, Hill ME, Gupta SC (2012) The evolution of breast reconstruction: a historical perspective. World J Surg 36:730–742. https://doi.org/10.1007/s00268-012-1450-2

    Article  PubMed  Google Scholar 

  7. Seng P, Bayle S, Alliez A et al (2015) The microbial epidemiology of breast implant infections in a regional referral centre for plastic and reconstructive surgery in the south of France. Int J Infect Dis 35:e62–e66. https://doi.org/10.1016/j.ijid.2015.04.010

    Article  Google Scholar 

  8. Aladily TN, Nathwani BN, Miranda RN et al (2012) Extranodal NK/T-cell lymphoma, nasal type, arising in association with saline breast implant: expanding the spectrum of breast implant-associated lymphomas. Am J Surg Pathol 36:1729–1734. https://doi.org/10.1097/PAS.0b013e31826a006f

    Article  PubMed  Google Scholar 

  9. Clemens MW, Horwitz SM (2017) NCCN Consensus guidelines for the diagnosis and management of breast implant-associated anaplastic large cell lymphoma. Aesthetic Surg J 37:285–289. https://doi.org/10.1093/asj/sjw259

    Article  Google Scholar 

  10. Hall-Findlay EJ (2011) Breast implant complication review: double capsules and late seromas. Plast Reconstr Surg 127:56–66. https://doi.org/10.1097/PRS.0b013e3181fad34d

    Article  CAS  PubMed  Google Scholar 

  11. Collett DJ, Rakhorst H, Lennox P et al (2019) Current risk estimate of breast implant-associated anaplastic large cell lymphoma in textured breast implants. Plast Reconstr Surg 143:30S-40S. https://doi.org/10.1097/PRS.0000000000005567

    Article  CAS  PubMed  Google Scholar 

  12. Leberfinger AN, Behar BJ, Williams NC et al (2017) Breast implant-associated anaplastic large cell lymphoma: a systematic review. JAMA Surg 152:1161–1168. https://doi.org/10.1001/jamasurg.2017.4026

    Article  PubMed  Google Scholar 

  13. Bizjak M, Selmi C, Praprotnik S et al (2015) Silicone implants and lymphoma: the role of inflammation. J Autoimmun 65:64–73. https://doi.org/10.1016/j.jaut.2015.08.009

    Article  CAS  PubMed  Google Scholar 

  14. Samargandi OA, Joukhadar N, Al Youha S et al (2018) Antibiotic irrigation of pocket for implant-based breast augmentation to prevent capsular contracture: a systematic review. Plast Surg 26:110–119. https://doi.org/10.1177/2292550317747854

    Article  Google Scholar 

  15. Baghaki S, Soybir GR, Soran A (2014) Guideline for antimicrobial prophylaxis in breast surgery. J Breast Heal 10:79–82. https://doi.org/10.5152/tjbh.2014.1959

    Article  Google Scholar 

  16. Bachour Y, Verweij SP, Gibbs S et al (2018) The aetiopathogenesis of capsular contracture: a systematic review of the literature. J Plast Reconstr Aesthetic Surg 71:307–317. https://doi.org/10.1016/j.bjps.2017.12.002

    Article  Google Scholar 

  17. Cunningham B, McCue J (2009) Safety and effectiveness of Mentor’s MemoryGel implants at 6 years. Aesthetic Plast Surg 33:440–444. https://doi.org/10.1007/s00266-009-9364-6

    Article  PubMed  Google Scholar 

  18. O’Shaughnessy K (2015) Evolution and update on current devices for prosthetic breast reconstruction. Gland Surg 4:97–110. https://doi.org/10.3978/j.issn.2227-684X.2015.03.09

    Article  PubMed  PubMed Central  Google Scholar 

  19. DeFife KM, Shive MS, Hagen KM et al (1999) Effects of photochemically immobilized polymer coatings on protein adsorption, cell adhesion, and the foreign body reaction to silicone rubber. J Biomed Mater Res 44:298–307. https://doi.org/10.1002/(sici)1097-4636(19990305)44:3%3c298::aid-jbm8%3e3.0.co;2-n

    Article  CAS  PubMed  Google Scholar 

  20. Shin BH, Kim BH, Kim S et al (2018) Silicone breast implant modification review: overcoming capsular contracture. Biomater Res 22:37. https://doi.org/10.1186/s40824-018-0147-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Park JU, Ham J, Kim S et al (2014) Alleviation of capsular formations on silicone implants in rats using biomembrane-mimicking coatings. Acta Biomater 10:4217–4225. https://doi.org/10.1016/j.actbio.2014.07.007

    Article  CAS  PubMed  Google Scholar 

  22. Oliveira WF, Silva PMS, Silva RCS et al (2018) Staphylococcus aureus and Staphylococcus epidermidis infections on implants. J Hosp Infect 98:111–117. https://doi.org/10.1016/j.jhin.2017.11.008

    Article  CAS  PubMed  Google Scholar 

  23. Mandakhalikar KD, Wang R, Rahmat JN et al (2018) Restriction of in vivo infection by antifouling coating on urinary catheter with controllable and sustained silver release: a proof of concept study. BMC Infect Dis 18:370. https://doi.org/10.1186/s12879-018-3296-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ogunleye A, Bhat A, Irorere VU et al (2015) Poly-γ-glutamic acid: production, properties and applications. Microbiology 161:1–17. https://doi.org/10.1099/mic.0.081448-0

    Article  CAS  PubMed  Google Scholar 

  25. Bauer AW, Kirby WM, Sherris JC, Turck M (1966) Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 45:493–496

    Article  CAS  Google Scholar 

  26. Makamba H, Kim JH, Lim K et al (2003) Surface modification of poly(dimethylsiloxane) microchannels. Electrophoresis 24:3607–3619. https://doi.org/10.1002/elps.200305627

    Article  CAS  PubMed  Google Scholar 

  27. Gonzales D, Fan K, Sevoian M (1996) Synthesis and swelling characterizations of a poly gamma-glutamic acid hydrogel. J Polym Sci Part A Polym Chem 34(10):2019–2027. https://doi.org/10.1002/(SICI)1099-0518(19960730)34:10%3c2019::AID-POLA19%3e3.0.CO;2-K

    Article  CAS  Google Scholar 

  28. Saini H, Vadekeetil A, Chhibber S, Harjai K (2017) Azithromycin-ciprofloxacin-impregnated urinary catheters avert bacterial colonization, biofilm formation, and inflammation in a murine model of foreign-body-associated urinary tract infections caused by pseudomonas aeruginosa. Antimicrob Agents Chemother 61:e01906-e1916. https://doi.org/10.1128/AAC.01906-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hidalgo DA, Sinno S (2016) Current trends and controversies in breast augmentation. Plast Reconstr Surg 137:1142–1150. https://doi.org/10.1097/01.prs.0000481110.31939.e4

    Article  CAS  PubMed  Google Scholar 

  30. van Vugt TAG, Arts JJ, Geurts JAP (2019) Antibiotic-loaded polymethylmethacrylate beads and spacers in treatment of orthopedic infections and the role of biofilm formation. Front Microbiol 10:1626. https://doi.org/10.3389/fmicb.2019.01626

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kuehl R, Brunetto PS, Woischnig AK et al (2016) Preventing Implant-associated infections by silver coating. Antimicrob Agents Chemother 60:2467–2475. https://doi.org/10.1128/AAC.02934-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dhiman NK, Agnihotri S, Shukla R (2019) Silver-based polymeric nanocomposites as antimicrobial coatings for biomedical applications bt - nanotechnology in modern animal biotechnology: recent trends and future perspectives. In: Maurya PK (ed) Singh S. Springer Singapore, Singapore, pp 115–171

    Google Scholar 

  33. Ooi AS, Song DH (2016) Reducing infection risk in implant-based breast-reconstruction surgery: challenges and solutions. Breast cancer Dove Med Press 8:161–172. https://doi.org/10.2147/BCTT.S97764

    Article  PubMed  PubMed Central  Google Scholar 

  34. Donlan RM (2000) Role of biofilms in antimicrobial resistance. ASAIO J 46:S47-52. https://doi.org/10.1097/00002480-200011000-00037

    Article  CAS  PubMed  Google Scholar 

  35. Deva AK, Adams WPJ, Vickery K (2013) The role of bacterial biofilms in device-associated infection. Plast Reconstr Surg 132(5):1319–1328. https://doi.org/10.1097/PRS.0b013e3182a3c105

    Article  CAS  PubMed  Google Scholar 

  36. Ahn CY, Ko CY, Wagar EA et al (1996) Microbial evaluation: 139 implants removed from symptomatic patients. Plast Reconstr Surg 98:1225–1229. https://doi.org/10.1097/00006534-199612000-00016

    Article  CAS  PubMed  Google Scholar 

  37. Macadam SA, Mehling BM, Fanning A et al (2007) Nontuberculous mycobacterial breast implant infections. Plast Reconstr Surg 119:337–344. https://doi.org/10.1097/01.prs.0000244924.61968.d2

    Article  CAS  PubMed  Google Scholar 

  38. Cain DW, Cidlowski JA (2017) Immune regulation by glucocorticoids. Nat Rev Immunol 17:233–247. https://doi.org/10.1038/nri.2017.1

    Article  CAS  PubMed  Google Scholar 

  39. Peters-Golden M, Henderson WRJ (2007) Leukotrienes. N Engl J Med 357:1841–1854. https://doi.org/10.1056/NEJMra071371

    Article  CAS  PubMed  Google Scholar 

  40. Zeplin PH, Larena-Avellaneda A, Schmidt K (2010) Surface modification of silicone breast implants by binding the antifibrotic drug halofuginone reduces capsular fibrosis. Plast Reconstr Surg 126:266–274. https://doi.org/10.1097/PRS.0b013e3181dbc313

    Article  CAS  PubMed  Google Scholar 

  41. Walker JN, Hanson BM, Pinkner CL et al (2019) Insights into the microbiome of breast implants and periprosthetic tissue in breast implant-associated anaplastic large cell lymphoma. Sci Rep 9:10393. https://doi.org/10.1038/s41598-019-46535-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Risks E (2020) Preliminary opinion on the safety of breast implants in relation to anaplastic large cell lymphoma. 1–43

  43. Clemens MW (2021) Breast Implant-Associated Anaplastic Large Cell Lymphoma: Origin and Outcome. 77–87. https://doi.org/10.1007/978-3-030-57121-4

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacob Moran-Gilad.

Ethics declarations

Conflict of Interest statement

The authors declare that they have no conflicts of interest to disclose.

Statement of Human and Animal Rights, or Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

For this type of study, informed consent is not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heno, F., Azoulay, Z., Khalfin, B. et al. Comparing the Antimicrobial Effect of Silver Ion-Coated Silicone and Gentamicin-Irrigated Silicone Sheets from Breast Implant Material. Aesth Plast Surg 45, 2980–2989 (2021). https://doi.org/10.1007/s00266-021-02348-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00266-021-02348-7

Keywords

Navigation