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Abstract 
The estimation of heritability is a common practice in the field of ecology and evolution. Heritability of the traits is often 
estimated using one single measurement per individual, although many traits (especially behavioural and physiological traits) 
are characterized by large within-individual variance, and ideally a large number of within individual measurements can 
be obtained. Importantly, the effect of the within-individual variance and the rate at which this variance is sampled on the 
estimation of heritability has not been thoroughly tested. We fill this gap of knowledge with a simulation study, and assess 
the effect of within- and between-individual sample size, and the true value of the variance components on the estimation of 
heritability. In line with previous studies we found that the accuracy and precision of heritability estimation increased with 
sample size and accuracy with higher values of additive genetic variance. When the sample size was above 500 accuracy and 
power of heritability estimates increased in the models including repeated measurements, especially when within-individual 
variance was high. We thus suggest to use a sample of more than 100 individuals and to include more than two repeated 
measurements per individual in the models to improve estimation when investigating heritability of labile traits.

Significance statement
Heritability reflects the part of the trait’s phenotypic variation underlined by genetic variation. Despite the difficulties of 
heritability calculation (high number of individuals is needed with known relatedness), it is a widely used measure in evo-
lutionary studies. However, not every factor potentially affecting the quality of heritability estimation is well understood. 
We thus investigated with a comprehensive simulation study how the number of repeated measurements per individuals 
and the amount of within-individual variation influence the goodness of heritability estimation. We found that although the 
previously described effect of the number of studied individuals was the most important, including repeated measurements 
also improved the reliability of the heritability estimates, especially when within-individual variation was high. Our results 
thus highlight the importance of including repeated measurements when investigating the heritability of highly plastic traits, 
such as behavioural or physiological traits.

Keywords Animal model · Narrow-sense heritability · Quantitative genetics · Simulation · Variance components

Introduction

Determining how much genetic variance is present in pheno-
typic traits is a crucial step in understanding their adaptive 
evolution (Fisher 1930; Mousseau and Roff 1987). There 
are multiple estimates used to assess the evolutionary poten-
tial of traits in a population. The most frequently calculated 
measure is heritability (Mousseau and Roff 1987; Postma 
2014), although evolvability may be more adequately meas-
ured with the mean-standardized additive genetic coefficient 
of variation (Houle 1992). There are many difficulties in 
estimating heritability correctly and precisely. This process 
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requires large sample size and reliable data on the relation-
ships between the individuals (Quinn et al. 2006; Morrissey 
et al. 2007; de Villemereuil et al. 2013). These requirements 
are especially difficult to be fulfilled in natural populations, 
in spite of that results from the wild are essential when stud-
ying evolution (Kruuk and Hadfield 2007; Postma 2014).

Animal models are widely used for estimating heritability 
of different traits, including labile traits, such as behaviour 
(Stirling et al. 2002; Kruuk 2004; Postma 2014). These mod-
els decompose additive genetic variances and environmental 
variances based on pedigree or other relatedness data (e.g. 
genetic similarity), and they are very flexible in controlling 
for confounding effects (e.g. dominance, common environ-
ment, maternal effects) (Wilson et al. 2010). Furthermore, 
if repeated measurements from the same individuals are 
included in the animal model, it can also discern permanent 
environmental variance (fixed differences between the indi-
viduals due to environmental and/or non-additive genetic 
effects) apart from additive genetic and residual variance 
(Kruuk 2004; Wilson et al. 2010). In addition to the additive 
genetic and residual variance, determining the amount of 
permanent environmental variance is also essential in pre-
dicting the evolutionary response of a trait.

Simulations are very important source of information 
for planning studies and assessing the reliability of stud-
ies investigating heritability. Simulations revealed that the 
sample size (de Villemereuil et al. 2013; Krag et al. 2013), 
the amount of the true heritability (Charmantier and Réale 
2005; de Villemereuil et al. 2013; Krag et al. 2013), the type 
(genetic or social) (Bourret and Garant 2017) and the quality 
of the relatedness data (Israel and Weller 2000; Charmantier 
and Réale 2005; Kruuk and Hadfield 2007; Morrissey et al. 
2007; de Villemereuil et al. 2013; Bourret and Garant 2017), 
structure of the simulated population (Clément et al. 2001; 
Kominakis 2008), data missing non at random (Steinsland 
et al. 2014) and also the analytical method (Kruuk and Had-
field 2007; de Villemereuil et al. 2013) can influence herit-
ability estimates.

However, in spite of the huge amount of simulation 
research on the estimation of heritability (Clément et al. 
2001; Morrissey et al. 2007; Bourret and Garant 2017), 
some aspects of this issue remained less explored. The cal-
culation of heritability may be complicated by the remark-
able within-individual variance that is characteristic of many 
behavioural, physiological and life history traits (Bell et al. 
2009; Schoenemann and Bonier 2018; Taff et al. 2018). 
Within-individual variance has important biological signifi-
cance, as it determines how well the individual can adapt to 
the changing environmental conditions, which is especially 
important during the recent climate change (Charmantier 
and Gienapp 2014). Moreover, within-individual variance 
has essential influence on the evolution of the traits, as it 
can promote or hinder adaptation (Piersma and Drent 2003; 

Snell-Rood 2013). However, there are simulation studies, 
showing how low repeatability (large within individual vari-
ance) influences the estimation of statistical parameters with 
evolutionary relevance, as it can induce bias in e.g. among-
individual and residual variance (Schielzeth et al. 2020). 
Importantly, the large within-individual variance of labile 
traits relative to among-individual variance leads to small 
repeatability, which can be the upper limit of heritability 
(but see: Dohm 2002); thus, heritability is also expected to 
be small (see also: Mousseau and Roff 1987; Weigensberg 
and Roff 1996; Stirling et al. 2002). It was found repeatedly 
that it is more difficult to precisely and accurately estimate 
lower heritability (Klein 1974; Krag et al. 2013). However, 
it is crucial to estimate these small heritabilities precisely, as 
for example, in the song of the collared flycatcher (Ficedula 
albicollis) we have seen that revealing small but non-zero 
heritability can have strong theoretical implications, as it still 
can be the base of evolution (Jablonszky et al. 2022). Impor-
tantly, in spite of the well-known effect of the amount of 
heritability (Klein 1974; Charmantier and Réale 2005; Raffa 
and Thompson 2016), the effect of the amount of within-
individual variance on the heritability estimates has not been 
thoroughly tested. Because heritability is estimated based on 
variance components, we can assume similar responses as 
the above mentioned effects during the estimation of among- 
and within-individual variances (Schielzeth et al. 2020). In 
previous studies, the among-individual variance was biased 
upwards and residual variance was usually biased down-
wards with low repeatability (Schielzeth et al. 2020). Thus, 
we predict less accurate (specifically upwardly biased) and 
less precise heritability estimates when the within-individual 
variance is large, especially at low sample sizes.

Another factor potentially influencing heritability estima-
tion that received less attention is the number of repeated 
measurements included in the models. Collecting repeated 
measurements is common practice during the investiga-
tion of labile traits. Including the mean of these repeated 
measurements into animal models is not appropriate (Wil-
son et al. 2010; Ge et al. 2017; Risk and Zhu 2018; see 
also Garamszegi 2016 for other types of models) as the 
within-individual variance is removed from the variance 
components (i.e. the uncertainty around the mean estimate 
is not accounted for) resulting in upwardly biased estimates 
(Åkesson et al. 2008; Hadfield et al. 2010; Silva et al. 2017). 
Thus, all repeated measurements should be included in the 
models (Wilson et al. 2010). Although information on addi-
tive genetic variance comes from the data on the relatedness 
among the individuals (thus, the reliability of the estimation 
depends primarily on the number of individuals), the estima-
tion of other variance components taking part in heritability 
calculation, such as within-individual variance, are sensitive 
to the number of repeats used (Royauté and Dochtermann 
2021). Thus, it would be worthwhile to investigate whether 
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collecting more measurements from the individuals improve 
heritability estimation. More repeats mean higher overall 
sample size, but also cover a wider range of possible trait 
values (until a certain level of sampling), resulting in bet-
ter estimation of all variance components (Westneat et al. 
2020), so we can expect more precise and accurate herit-
ability estimates with higher number of repeated measure-
ments. Although, if the number of repeated measurements 
is too low, additive genetic and permanent environmental 
effects cannot be separated reliably (Bourret and Garant 
2017). However, the effect of the number of repeated meas-
urements, especially in the case of labile traits, has received 
less attention in simulation studies, although we know that 
repeated measurements can increase power in linkage anal-
yses (Zhang and Zhong 2006; Liang et al. 2009). We are 
aware of only one study, that showed reduced uncertainty 
around the estimates with increasing number of repeated 
measurements (Adams 2014). Additionally, the effect of 
within-individual variance and the number of repeated 
measurements could interact. Previously, it was shown that 
estimation problems arising from low repeatability can be 
eliminated if appropriate number of repeated measurements 
of the same individuals is included in the models (Martin 
et al. 2011; Dingemanse and Dochtermann 2013; Westneat 
et al. 2020). Similarly, probably more repeated measure-
ments are necessary for the correct separation of permanent 
environmental and residual effects when within-individual 
variance is large (Martin et al. 2011).

In this simulation study, to fill the abovementioned gaps 
in our knowledge, our aim was to investigate the effect of 
increasing within-individual variance at different combina-
tions of within- and between-individual sample sizes in the 
animal models. Specifically, we simulated datasets to inves-
tigate the effect of different amount of variances (we varied 
the value of additive genetic variance, permanent environ-
mental and within-individual variance from small to large, 
between 0.1–0.5, 0–0.8 and 0.1–0.8, respectively), as well as 
within- and between-individual sample sizes (1–10 repeats 
from 100 to 1000 individuals) on the estimation of heritabil-
ity. We compared the error, accuracy, precision and power 
of these scenarios (see details in the “Methods” section).

Methods

Data simulation

We simulated datasets with all combinations of number of 
individuals (Ni = 100, 500, 1000) and number of measure-
ments (Nr = 1, 2, 5, 10). The simulated value for the additive 
genetic variance (Va) and the residual variance (Ve) were 0.1, 
0.3 or 0.5, and we also simulated a scenario, when Va was 
0.1 and Ve was 0.8 to cover the feasible range of the values 

(resulting in 10 different scenarios). Thus, we had 120 different 
scenarios based on the combination of different parameter set-
tings. Residual variance usually represents the combined effect 
of within-individual variance, measurement error, and unac-
counted environmental variance, but as we included no meas-
urement error and environmental variance into our simulated 
data, we will regard this component (Ve) as within-individual 
variation in the followings. Permanent environmental effect 
(Vpe) was simulated in a way that the sum of variance com-
ponents became 1 and thus its value was between 0 and 0.8. 
In the models with only one measurement per individual Vpe 
and Ve is summed and represent the residual variance together 
(later we refer to this term as Vr).

We simulated 100 datasets for each scenario. Running more 
rounds was not feasible because of the large number of sce-
narios and the high computational demands of the Bayesian 
models. As a first step, we built a pedigree in each simulation 
with the ‘generatePedigree’ function from the ‘geneticsPed 
1.56’ package (Gorjanc et al. 2021). For all scenarios, the 
pedigree was simulated for the appropriate number of indi-
viduals with 5 generations (thus the number of individuals 
per generations were Ni/5), and with Ni/25 dams and sires 
per generation. For simplicity the simulated population was 
assumed to be closed, with complete random mating and non-
overlapping generations. To check the effect of pedigree struc-
ture on our results, we run additionally some scenarios with 
different parameters for pedigree construction (5 generations, 
but Ni/2 dams and sires, 3 generations, lower number of sires 
than dams), but these settings did not influenced our results 
qualitatively (see Tables S2–S4). Additive genetic component 
was simulated with the ‘rbv’ function from the ‘MCMCglmm 
2.32’ package (Hadfield 2010), using the appropriate value of 
additive genetic variance for the scenario. Permanent environ-
mental effect was simulated for all individuals and the within-
individual term was calculated for all measurements with the 
corresponding consideration for these variance components. 
All of these effects were assumed to be normally distributed. 
The phenotypic value for each individual was the sum of the 
population mean (which was arbitrarily assigned to the value 
of 1), additive genetic, permanent environmental and within-
individual components:

where yij is the phenotype of the ith individual at the jth 
repeat, μ is the population mean, ai is the additive genetic 

(1)yij = � + ai + pi + eij

a
i
∼ N(0,Va)

pi ∼ N(0,Vpe)

eij ∼ N(0,Ve)
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effect, pi is the permanent environmental effect and eij is the 
within-individual effect of the ith individual at the jth repeat.

Analysis of the simulated datasets

On the generated data we run animal models with the 
‘MCMCglmm’ function from the ‘MCMCglmm 2.32’ pack-
age (Hadfield 2010). The models for the scenarios with only 
one measurement per individual contained only one random 
factor of individual identity connected to the pedigree:

where yij is the estimate for the phenotype of the ith individ-
ual, mu is the estimate for the population mean, ai is the esti-
mate of the additive genetic effect and ri is the residual effect 
of the ith individual. We use here ri as this term include both 
permanent environmental and within-individual effects.

For the datasets with repeated measurements, we built 
models with two random factors for individual identity to 
separate additive genetic and permanent environmental 
effects:

where yij is the estimate for the phenotype of the ith indi-
vidual at the jth repeat, mu is the estimate for the population 
mean, ai is the estimate of the additive genetic effect, pi is 
estimate of the permanent environmental effect and eij is the 
estimate for the within-individual effect.

Priors with inverse-Gamma distribution were used for all 
models. However, we checked the effect of other priors (e.g. 
parameter expanded prior) for some scenarios and results 
remained qualitatively unchanged. The models were run 
for 110,000 iterations with 10,000 sample discarded at the 
beginning and a thinning intervals of 100. Before running 
all simulation, the trace and distribution of all variables and 
the autocorrelation between iterations were checked visually 
for some selected scenarios.

From all models, the median of the estimate of herit-
ability (the median of additive genetic variance divided by 
the sum of all variance components, hereafter h2) and the 
variance components with their 95% credible intervals (CI) 

(2)yi = mu + ai + ri

ai ∼ N(0,Var(a))

ri ∼ N(0,Var(r))

(3)yij = mu + ai + pi + eij

ai ∼ N(0,Var(a))

pi ∼ N(0,Var(p))

eij ∼ N(0,Var(e))

based on the whole posterior distributions were extracted 
with ‘HPDinterval()’. We did not use posterior mode as it 
was proved to be prone to bias (Pick et al. 2022). To assess 
whether our heritability estimates can be differentiated from 
that of a scenario with zero heritability, we also calculated 
for the h2 estimates the percentage of the values of a pos-
terior distribution from a null model (run on a null dataset 
with Va = 0) that were greater than the actual estimates (Pick 
et al. 2022). We simulated one null dataset for all scenarios 
in a similar way as described above but with Va = 0 and 
Ve =  Vaactual + Ve  (Vaactual is the Va of the focal scenario) to 
ensure the same overall variance (Pick et al. 2022). The null 
model was built for this null dataset in the same way as for 
the original dataset.

Performance metrics

Measures of estimation error, accuracy, precision and sta-
tistical power were calculated for all scenarios for the herit-
ability estimates and the first three measures also for the 
variance components (these latter results can be seen in 
the Supplementary material Figs. S1–S3). Specifically, we 
measured measurement error as the root mean square error 
(RMSE), and accuracy as absolute relative bias (we used the 
specific terms hereafter). RMSE (a measure of estimation 
error, often termed as accuracy, but reflecting also preci-
sion) is the square root of the average squared difference 
of the generating value of the actual parameter (p) and the 
estimated parameter ( ̂p and n is the number of simulated 
datasets) (as used in de Villemereuil et al. 2013; Schielzeth 
et al. 2020):

Thus, we obtained one value for each scenario reflect-
ing the average difference of the estimates from the original 
simulated values. High values indicate high estimation error, 
and values close to zero indicate good estimation.

Accuracy was assessed as the absolute relative bias (Pick 
et al. 2022):

Thus, accuracy also resulted in one averaged value per 
scenario.

Precision was calculated as the inverse of the standard 
deviation of the heritability estimates of each run of the 
scenario (as used in Pick et al. 2022). The distribution of 
the point estimates reflects the expected distribution of the 
heritability estimates of 100 replicated studies.

(4)RMSE =

�
∑n

i=1
(p̂i − p)

2

n

(5)relative bias =
1

n

∑n

i=1

|||
(p̂i − p)

2|||
p
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Statistical power was assessed by comparing our esti-
mates to the estimates of a null model, see above. Specifi-
cally, we calculated the ratio of the h2 values of a posterior 
distribution from a null model that were greater than the 
original estimates. Then, statistically power was equal to 
the ratio of the simulations when the above mentioned ratio 
was lower than 0.05 (these estimates will be referred as sig-
nificant). Note that all performance estimates resulted in one 
value per each scenario.

All statistical analyses were performed in the R 3.6.1 sta-
tistical environment (R Core Team 2019).

Results

The RMSE values for the h2 estimates were the highest 
(indicating bad performance) when the number of individu-
als was 100 (Fig. 1, first row). The RMSE values became 
much smaller on average by 25% when 10 measurements 
were included instead of one, but at  Ni = 100 only when 
Va = 0.5, Vpe was 0.2 or 0 and Ve was 0.3 or 0.5 (30 and 
80% decrease, respectively, Fig. 1a). Even in these cases, 
using 10 measurements did not have an advantage over using 
5 measurements. Apart from these scenarios RMSE was 
influenced by the magnitude of Va: scenarios with higher 
true value of Va had higher RMSE. There was even a 2.65-
fold increase in RMSE between Va = 0.1 and Va = 0.5 sce-
narios when  Ni = 100 (Fig. 1a).

Precision was also low at  Ni = 100 but showed differ-
ent patterns when the between-individual sample size was 
higher (Fig. 1, second row). At  Ni = 500, precision was the 
highest when Va = 0.1 and precision dropped sharply by 
70 and 80% respectively for the scenarios where Ve was 
0.3 or 0.8 if even one repeated measurement were included 
(Fig. 1e). However, in the scenario of  Ni = 500, Va = Ve = 0.5 
and Vpe = 0 precision of  h2 estimates increased 4.59-fold 
when 10 measurements was included instead of one. This 
scenario displayed the same behaviour also when  Ni was 
1000, along with the scenario of Va = 0.1 and Ve = 0.8 
(Fig. 1f). In these cases 10 measurements resulted in better 
precision than 5.

Regarding relative bias, using at least 2 measurements 
caused significant improvement at  Ni = 100, Va = 0.5, 
Vpe = 0.2 or 0 and Ve = 0.3 or 0.5 relative to the models with 
only one measurement (40 and 75% decrease in relative bias, 
respectively, Fig. 1g). At  Ni = 500, relative bias decreased 
when 10 measurements was included instead of one on aver-
age by 25% and showed a marked decrease of 60% in the 
scenario where Va = 0.1 and Ve = 0.8 (Fig. 1h). At  Ni = 1000, 
more scenarios with Va = 0.1 showed decreasing tendency 
of relative bias with the number of measurements (Fig. 1i). 
Some scenarios among all sample sizes showed very slightly 

increased bias when only two measurements were included 
in the models compared to the one measurement model.

The statistical power to detect significant h2 estimates 
increased on average by 40% when 10 measurements was 
included instead of one (Fig. 1, fourth row). This increase 
depended also on the magnitude of the Ve component: it was 
higher when Ve increased (5% increase when Ve = 0.1 and 
800% increase when Ve = 0.8 across all sample sizes and 
scenarios for the other variance components). The improve-
ment of power relative to models with one measurement was 
as high as 161% for models with 2 measurements at  Ni = 100 
(Fig. 1j), but 5 measurements provided additional advantage 
when  Ni was higher (but only when Va = 0.1 (an increase 
of 47%), because the other scenarios have very high power 
(80–100%) with these higher sample sizes, Fig. 1k, l).

Additionally, the exact value for all performance esti-
mates for all scenarios (Table S1) and the mean, the stand-
ard deviation and the average 95% CI width of the estimates 
for h2 and the variance components (Table S5) can be seen 
in the Supplementary material. In Table S5, we can see 
that heritability is usually underestimated. However, it is 
overestimated in most of the Va = 0.5, Vpe = 0.2, Ve = 0.3 
scenarios with repeated measurements (with the excep-
tion of the Ni = 1000 and Nr = 10 scenario), and half of the 
Va = 0.3, Vpe = 0.2 and Ve = 0.5 scenarios with repeated 
measurements. In the one measurement models, if biased, 
Va was under- and Vr was overestimated. In the models with 
repeated measurements the bias came from the bad sepa-
ration of Va and Vpe (usually underestimation of Va and 
overestimation of Vpe, except the above-mentioned excep-
tion where the pattern was reversed) as Ve was estimated 
relatively well in these models.

Overall, the scenario of Va = Ve = 0.5 and Vpe = 0 has 
the less bias under all sample size scenarios and the highest 
precision (if number of measurements was at least five). The 
other scenarios with Va = 0.5 and scenarios with Va = 0.3 
at Ni = 500 or 1000 have also low relative bias, but did not 
show higher precision than the rest of the scenarios.

Discussion

Our simulation results highlight the need for considering 
the collection of repeated measurements when investigat-
ing heritability. In most of the scenarios using at least two 
measurements offered some advantage over using only one 
measurement in terms of accuracy and/or precision. For 
instance, in the scenario of Ni = 100, Va = Ve = 0.5, relative 
bias decreased by 75% and precision showed a 2.43-fold 
increase when having at least two measurements. Within-
individual variance also should be taken into account when 
planning studies on heritability, as the magnitude of this 
variance component influenced the effect of the repeated 
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Fig. 1  Root mean square error (RMSE), relative bias, precision and 
power for the heritability (h2) estimates are displayed for all sce-
narios, separately for the models with 100, 500 and 1000 between-
individual sample size. The corresponding additive genetic variance 

(Va) values used in the simulations are depicted by colours and point 
types and within-individual variance (Ve) by shades of the respective 
Va value as can be seen in the legend. Vpe values were simulated in a 
way that the sum of all variance components became one
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measurements on RMSE, relative bias, precision and statisti-
cal power of the heritability estimates. Models with 500 or 
1000 individuals usually yielded estimate with low RMSE 
and relative bias and high precision, apart from scenarios 
with low heritability (h2 = 0.1), where bias was significantly 
higher and power was lower. Biased estimates were usually 
underestimated. Although using 100 individuals seems to be 
insufficient to estimate heritability reliably, taking repeated 
measurements when the between-individual sample size is 
higher can increase accuracy and power (and sometimes also 
precision), especially in highly labile traits (i.e. high Ve).

The heritability estimates of the models including only 
one measurement per individual were influenced by the 
between-individual sample size and the magnitude of the 
true heritability. Generally, the models with one measure-
ment yielded precise heritability estimates with low RMSE 
and relative bias at a sample size of 500 or 1000 individu-
als (aside from high relative bias for some scenarios with 
Va = 0.1, see below). These results were expected based 
on the sample size recommendations of at least 200, but 
possibly 300–1000 individuals of previous studies (Quinn 
et al. 2006; de Villemereuil et al. 2013; Krag et al. 2013). 
The accuracy and precision of heritability estimation also 
depended on the true heritability value, in a similar way 
as was found previously. In a comprehensive simulation 
study using 200 or 1000 individuals, the true value of her-
itability (0.1, 0.3, 0.5) also influenced the RMSE of the 
heritability estimates as estimates had less estimation error 
(i.e. lower RMSE) at 0.1 heritability (de Villemereuil et al. 
2013). Another simulation study found higher bias for 0.1 
than for 0.4 true heritability values when relying on 20–100 
broods as sample size (Charmantier and Réale 2005), and 
these results also generally agree with our findings related to 
relative bias. Note that the trend in RMSE and relative bias 
according to the true heritability value was opposite both in 
previous papers and in our study. This emphasizes the need 
to investigate multiple performance metrics in simulation 
studies. We also investigated precision, and we found that 
heritability estimates were generally more precise when their 
generating value was low (thus, the previously mentioned 
RMSE values may reflect the higher precision of the esti-
mates). However, higher precision for lower heritability may 
be only the consequence of that variance components are 
bound to be positive (de Villemereuil et al. 2013; Krag et al. 
2013). Nevertheless, Krag et al. (2013) demonstrated based 
on simulations that for reliable estimates of heritability over 
0.15 sample sizes larger than 400 individuals are needed. 
However, in our study, we found that the estimation of herit-
ability of 0.1 can have still high (usually downward) relative 
bias and low statistical power with 500 or 1000 between-
individual sample sizes. This fact is important to consider, 
as for example regarding behavioural traits, heritability esti-
mates are often low, but sample size is usually below 1000 

(heritability estimates were between 0.05 ± standard error: 
0.02 and 0.21 ± 0.07, and number of individuals between 
81 and 455 in the following papers: Blumstein et al. 2010; 
Santostefano et al. 2017; Jablonszky et al. 2022). Regarding 
life history traits, also low heritability estimates (0 ± 0.01 or 
0.11 ± 0.003) were reported when investigating more than 
1000 individuals (Brommer et al. 2008; Santostefano et al. 
2021).

Fortunately, the estimation can be improved by collecting 
multiple repeated measurements. If we want to accurately 
separate the additive genetic, permanent and within-individ-
ual variances that could be of interest especially for labile 
traits, we had to include repeated measurements in the models 
(Kruuk 2004; Wilson et al. 2010). Furthermore, a previous 
study found that when the between-individual sample size is 
large, repeated measurements can lead to more precise herit-
ability estimates (Adams 2014). Although, in our simulation 
precision increased with the number of measurements in only 
some specific scenarios (usually when Ve was high and Vpe 
was low), according to our results, repeated measurements may 
have other advantages. The quality of heritability estimation of 
the models containing also repeated measurements depended 
on the between-individual sample size and on the magnitude 
of the true heritability as described previously, but collect-
ing 2–5 repeated measurements usually led to 9 and 16% less 
biased (and in some scenarios more precise, as was mentioned 
previously) estimation of heritability. Using 10 measurements 
only offered advantage in some cases (mostly in two scenarios: 
when Va = Ve = 0.5, Vpe = 0 and when Va = 0.1, Vpe = 0.1 
and Ve = 0.8). Overall, the effect of the number of repeated 
measurements was substantial when Vpe was very low and 
Ve was high. The effect of repeated measurements in animal 
models has received little attention, but we can suppose some 
explanations. If we sample only one measurement from labile 
traits with high within-individual variability we may obtain 
biased results (Boake 1989; Dingemanse and Dochtermann 
2013; Niemelä and Dingemanse 2018). If the sampled phe-
notypic values did not reflect well the phenotypic variability 
of the population, then genetic effects also became difficult 
to estimate. Thus, more repeated measurements facilitate the 
less biased and more precise estimation of the residual com-
ponent reflecting partly the within-individual variance and 
presumably enables also the reliable separation of additive 
genetic, permanent environmental and residual effects result-
ing in good estimation of heritability. The first part of this 
explanation is corroborated by our results, as we found that the 
underestimation (or overestimation in some specific cases, see 
Results and Supplementary Table S5) of heritability was due 
to the poor partition of Va and Vpe, while Ve was generally 
reliably estimated with repeated measurements (see Fig. S2). 
The better separation of the variance components is also prob-
able based on the generally negative trend between number of 
measurements and relative bias in our results (see Fig. 1h, i). 
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Nevertheless, our results highlight that the estimation of herit-
ability including repeated measurements in labile traits (when 
its expected value is low) is not necessarily biased or impre-
cise, as the relative bias and precision of heritability estimates 
in the scenarios of Ve = 0.5 or Ve = 0.8 were comparable to the 
other scenarios in many cases. Additionally, simulation studies 
for repeatability (which is also a ratio of variance components 
similarly to heritability) recommend 4 repeated measurements 
with 100 or 200 individuals that should result in accurate and 
precise estimates regardless of the value of generating param-
eter and the complexity of relationships between the variance 
components (Dingemanse and Dochtermann 2013; Royauté 
and Dochtermann 2021). Our results generally echo this sug-
gestion, but suggest that in the case of the estimation of her-
itability sampling 100 individuals may be insufficient even 
if repeated measurements are taken. However, if the within-
individual variance is high and the expected heritability is low, 
it can be advantageous to collect 2 measurements from 500 
individuals than only one measurement from 1000 individuals.

Our results are of special interest for researchers investi-
gating labile traits, such as behaviour, life history or physi-
ological traits. Heritability of behaviour (usually character-
ized by high within-individual variation) was repeatedly 
found to be lower (on average 0.30) than that of morphologi-
cal traits (0.46), while the heritability of life history (0.26) 
and physiological traits (0.33) was similar (Mousseau and 
Roff 1987; Stirling et al. 2002). Another review with data 
from wild populations found on average 0.5 heritability 
for behavioural traits (Postma 2014). The amount of herit-
able variation may also depend on whether the behaviour is 
learnt or not, as for example characteristics of innate calls 
(0.07 ± 0.05–0.38 ± 0.11, on average 0.21 ± 0.08) had higher 
heritability than learned song traits (0.03 ± 0.05–0.28 ± 0.09, 
on average 0.12 ± 0.07) in zebra finches (Taeniopygia gut-
tata) (Forstmeier et al. 2009). Furthermore, specific studies 
on the heritability of behaviour that used multiple measure-
ments from individuals found usually very low values e.g. 
0.26 (95% confidence interval (CI): 0.01–0.55) for aggres-
siveness (2854 test/679 individuals) in great tits (Parus 
major) (Araya-Ajoy and Dingemanse 2017), 0.06 (95% 
CI: < 0.01–0.17), − 0.10 (95% CI: < 0.01–0.31) for song traits 
(3582 songs from 81 individuals) in the collared flycatcher 
(Jablonszky et al. 2022), 0.21 ± 0.07 for locomotor perfor-
mance (341 tests from 187 individuals) and 0.08 ± 0.04 for 
vigilance (1237 tests from 315 individuals) in yellow-bellied 
marmots (Marmota flaviventris) (Blumstein et al. 2010) and 
0.05 ± 0.02 for aggressiveness (1195 tests from 455 indi-
viduals) in Mediterranean field crickets (Gryllus bimacu-
latus) (Santostefano et al. 2017). Regarding life history 
traits heritability estimates close to 0 ± 0.01 were found in 
Eastern chipmunks (Tamias striatus, 1540 individuals) for 
fecundity (Santostefano et al. 2021), for clutch size values 
between 0.15–0.45 were reported for great tits (657–6156 

records from 493 to 4077 individuals) and between 0.10 and 
0.25 (430–2161 records from 208 to 509 individuals) mute 
swans (Cygnus olor) (Quinn et al. 2006) and 0.11 ± 0.003 
for laying date (11,624 observations from 2262 individu-
als) in common gulls (Larus canus) (Brommer et al. 2008). 
Heritability of various morphological traits (characterized 
by low within-individual variability) was found between 
0.14 ± 0.04—0.42 ± 0.04 (1620–3335 measurements from 
720 to 1448 individuals) in house sparrows (Passer domes-
ticus), 0.15 ± 0.05–0.29 ± 0.07 (1923–1981 measurements 
from 790 to 800 individuals) in collared flycatchers (Silva 
et al. 2017), 0.05 ± 0.10–0.72 ± 0.03 (302–456 individuals) 
in great reed warblers (Acrocephalus arundinaceus) (Åkes-
son et al. 2008) and 0.26 ± 0.04–0.47 ± 0.07 (2247–2564 
measurements from 803 to 891 individuals) in traits of adult 
sheep (Bérénos et al. 2014) if repeated measurements were 
included. Thus, many low and non-significant heritability 
estimates are reported for behavioural and life history traits 
that underline the importance of our present findings on 
high relative bias in low heritability estimates even when 
including 500 or more individuals. Although many of these 
studies yielded unprecise and non-significant results even 
with high sample sizes and with multiple measurements, it is 
still recommended to measure more individuals and collect 
more repeated measurement as, according to our simulation, 
these can improve precision and statistical power in some 
scenarios when within-individual variance is high.

However, it should be noted that repeated measure-
ments did not always improve the goodness of the estima-
tion and in a few cases even decreased precision when the 
precision of the one measurement models was extremely 
high (see Fig. 1e, deep blue triangles, but in these cases, 
precision remained still relatively high with repeated 
measurements and high precision maybe caused by the 
Va estimates of the models stuck at zero as Va was 0.1 
in these models). In many scenarios, repeated measure-
ments did not have either positive or negative effect on 
the performance metrics. This may have multiple potential 
explanations. Despite the large overall sample size, using 
100 individuals leads to biased and unprecise heritability 
estimates; thus, it seems that the repeated measurements 
could not compensate for the low number of individuals. 
Bias decreased and power increased with the number of 
repeated measurements at this small sample size only 
when the true heritability was high (thus relatively eas-
ily estimated; Klein 1974; Charmantier and Réale 2005; 
Krag et al. 2013)) and the within-individual variance was 
also high (and permanent environmental effects was low). 
On the other hand, when using large between-individual 
sample sizes and the true heritability was high then the 
estimates were unbiased, so repeated measurements could 
not offer further improvement at least in terms of bias and 
power. However, repeated measurement can still improve 
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the estimation even at these large sample sizes when herit-
ability is low and consequently the accuracy and power of 
estimation is low.

We note that, although we considered 120 scenarios in 
our study, we could not investigate all potential factors that 
may influence the accuracy of heritability estimation. Fur-
ther studies may explore the effect of the relatedness and 
mistakes in the pedigree (Charmantier and Réale 2005; de 
Villemereuil et al. 2013; Krag et al. 2013), unequal sampling 
and various distributions of the response variable on the 
estimation of heritability (Schielzeth et al. 2020).

In sum, heritability estimates were influenced by the 
interaction of several factors: the between-individual and 
within-individual sample sizes, the true value of the additive 
genetic and within-individual variance. Specifically, herit-
ability can be estimated more precisely and with less bias 
if 2–10 repeated measurements are taken of the focal trait 
and this effect can still be significant for higher sample sizes 
(more than 500 individuals) if the true heritability is low. 
This advantage is particularly important if the within-indi-
vidual variance is high, such as in behavioural traits. Thus, 
we recommend (i) collecting data from more than 100 indi-
viduals, (ii) collecting 2–5 repeated measurements and even 
10 measurements if within-individual variance is expected to 
be extremely high when the number of sampled individuals 
is around 500, and (iii) collecting repeated measurements 
when the number of individuals is around 1000 only when 
heritability is expected to be low and within-individual vari-
ation is expected to be high).
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