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Abstract

An ant colony is the epitome of social organization where up to millions of individuals cooperate to survive, compete, and
reproduce as a single superorganism, Female members of ant colonies typically are categorized into a reproductive queen
caste and a non-reproductive worker caste. The queen(s) conveys her fertility condition and in cases, genotype status, via a
suite of queen pheromones whose various functions are crucial to the superorganismal nature of ant colonies. Knowledge of
these functional properties is fundamental for identifying constituent chemicals and understanding corresponding modes of
actions. In this review, I summarize functional properties of ant queen pheromones learned from seven decades of behavioral
experiments, and contextualize this knowledge within the broader understanding of queen pheromones in other major groups
of social insects. The effects include promotion of colony integrity and coherence, maintenance of reproductive dominance of
the queen, and regulation of colony social structure. Additionally, general characteristics of queen pheromones are discussed

and potential avenues for future research are highlighted.

Keywords Chemical communication - Queen pheromones - Eusociality - Behavioral assays

Introduction

The evolutionary success of social insects is attributable
to their highly integrated colonial lifestyles, where numer-
ous individual insects cooperate to survive, compete with
conspecifics, and produce sexual forms (reproductive
individuals) (Wilson 1971; Lin and Michener 1972). Ants
(Hymenoptera: Formicidae), in particular, manifest immense
diversity, abundance, and ecological impact (Wheeler 1910;
Schultheiss et al. 2022). Studies of ants have illuminated the
inner workings of insect societies despite the independent
emergence of sociality in multiple diverse lineages and the
consequent uniqueness of each major eusocial taxon (Wilson
1971).

Male ants contribute little or nothing to the mainte-
nance and growth of the colony, confining their activities
to competing for matings during their reproductive seasons.

Communicated by J. Heinze

< Haolin Zeng
haolinzeng @uga.edu

Department of Entomology University of Georgia, Athens,
GA, USA

Females are generally divided into two interdependent castes
that showcase a reproductive division of labor. Members of
the queen caste can mate and usually monopolize egg-laying
in the colony. Meanwhile the workers, normally daughters
of the queen and mostly sterile, perform routine yet essential
tasks such as foraging, nest building, and brood care, act-
ing as the extended phenotype of the queen (Wheeler 1910;
Holldobler and Wilson 1990; Smith et al. 2008b; Beekman
and Oldroyd 2019).

Despite a clear functional separation, the extent of mor-
phological differentiation between the two castes nonethe-
less varies widely. The queen caste in many ant species
is morphologically and physiologically distinct from the
worker caste. Such workers are not only smaller in size,
but they also lack sperm storage organs (spermathecae) and
often functional ovaries, rendering them completely sterile
and incapable of laying eggs (Keller et al. 2014; Trible and
Kronauer 2017). In some species, workers retain reproduc-
tive potential but exhibit subtle and consistent differences
from the queen caste. If the queen is missing, such workers
may ascend to be the dominant reproductive females (Powell
and Tschinkel 1999; Penick et al. 2021). In a minority of ant
species, the two castes are not morphologically or physi-
ologically well differentiated (Peeters 1991). Rarely, species
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have secondarily lost one of these castes (Peeters and Ito
2001; Monnin and Peeters 2008; Goudie and Oldroyd 2018).

Regardless of the degree of caste dimorphism, the colony
must be informed of the presence of the queen or the domi-
nant reproductive female to function optimally (Keller and
Nonacs 1993). Communication in ant colonies is primarily
chemical in nature, which is related to their ancestral sub-
terranean habits (Tschinkel 2015, 2021), although visual,
vibrational, and tactile signals or cues are also deployed in
some instances (Holldobler and Wilson 1990; Holldobler
1995; Barbero et al. 2009; Golden and Hill 2016; Knaden
2019; Yilmaz and Spaethe 2022).

Chemical compounds used for intraspecific communica-
tion are termed pheromones (Karlson and Liischer 1959).
The potential durability and transmissibility of pheromones
may have helped ants to evolve massive colony sizes and
become the dominant invertebrates in most terrestrial eco-
systems (Schultheiss et al. 2022). A variety of pheromones
are deployed by ants, exemplified by alarm pheromones for
threat alerts and trail pheromones for navigational guid-
ance between various locations (Jackson and Ratnieks
2006; Griiter and Keller 2016; Vargo 2019). The studies of
ant pheromones have not only deepened our knowledge of
their social biology but also inspired such seemingly dis-
tinct efforts as designing network computation algorithms
(Bonabeau et al. 2000).

Fig.1 Summary of generalized
functional properties of queen
pheromones in ants, as exempli-
fied in a polygyne Solenopsis
invicta colony. These functions
include: 1) Attracting work-

ers to the queen; 2) Promoting
colony maintenance tasks, such
as brood care; 3) Inducing nest-
mate discrimination; 4) Inhibit-
ing larval sexual development,
through worker behaviors; 5)
Inhibiting adult reproductive
physiology, thereby preventing
dealation, ovarian develop-
ment, and egg laying in other
queens, gynes, and workers;

6) Inducing worker policing

(in many cases, eggs serve as
agents for the dissemination of
queen pheromones); 7) Inducing
the execution of supernumerary
queens in monogyne colonies;
8) Mediating the regulation of
queen acceptance in polygyne
colonies. Gray numbers indicate
functional categories where a
chemical basis has not yet been
demonstrated
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In many eusocial insects, although the queen(s) does not
actively participate in the colony maintenance and brood-
rearing tasks, her presence has dramatic effects on worker
brood care activities, nestmate discrimination, developmen-
tal trajectories of larvae, and colony coherence, reproductive
output, and social structure (Wilson 1971; Holldobler and
Wilson 1990; Kocher and Grozinger 2011; Matsuura 2012;
Ayasse and Jarau 2014; Vollet-Neto et al. 2018).

Most, if not all, of these effects are mediated through
queen pheromones, a set of pheromones either exclusively
produced by the queen or produced in higher quantities com-
pared to workers (Sramkova et al. 2008; Smith et al. 2012b;
Traynor et al. 2014). Thus, much like invisible wires that
connect the queen to the rest of her colony and extend her
influence, queen pheromones are key regulators of colony
ontogeny and the emergent superorganismal features of
insect societies (Wheeler 1910) (Fig. 1).

Debates remain regarding the function and mode of
action of queen pheromones, which were at times consid-
ered to comprise means of queen control over reproductive
activities of nestmates (Fletcher and Ross 1985) but are
now widely acknowledged to be honest signals of identity
and quality of the queen (Keller and Nonacs 1993; Villalta
et al. 2018). Queen pheromone-induced behavioral shifts in
workers thus may be explained ultimately by the alignment
of their evolutionary interests with the queen’s from a kin
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selection perspective (Hamilton 1964; Foster et al. 2006).
Workers are expected to achieve a higher inclusive fitness
return associated with the ecological benefits of colony life
if they help rear sisters rather than produce their own off-
spring in social hymenopterans, especially when the colony
is headed by a single monogamous queen, the presumed
ancestral condition for most eusocial insect lineages (Hughes
et al. 2008; Boomsma and Gawne 2018; Kay et al. 2019).
Thus, when the kinship structure changes following loss of
the queen, workers prioritize their direct fitness and compete
for reproduction pending establishment of a new reproduc-
tive hierarchy, rather than performing colony maintenance or
other duties (Bourke 1988; Wenseleers et al. 2020b). Excep-
tions occur in species with obligately sterile workers, where
workers are selected to maximize the rate of sexualization
of the remaining brood because, by definition, they lack any
route for direct fitness returns.

Pheromones can be categorized generally as having either
releaser or primer effects. Releaser effects include imme-
diate, typically behavioral responses, while primer effects
are slower and progressive, often physiological responses
(Conte and Hefetz 2008; Vargo 2019). A difficulty in deci-
phering queen pheromones stems from their multifunctional
and multicomponent characteristics: at times, multiple
molecules synergistically trigger a response, while in other
instances, a single compound can elicit both releaser and
primer effects (Grozinger et al. 2007).

Thus far, only the queen pheromones in honey bees are
sufficiently well studied that a systematic understanding
linking the identities of constituent chemicals, modes of
action, and known functions has emerged (Keeling et al.
2003; Bortolotti and Costa 2014; Princen et al. 2019).
Despite over seven decades of effort, we have only identi-
fied pheromonal compounds in a few ant species that were
associated with some, but not all, known and expected func-
tions of queen pheromones. Meanwhile, the past decade has
seen considerable progress of queen pheromone identifica-
tion in otherwise understudied groups of social insects such
as sweat bees, wasps and termites.

This review provides a comprehensive discussion of func-
tional properties of queen pheromones in ants, structured
with a strong focus on bioassay results and the underlying
natural history and sociobiology of ant colonies, which is
lacking in recent reviews of similar topics (Table 1). Despite
the evident limited focus on ants, the pheromonal effects
discussed are largely congruent with other social insects
(Table 2). I first cover the effects of queen pheromones on
colony integrity and coherence. I then discuss how queen
pheromones help to maintain the reproductive dominance
of the queens as well as the overall reproductive division
of labor in a colony. Next, I review recent studies on how
queen pheromones mediate the regulation of colony social
structures, specifically regarding the number of queens in

the colony. Lastly, I discuss general characteristics of queen
pheromones and highlight unanswered questions as a guide
to future research regarding eusocial insect queen phero-
mones (Box 1).

Effects on colony integrity and coherence
Induction of retinue and rescue behavior

Upon examining the queen in an ant colony, one notices
that she is surrounded by “retinue” workers that often
lick her cuticle or otherwise groom her, a scenario com-
monly observed in other social insects such as honeybees
and termites (Wilson 1971; Bortolotti and Costa 2014).
A prominent releaser effect of the queen pheromone is
attraction, enabling workers to locate the queen, so as
to care for or rescue her. In a way, the queen acts as
the “gravity center” that holds the colony together. This
notion is evident in the rock ant Temnothorax rugatu-
lus, a frequently emigrating species; when a colony was
experimentally split into two nests under equal condi-
tions, all members almost always reunited with the queen
in one of the nests (Doering and Pratt 2016).

Early investigations pointed to the existence of chemi-
cal pheromones by showing that queens were attractive
to their workers, and that this attraction capacity could be
transferred in chemical extracts. Pheidole workers would
adopt corpses of Lasius queens treated with Pheidole queen
extracts (Stumper 1956). Queenless workers of Myrmica
will generally accept queens of a closely related species
(Brian 1986a, 1988a, b), which is likely due to the simi-
larity of the chemical makeup of queen recognition signals
among recently diverged taxa, a feature that ultimately may
pave the way for the rise of social parasites (Lenoir et al.
2001). The chemical basis of retinue behavior pheromones
was verified from experiments showing the same effect by
queen corpses or queen cuticular extracts in a wide range of
taxa (Watkins and Cole 1966; Jouvenaz et al. 1974; Fowler
and Roberts 1982; Holldobler and Wilson 1983; Wilson and
Holldobler 1985).

Fire ant workers (Solenopsis invicta) exhibit emphatic
and swift responses to a queen exposed outside of the col-
ony: workers will (1) quickly be attracted to her, (2) cluster
around her, (3) move brood items to or around her, (4) form
a pheromonal trail that the queen can follow back to the nest,
and/or (5) pull the queen towards the nest, should she not
move voluntarily (Glancey et al. 1983). Workers exhibit the
same series of stereotyped behaviors toward a paper dummy
dosed with reproductive queen hexane extract as they do
toward live queens or fresh queen corpses, i.e., collectively
retrieving the treated dummy into the nest and keeping it
there for hours (Trible and Ross 2016; Zeng et al. 2022).
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Table 1 (continued)

Queen Pheromone Effect Catergory

Mediat-

Inducing

Inducing

Inhibiting Inhibiting

Inducing

colony main- nestmate dis-

Promoting
tenance and
coherence

Attracting
workers

Workers

Retain

Caste Dimor-

phism

Common
Names

Genus

Subfamily

ing queen
accept-

execution of
superfluous

worker polic-

reproductive
ing

larval sexual
development

physiology of
adult females

crimination

Functional
Ovaries

reproductive ance in

adults

polygyne
colonies

Smith et al.

Smith et al.

Odontoma-  Trap jaw Pronounced  Yes

Ponerinae

2012b, 2013

2012b

[(2)-

ants

chus

[(Z) -9-non-
acosene]

9- nona-
cosene]

D’Ettorre

Yes

Modest

Pachycon-

Ponerinae

et al. 2004a

dyla

Additionally, queenless workers infrequently exhibit vibrant
body shaking upon retrieving a queen (Zeng, personal obser-
vation), which resembles the jerking response to a queen or
king in termites (Funaro et al. 2018, 2019).

A general correlation between the intensity of attraction
and the fecundity or weight of a queen was noted by many
studies (Sommer and Holldobler 1995; Hannonen et al.
2002). Such a trend is pertinent to other queen pheromone
effects in the discussion that follows, and is most parsimoni-
ously explained by a higher level of pheromone production
occurring in more fertile queens (Fletcher and Blum 1983a).
This collective, accurate assessment of the fertility condition
of an individual is fundamental to the signaling function of
queen pheromones (Keller and Nonacs 1993).

Promotion of colony maintenance

In many ant species, a newly mated queen performs all nec-
essary tasks to initiate the growth of the colony by herself.
She prepares a nest site (e.g., digs a burrow in the soil) and
raises the first cohort of workers from the eggs she then lays.
But when worker adults emerge, the queen stops engaging in
colony maintenance tasks and transitions to acting strictly as
an egg layer (Cassill et al. 2002; Majidifar et al. 2022). The
continued presence of the queen not only ensures the steady
production of fertilized eggs and, subsequently, additional
brood and adults, but a few studies suggest that the queen
also boosts the level of worker activity in brood care and acts
to maintain the cohesion of the colony. In other words, the
queen (or queen pheromones) may function as a “catalyst”
to promote colonial development and maintenance, on top
of being a “gravity center” to maintain colony cohesion, as
shown in the studies below.

In broodless colonies of Cataglyphis cursor, overall
worker activities were reduced after queen removal (Berton
et al. 1992). Queenright workers of Myrmica sp. and Manica
sp. antennated the brood more often and stayed longer with
the brood than queenless workers (Vienne et al. 1998). In
contrast, queenless workers tend to leave the nest, interacting
more often with adult workers instead of the brood. Simi-
larly, in Atta sexdens, workers departed more frequently
from the nest, exhibited higher mortality and lowered refuse
accumulation, but showed no change in foraging efficiency,
when the queen was removed (Della Lucia et al. 2003;
Sousa-Souto and Souza 2006). In Temnothorax curvispino-
sus, queenright sub-colonies outperformed queenless coun-
terparts in various task efficiencies and were more resistant
to fungal pathogens (Keiser et al. 2018). In Temnothorax
crassispinus, queen presence promoted defecation within the
nest which may help to suppress mold (Giehr et al. 2019).

These studies showed that the presence of the queen
induced a higher level of brood care, stronger cohesion, and
better overall performance of the colony. At the proximate

@ Springer
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Table 2 Current knowledge of queen pheromones research in major
groups of social insects. Among the color-filled cells, darker green
indicates that identified compounds or groups of compounds convey
the corresponding pheromonal effect in a social insect group. Lighter
green signifies a pheromonal basis demonstrated through the effect of

Maintaining Colony Cohesion

Promoting colony
maintenance and

Inducing

Attracting workers and eliciting nestmate

Regulating larval sexual

contact or bodily or tissue extract of the queen. Yellow represents the
effect shown through queen removal or isolation experiments. Gray
indicates the effect observed when the queen is present, with a specu-
lated pheromonal basis. White denotes that the effect was either not
shown or not expected

P . . Mediating Colony
Maintaining Reproductive Dominance Social Structure
Mediating queen

Inhibiting reproductive !
acceptance in

Inducing worker  Inducing execution of superfluous

unique response o horanan e ation I of adult females policing reproductive adults polyeyne colonies
) ) Gilley 2001; Tarpy and Fletcher
Honey Bees (family Kaminski et al. 1990; Keeling et Yg‘;lls‘(nr: eitnz:;nli:”, Breed et al. Pettis et al. 1995; Hoover et al. 2003; Katzav-Gozansky (Rsn}ld;? 1919‘5‘ d 2003 (honeybee workers typically
Apidae, Apis spp.) al. 2003 ) a % 1992 Melathopolous et al. 1996 |et al. 2006 “ ‘:.“ s gla don't kill queens but will help in
swarm) secretion) queen duels)
. . ‘Van Oystaeyen et al. 2014; Amsalem
Bumble Becs (family | ) 5o and Chrambach 1989 Alaux et al. 2004 Lopez- o) 5015, Holman etal. 2017; | Zanette etal. 2012 [Van Doom 1986
Apidae, Bumbus sp ‘Vaamonde et al. 2007
Orlova and Amsalem 2012

Stingless Bees (family |Imperatriz-Fonseca and Zucchi
Apidae, Friesella sp.) [1995; Jarau et al. 2010 i Gl 20
Sweat Bees (family Steitz and Ayasse 2020 Steitz et al. 2019; Steitz and Ayasse
Halictidac) (inducing workers to quickly 2020

back away)
Ants (family See Table 1 See Table 1 SeeTable 1 |See Table 1 See Table 1 See Table 1 See Table 1 See Table 1
Formicidae)

e (farmi Tkan 1969 (initiate queen
Wasps (family Ishay et al. 1965 Ishay ctal. 1965 |02mboaetal | i onstruction); Mori and |Of etal. 2015, 2016 Oi etal. 2015
Vespidac) 1986 .
Otsuka 1985
i e Matsuura et al. 2010 Matsuura et al. 2010
Termites e L e | cniand (I VTN S| e, 2001
L antennation and shaking of the : e n T (suppression of egg laying in Sun et al. 2020

(Reticulitermes spp.) . carrying and piling  [Matsuura 2021 |differentiation of workers

body by workers and soldiers) 5 5 secondary queens)

behavior) into supplementary queens)

level, these shifts in worker behavior might be manifested
as secondary effects of the attractiveness of the queen caus-
ing, for instance, a more structured spatial distribution of
the brood and, as a result, more efficient brood care. These
results are consistent with findings in honeybees where queen

mandibular pheromones are shown to stimulate a wide range
of worker task performance, including foraging, defense, nest
building, and brood rearing (Bortolotti and Costa 2014). How-
ever, unlike honey bees, these effects in ants remained to be
associated with a chemical basis (Box 1, Q1).

Box 1 Questions and prospective avenues for further study of ant queen pheromones

Q1:

The presence of the queen has been shown to increase task performance efficiency, the health condition, and the cohesion of workers. How-
ever, the pheromonal basis of these effects remains to be confirmed through experiments using queen corpses or chemical extracts.

Q2:

Does the effect on nestmate discrimination have a pheromonal basis? If so, what specific mechanisms are involved in how queen pheromones
affect worker nestmate discrimination?

Q3:

Experiments have demonstrated that workers respond to queen pheromones by actively suppressing larval sexual development. However, do
larvae also sense queen pheromones? And do queen pheromones directly affect larval physiology?

Q4:

Under the influence of the queen, ant workers exhibit targeted destruction of broods based on specific sex, caste, and life-stage. How does a
queen pheromone function to trigger only a narrowed subset of the discriminatory behavioral repertoire of nurse workers?

Qs:

There is a strong but variable connection between the queen pheromones responsible for nestmate recognition, fertility signaling, and regula-
tion of reproduction. A major task is to determine whether, in specific cases, these comprise one or more unique semiochemical systems and
modes of action. Furthermore, it is important to investigate if the mode of action (physiology) of certain effects is consistent across different
ant lineages.

Qeé:

As more genetic components have been identified that underlie social polymorphism in ants, What are the roles of queen pheromones in regu-
lating colony social structure (polygyny) in species other than S. invicta?

Q7:

Unsaturated CHCs (cuticular hydrocarbons) serve as signals for queen supergene status in S. invicta. The identification of the complete blend
will reveal the first set of pheromones involved in the regulation of colony social structure in a highly eusocial insect.

Q8:

CHCs have been identified as fertility signals in numerous, but not all, species. How do these fertility signals change across different ant line-
ages? Is there a relationship between phylogenetic distance and the similarity of fertility signal compounds?

Q9:

In the evolution of ant sociality, at what point did queen pheromones become essential? Is there a relationship between the degree of queen-
worker dimorphism and the strength of the effect of queen pheromones (Smith and Liebig, 2017)?
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Induction of nestmate discrimination

Similar to other eusocial insects, the nest of an ant colony
comprises the physical structure, food storage, and brood
items. It requires substantial investment to build and is
valuable to looting and raiding, often from sympatric con-
specific colonies (Holldobler and Michener 1980; Tschin-
kel 1992; Sturgis and Gordon 2012). To safeguard the nest
from intruders and ensure sustainable growth, a colony must
deploy effective nestmate discrimination. Each ant colony
carries a set of cuticular chemical odor labels, which workers
use to distinguish nestmate from non-nestmate conspecifics
(Ozaki et al. 2005; Sturgis and Gordon 2012).

The presence of the queen has a significant impact on the
odor label of a colony, such that queenless colonies exhibit
reduced territoriality, acting as if they have lost some com-
ponent of their distinct colony identity. Compared to queen-
less workers, workers from queenright colonies are more
subject to aggression by non-nestmate conspecific workers,
as well as being more aggressive themselves towards such
workers.

Queenless S. invicta workers of the monogyne social
form (single queen per colony) received little aggression
from their original nestmates when returned to the natal
queenright colony. However, if they tended a foreign queen
for only 15 minutes, they were attacked by their original
nestmates (Obin and Vander Meer 1989). Queenless workers
also became less aggressive themselves after queen removal,
becoming completely docile after about two weeks (Van-
der Meer and Alonso 2002). Thus, in monogyne fire ants, a
colony’s unique chemical identity is attributable, at least in
part, to its sole reproductive queen.

Similar phenomena were demonstrated in other spe-
cies. Queenless workers of Cataglyphis niger did not show
aggression towards and did not receive aggression from
original nestmate workers from the queenright parent colony
(Lahav et al. 1998). In Camponotus species, worker aggres-
sion towards non-nestmates largely disappeared in queen-
less colonies and reappeared after an unrelated queen was
adopted into the colony (Carlin and Holldobler 1983, 1986,
1987). Additionally, queens with less developed ovaries or
that were incompletely inseminated had a weaker such effect
than normal queens (Carlin and Holldobler 1987).

However, as a counterexample, queen presence had little
impact on nestmate discrimination in Camponotus aethiops,
a discrepancy that was attributed to the presence of heritable
chemical cues on workers (van Zweden et al. 2009). Another
example came from Rhytidoponera confusa, where nestmate
discrimination also was not affected by the presence of the
queen (Crosland 1990). Queen-worker dimorphism in R.
confusa is not pronounced and the colonies can reproduce
without the queen (Ward 1981, 1983). Because the queen is
not an indispensable component of the colony identity, it is

plausible that her absence does not impact worker nestmate
recognition abilities (Carlin and Holldobler 1991).

These results point to the intricate nature of nestmate
discrimination in ant colonies, which is governed by both
environmentally derived cues and genetic factors (Carlin and
Holldobler 1983; Helanterd et al. 2011; Sturgis and Gordon
2012; Caliari Oliveira et al. 2022). Unraveling the specific
mechanisms by which queen pheromones affect nestmate
discrimination remains a challenge (Box 1, Q2). One pos-
sibility is that workers obtain queen cuticular odor cues in
small colonies through common contact with the queen
(Lahav et al. 1998). Another possibility is that queenless
workers retain the ability to detect non-nestmates but lack
the incentives to act aggressively toward them.

Maintenance of reproductive dominance
Inhibition of larval sexual development

As the hallmark of eusociality, reproductive division of labor
necessitates that members of the queen caste maintain their
reproductive dominance. In small colonies, the queen may
manipulate larval caste fate and suppress adult reproduction
through physical actions (Heinze and Smith 1990), which is
frequently observed in wasp societies where caste dimor-
phisms are not distinct (Ross and Matthews 1991). How-
ever, in populous colonies, the effect is often achieved via an
essential and well-studied class of queen primer pheromones
that exert their effects onto almost all life stages of female
colony members (Smith and Liebig 2017; Holman 2018).

To begin with, queen pheromones have been shown to
inhibit sexualization (development as queens) of female lar-
vae, thus biasing female development toward worker produc-
tion over gyne (virgin winged queen) production.

Early studies on the subject came from Myrmica species,
where the queen induces improved larval survival, earlier
pupation, and lower larval and pupal weights, in apparent
accord with the notion of the queen stimulating general
colony function and cohesion (Brian 1957, 1986b; Brian
and Carr 1960). When the queen was present, large gyne-
destined larvae received less care from workers than small
worker-destined larvae (Brian and Hibble 1963); moreover,
the workers lethally bite gyne-destined larvae (Brian and
Carr 1960; Brian 1973). The presumed pheromone was not
volatile while, notably, structural and topological features
of the queen played a role in the pheromonal effect (Brian
1970, 1973).

In the Pharaoh’s ant, Monomorium pharaonis, the pres-
ence of a fertile queen inhibited development of sexual brood
(Petersen-Braun 1975, 1977). Unlike the case in Myrmica,
this effect was disseminated specifically by the queen-laid
eggs, but not queen corpses or solvent extracts (Berndt and
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Nitschmann 1979; Edwards 1987; Boonen and Billen 2017).
Queenright workers always accept worker broods from a
foreign colony but would cannibalize any introduced sexual
broods (Edwards 1991). Monocyclic diterpene neocem-
brene, a compound produced only by egg-laying queens,
was found to be a pheromonal component in M. pharaonis as
it elicited weak “queen retinue” attraction as well as inhib-
ited production of sexuals (Edwards and Chambers 1984;
Oliveira et al. 2020).

Evidence from the two above examples and many
other species strongly suggested that queen pheromones
affect caste development through the behavior of workers,
including biting the larvae to suppress growth evident by
bite marks on larvae, or simply killing sexualized larvae
(see Supplementary Information for more details; Table 1;
Box 1, Q3). This is also the case in honey bees and stingless
bees where workers control the caste fate of larvae, besides
genetic and maternal factors (Bueno et al. 2023).

Adult workers probably sense queen pheromones mainly
through antennal chemoreceptors, which was supported by
strong electrophysiological responses of worker antennae
towards queen extracts and candidate queen pheromones
(D’Ettorre et al. 2004b; Holman et al. 2010; de Narbonne
et al. 2016). Following perception, workers respond to queen
pheromones by actively suppressing the sexual development
of some larvae via the behaviors above (Box 1, Q4).

Inhibition of reproductive physiology of adult
females

As the best studied effect in many groups of social insects,
queen pheromones suppress physiological changes tied to
the onset of reproduction in adult females in the colony,
which can be measured in diverse behavioral and physiologi-
cal changes in the trajectory of reproductive development,
including dealation, ovarian activation, weight gain, and
finally egg laying.

Dealation, or wing shedding, is the first observable indi-
cation of the onset of reproduction development in adult

gynes in many ants. Take the example of S. invicta, virgin
gynes in queenright colonies typically remain winged until
a mating flight event, after which the newly mated gynes
kick off their wings to initiate colony funding underground
(Tschinkel 2013). However, these gynes can dealate as soon
as 12 h after separation from fertile queens, with their alary
muscles beginning to histolyze simultaneously followed by
ovarian development, and oviposition starts in another 2 to
3 days (Fletcher and Blum 1981, 1983b; Vargo and Laurel
1994). By this time, the gyne begins to exhibit attractive-
ness in the formation of a queen retinue and to produce the
inhibitory pheromones (Vargo 1999).

The fecundity of a queen is correlated to her weight and
the ability to suppress reproductive development in nest-
mate queens. The correlation is likely due to a link between
weight and the level of pheromone production (Fig. 2). Evi-
dence comes from the fact that queenless monogyne work-
ers consistently recognized and adopted the heavier queen
of two presented as their new queen (Fletcher and Blum
1983a). Corpses of heavier queens suppressed dealation for
longer than light-weight queen corpses (Fletcher and Blum
1983b; Willer and Fletcher 1986). Such an inhibitory effect
acts on other egg-laying reproductive queens as well: the
addition of live queens or queen corpses reduced fecundity
of all nestmate queens in polygyne colonies (Vargo and
Laurel 1994).

Perception of queen pheromones via the antennal sensilla
leads to a downregulation of dopamine production, which
in turn suppresses the production of juvenile hormones
(JH) and inhibits reproductive development (Robinson and
Vargo 1997; Boulay et al. 2001). JHs are critical regulators
not only of reproduction, but of development and behav-
ior, throughout the lifecycle of insects (Jindra et al. 2013).
Topical treatment of alate gynes with JH or JH analogue
induced dealation in S. invicta even in the presence of the
queen, overriding the inhibitory effect of the queen phero-
mone (Vargo and Laurel 1994). Notably, JH treatment can
yield opposing effects on reproductive development depend-
ing on the species and the size of the treatment doses used,

Fig.2 Characteristics of ant
queen pheromones exemplified
by Solenopsis invicta !
y P Types of Female ¢
Polygyne
Reproductive Queen Monogyne
Worker Alate Gyne (or Virgin Dealate) Reproductive Queen
Mating Status Unmated Unmated Unmated or mated Mated
Fertility Condition | Sterile (unable to None Low High
lay eggs) (not laying eggs)
Pheromone Quantity None Negligible Low High
Effect Strength of ..
Queen Pheromone None Negligible Moderate Strong
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suggesting a condition-dependent cost of JH and calling for
more studies on the endocrinological regulation of reproduc-
tion (Robinson and Vargo 1997; Cuvillier-Hot et al. 2004,
Penick et al. 2011; Holman 2012).

The inhibitory effects on worker reproduction received
detailed studies in Camponotus, where eggs are again the
dissemination agents of the pheromones. The addition of
queen-laid eggs prohibited workers from laying eggs in
queenless colonies; in addition, worker-laid eggs were less
prone to destruction when applied with queen cuticular
hydrocarbons (CHCs) (Endler et al. 2004). As a further
support, surface chemical profiles of eggs corresponded to
the cuticular chemical profiles of the respective egg-laying
queen or worker (Endler et al. 2006).

In Lasius species, the compound 3-methylhentriacontane
(3-MeC31) suppressed egg-laying of workers, making it the
first identified queen pheromone with inhibitory effects on
worker reproduction (Holman et al. 2010, 2013; Holman
2012). Further analysis indicated a slower evolution of this
compound compared to other CHCs in Lasius, hinting at
potential evolutionary constraints on queen signals, but did
not agree with the findings in Temnothorax species (Brunner
et al. 2011; Holman et al. 2013). Other studies have shown
inhibitory effects on worker reproductive physiology by live
queens, queen corpses, queen-laid eggs, or queen CHCs
across various ant taxa (Table 1; Supplementary Informa-
tion; Box 1, Q5).

Another general effect of such inhibitory pheromones is
a shortening of longevity. Reproduction and longevity are
typically a trade-off in animals (De Loof 2011; Blacher et al.
2017). However, in social insects, reproduction and longev-
ity are instead positively linked (Blacher et al. 2017), per-
haps due to a reproductive division of labor where queens
are liberated from costly daily tasks. When worker ants
become reproductively active after queen removal, they
also showed extended lifespans, as documented in some ant
species as well as in other social insects (Tsuji et al. 1996;
Kohlmeier et al. 2017; Vollet-Neto et al. 2018; Majoe et al.
2021; Negroni et al. 2021).

Harpegnathos saltator workers are fully capable of repro-
duction (Peeters et al. 2000). Removal of the queen (and her
pheromones) prompted workers to engage in antennal duels,
a ritualistic competition to re-establish hierarchy that occurs
in many ponerine species (Powell and Tschinkel 1999;
Peeters et al. 2000; Penick et al. 2014). Winners of these
duels transition into gamergates (Sasaki et al. 2016), which
had about five times the lifespan of normal workers (Yan
et al. 2022). These gamergates displayed queen-like physi-
ology, with decreased brain and optic lobe volumes, and
decreased venom production. They also behaved more like
queens, remaining inside the nest and hiding from intruders
(Penick et al. 2021). Nevertheless, these queen-like traits can

revert back to a worker-like state if a gamergate is exposed
to a strong source of queen pheromones (Penick et al. 2021),
such is the case in other social insects (Van Oystaeyen et al.
2014).

Induction of worker policing

Although the queen is the dominant reproductive member,
workers in many ant species can potentially produce males
by laying unfertilized eggs. These egg-laying workers pose
a source of conflict over male parentage within the colony,
as well as a cost to the colony productivity (Helanterd and
Sundstrom 2007; Bourke and Franks 2019). The queen(s)
represses reproduction of workers through pheromonal
inhibition as discussed above, or through behaviors such
as destruction of worker-laid eggs (Bourke 1991). Workers
themselves also police reproduction of nestmate workers,
a behavior documented in many social hymenopterans that
might have evolved concurrently with eusociality (Ratnieks
1988; Frank 1995, 2003; Wenseleers et al. 2020a).

Typical acts of policing in social insect colonies include
direct aggression toward adults or destruction of their eggs
(Ratnieks and Visscher 1989; Beekman and Oldroyd 2005).
Mechanistically, workers must (i) recognize queen presence
through queen pheromones and (ii) correctly assess the fer-
tility status of colony members, as well as recognize the
origin of offspring through pheromones present on the egg
surface or post-embryonic cuticle (Ratnieks 1995; Oi et al.
2015b). In some species, queens actively mark suspect indi-
viduals with pheromones to “command” worker policing.

Pachycondyla workers would lay viable embryonated
eggs when the workers were physically separated from the
queen (Dietemann and Peeters 2000). Worker-laid eggs were
eaten more frequently by nestmate workers than queen-laid
eggs, and such policing was more prominent when the queen
was present (D’Ettorre et al. 2004a). Notably, the potential
pheromonal cues by which workers distinguish egg origin
were persistent and non-transferable through mutual contact
between the eggs (D’Ettorre et al. 2006).

Workers in the genus Formica could distinguish nest-
mate eggs from non-nestmate eggs (Helanterd and Rat-
nieks 2009; Helanteré et al. 2014), and worker-laid eggs
from queen-laid eggs, but the latter ability was displayed
only when an adult queen was present (Helanterd and
Sundstrom 2005, 2007). Corresponding to the above find-
ing, hydrocarbon profiles of eggs displayed robust and
consistent differences among species, colonies, and even
among matrilines within a colony, demonstrating a link
between genetic variation and potential pheromonal varia-
tion (Helanteri et al. 2014; Helanterd and d’Ettorre 2015).

In some cases, the egg-laying workers themselves, but
not their eggs, were subject to policing. In Temnothorax
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unifasciatus, that reproductive workers were attacked, not
by random nestmates, but only by a select few workers
who would become dominant reproductives upon queen
removal (Stroeymeyt et al. 2007). Likewise, in Novomes-
sor cockerelli (previously Aphaenogaster cockerelli),
worker-laid eggs did not differ from queen-laid eggs in
their surface chemical profiles and were not policed (Smith
et al. 2008a). Instead, egg-laying workers were attacked by
nestmate workers (Smith et al. 2011). Reproductive status
is signaled by unbranched alkanes, as the application of
these compounds on non-reproductive workers induced
nestmate aggression, but only in the presence of a queen
(Smith et al. 2009). The queen also attacked and marked
reproductive workers for aggression by discharging com-
pounds from her Dufour’s gland onto the target worker
(Smith et al. 2012a). This is similar to the finding in Dino-
ponera quadriceps, where high-ranking gamergates mark
challengers with Dufour’s gland secretion to direct aggres-
sion by low-ranking workers (Monnin et al. 2002).

In Odontomachus brunneus, a hydrocarbon, (Z)-9-non-
acosene, was identified as a fertility signal, based on three
lines of evidences: (i) its higher abundance in reproduc-
tive individuals, (ii) the typical submissive gesture of nest-
mate workers towards workers treated with the compound
(Fig. 3), and (iii) the nestmate policing (biting and pull-
ing) of treated workers in queenright colonies (Medeiros
et al. 1992; Smith et al. 2012b, 2013). The role of this
compound was conserved across geographic populations,
but it must function synergistically with other pheromonal
chemicals (Smith et al. 2013, 2015).

Induction of execution of superfluous reproductive
adults

A queenright monogyne colony is generally not expected to
accept additional reproductive queens as this would decrease
indirect fitness benefits to workers despite the apparent ben-
efit of larger social groups (Hamilton 1964; Gardner et al.
2011). In species with strong caste dimorphism, superfluous
queens are eliminated by workers, which may be considered
as an extreme form of policing, as these queens cannot tran-
sition back to a worker-like state and contribute to colony

Fig.3 Workers (gray) of
Odontomachus species display
typical submissive gestures
(crouching their bodies and
retracting their antennae) upon
detecting a queen (red) or queen
pheromones
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tasks. As a requirement, workers rely on queen pheromones
that signal the presence and identity of the true queen.

Monogyne Solenopsis invicta workers imprint on the phe-
romonal signature of their mother queen, killing any other
dealate (wingless reproductive) queens presented to the
colony (Fletcher and Blum 1983a; Gotzek and Ross 2007).
Only when a colony is rendered queenless for a few days
will it accept an unrelated queen, and the longer the colony
stays queenless, the more accepting of a foreign queen it
becomes (Fletcher 1986; Vander Meer and Alonso 2002).
Additionally, when presented with multiple reproductive
queens, such hopelessly queenless workers usually select
the most physogastric one, which might be due to a higher
amount of fertility signal produced by such queens (Fletcher
and Blum 1983a).

In Aphaenogaster senilis, workers attack supernumer-
ary gynes and only the oldest gyne ascends to become the
sole reproductive queen (Chéron et al. 2009). In Argentine
ants, Linepithema humile, queenless colonies show lower
aggression towards intruder queens compared to queenright
colonies, which usually kill intruder queens within 24 h
(Véasquez and Silverman 2008). Here, adoption decisions
were not influenced by fecundity, but by similarity of CHC
profile to the nestmate queens (Vasquez and Silverman 2008;
Vasquez et al. 2008). This was contrary to Camponotus flori-
danus, where a more fertile queen would be accepted into
a queenright colony while a less fertile queen would not
(Moore and Liebig 2010). Thus, there appears to be variable
linkages between queen pheromones involved in nestmate
recognition, fertility signaling, and regulation of reproduc-
tion in ants.

Regulation of colony social structure

An archetypical colony of social insects is composed of a
single family, headed by a single queen and her offspring
workers. It is less known that multiple-queen colonies occur
in many ant taxa and such variation of colony social struc-
ture, being either monogyne (single-queen) or polygyne
(polygyne), exist both within species and across species.
Phylogenetic analysis suggested that eusociality of ants
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evolved under the monogyne condition, while polygyne
forms subsequently evolved independently in many ant taxa
(Ross and Carpenter 1991; Hughes et al. 2008). In a general
sense, the evolution of social structure (from monogyny to
polygyny) and the evolution of eusociality in ants, raised
similar problems as to why individuals are willing to forgo
personal reproductive success for the benefit of group repro-
ductive output.

Queen pheromones are also involved in the regulation of
such variation in colony social structure, an important but
often overlooked class of function. Although this function
of queen pheromones may be ubiquitous in diverse ant taxa
(Holldobler and Carlin 1985; Evison et al. 2012; Abril and
Gomez 2019), the only such case that has received careful
study to date is the regulation of colony social form in S.
invicta (Box 1, Q6).

In stark contrast to the single-queen, monogyne form,
the polygyne form houses multiple reproductive queens, as
many as a few hundred, in a colony. The two social forms are
distinct from each other in many other natural history traits,
such as nest density in the wild, the average weights of alate
gynes and reproductive queens, colony founding mode, and
worker size distributions (Keller and Ross 1995; Gotzek and
Ross 2007; Tschinkel 2013; Huang and Wang 2014). The
genetic underpinning of this social form polymorphism in
S. invicta and several congeners is an inversion-based self-
ish genetic element termed the Social b (Sb) supergene. The
element spans a large portion of chromosome 16, compris-
ing three adjacent inversions and encompassing over 500
described genes (Yan et al. 2020; Stolle et al. 2022; Helleu
et al. 2022).

In monogyne colonies, all female members are homozy-
gous for alternate, wild-type haplotype (SB), and only
one SB/SB reproductive queen is tolerated. In polygyne col-
onies, all reproductive queens and over half of the worker
population are heterozygous at the supergene locus. Poly-
gyne workers enforce this striking genotype composition of
their queens in a green-beard fashion, accepting additional
Sb-carrying queens but executing SB/SB queens, including
nestmate SB/SB gynes shortly after they emerge as adults
(Ross and Keller 1998; Keller and Ross 1998).

The pheromonal basis of the supergene genotype signal
was first demonstrated by the findings that polygyne work-
ers rubbed against SB/SB queens were attacked by their
nestmate workers (Keller and Ross 1998). Specific cuticu-
lar hydrocarbons were found to be uniquely present on the
cuticle of SB/Sb queens, the abundance of which increased
as the fertility of the queen increased (Eliyahu et al. 2011).
Trible and Ross (2016) showed that polygyne workers
showed strong preferences toward polygyne queen extracts
over monogyne queen extracts, confirming the presence of
a supergene pheromone. Zeng et al. (2022) then showed that
a complex blend of unsaturated CHCs functioned as this

signal of queen supergene status to workers (Box 1, Q7).
However, beyond the recognition of supergene status, the
precise mechanisms by which multiple Sb-carrying queens
are permitted in polygyne colonies remain elusive. A poten-
tial general explanation may be that Sb queens are perceived
as identical individuals, despite substantial variation in their
fertility status and material apportionment (Ross 1988).

Discussion

Ant queen pheromones exhibit a variety of functional prop-
erties revealed by experimental analysis (summarized in
Fig. 1), many of which are observed in other social insects
including non-hymenopteran groups (e.g., termites), illus-
trating that convergent functions of queen pheromones arose
across multiple independent origins of eusociality (Bortolotti
and Costa 2014; Oi et al. 2015b; Funaro et al. 2018; Mitaka
and Akino 2021). In essence, queen pheromones convey her
presence to adult members of the colony, while signaling
(1) her fertility and health condition, and at times (2) her
individual identity and genotype status. The informed colony
members then develop or behave accordingly to optimize
the efficiency and productivity of the colony, or to adjust
the colony social structure. It is reasonable to predict similar
fundamental roles of queen signals in the ontogeny of other
social animal colonies. Importantly, such signals may not
be confined to chemical compounds but could involve mul-
tiple sensory modalities, which again necessitate a thorough
understanding of their natural history to make useful predic-
tions (Orlova and Amsalem 2021).

Several functions or properties of queen pheromones
described in this review are hypothetical, because the chemical
nature of the putative signals was not demonstrated experimen-
tally. In other words, the inferred functions were associated
with the presence of the queen without direct causal mech-
anisms or links to isolated chemicals or even crude solvent
extracts from queens having been established. These studies
serve as useful starting points to conceive functional frame-
works for identifying specific compounds, and can provide
guidance to future studies. Nonetheless, one must ask why,
after decades of research focused on the problem, only very
few compounds have been identified and explicitly shown to
induce one or more of the discussed pheromonal effects.

The successful identification of the honeybee queen man-
dibular pheromones reveals that characterization of a complete
blend of queen pheromones requires a combination of reliable
bioassays and sophisticated chemical approaches (Butler and
Fairey 1964; Butler et al. 1997), the lack of which, perhaps, is
slowing progress in ants. As reviewed in the previous sections,
the effects of queen pheromones are often manifested through
worker behaviors. Thus, evaluating worker response behav-
iors to candidate pheromonal compounds can be an effective
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approach to designing informative bioassays. In behavioral
assays, it is valuable to practice blind experiments when pos-
sible to reduce observational bias and enhance validity of data.
However, it is not always straightforward to devise an assay
scoring system that is highly informative while rooted in a
firm understanding of the natural history of the species and
the natural context of the behavior. It cannot be overstated how
important it is that investigators become intimately familiar
with the social biology of the focal species in order to design
and implement the most informative and meaningful bioassays.

Assigning a single numeric score to measure complex
behavioral traits in a social context is difficult but can be
achieved based on a sufficiently large dataset and validation
of the biological meaning of the score through back-testing
(Wild et al. 2021). Alternatively, it is often efficient to take
measurements of distinct actions that are reliably quantifia-
ble and use these directly, such as the number of antennation
inspections by workers towards a treated glass slide (Diete-
mann et al. 2003). Another way to design an informative
bioassay is by observing and quantifying behaviors unique
to the study species. For instance, workers of Odontoma-
chus brunneus display submissive gestures when a queen
or other dominant individual is nearby (Fig. 3) (Medeiros
et al. 1992), which was used as an indicator for screening
pheromone compounds (Smith et al. 2012b, 2013, 2015).

A few characteristics of queen pheromones are helpful
for the identification of their specific components. Candidate
compounds are often uniquely present in the queen caste in
species with pronounced caste dimorphism, and the amount
of candidate compounds are usually correlated with fertility
status (Holman et al. 2010, 2013). Consequently, a more fer-
tile queen should exert a stronger pheromonal effect (Fletcher
and Blum 1983a; Willer and Fletcher 1986; Ortius and Heinze
1999; Oi et al. 2015a). However, as exceptions are common in
biology, these apparent general characteristics of queen phero-
mones do not always hold true. For instance, piperidine mol-
ecules, despite their abundance and a positive correlation with
fertility, did not signal queen fertility in S. invicta; instead,
trace polar compounds displayed the expected pheromonal
effects (Eliyahu et al. 2011; Zeng et al. 2022).

Chemical ecologists often aspire to identify a single mol-
ecule with extensive, if not the complete array of, effects
comprising the focal behavioral or other trait released or
primed by the putative pheromone (Jacobson 2012; Ebra-
him et al. 2023). That being said, such reductionist think-
ing often oversimplifies the complex chemical composi-
tion, multiple glandular and tissue origins, and variable
functions of most insect pheromones, especially social
insect queen pheromones exemplified by the well-studied
honey bee queen pheromones (Keeling et al. 2003; Slessor
et al. 2005; Symonds and Elgar 2008; Princen et al. 2019).
Thus far, known glandular and cellular sources of phero-
monal components in ants include the oenocytes, poison

@ Springer

sac, postpharyngeal gland, metapleural gland, and Dufour’s
gland (Vargo 1997; Vargo and Hulsey 2000; Yek and Muel-
ler 2011; Kocher and Grozinger 2011). Multiple glandular
sources of queen pheromones affecting a singular behavioral
response have been demonstrated clearly in S. invicta (Vargo
and Hulsey 2000), and we can expect the same for other ant
species.

Many recent attempts to identify queen pheromones have
focused on the CHCs (Van Oystaeyen et al. 2014; Oi et al.
2015b, a; Smith and Liebig 2017; Holman 2018) (Box 1, Q8),
which is grounded in their essential signaling roles in the colony
social life and the relative ease of their quantification and identi-
fication (Martin and Drijfhout 2009; Kroiss et al. 2011). While
studies on CHCs remain important, more studies are starting to
highlight other molecule classes playing roles of queen phero-
mones (Smith et al. 2016; Villalta et al. 2018; Steitz and Ayasse
2020). Once we obtain a holistic blend of identified pheromonal
compounds of the proper ratio that encapsulates the full range
of functional properties in even a few model ant species, with
advances in the neurophysiology of odor reception and genetic
basis of reproductive division of labor, we will grasp more fully
how queen pheromones work to regulate colony social life of
ants (Yan and Liebig 2021) (Box 1, Q9).
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