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Abstract
An ant colony is the epitome of social organization where up to millions of individuals cooperate to survive, compete, and 
reproduce as a single superorganism, Female members of ant colonies typically are categorized into a reproductive queen 
caste and a non-reproductive worker caste. The queen(s) conveys her fertility condition and in cases, genotype status, via a 
suite of queen pheromones whose various functions are crucial to the superorganismal nature of ant colonies. Knowledge of 
these functional properties is fundamental for identifying constituent chemicals and understanding corresponding modes of 
actions. In this review, I summarize functional properties of ant queen pheromones learned from seven decades of behavioral 
experiments, and contextualize this knowledge within the broader understanding of queen pheromones in other major groups 
of social insects. The effects include promotion of colony integrity and coherence, maintenance of reproductive dominance of 
the queen, and regulation of colony social structure. Additionally, general characteristics of queen pheromones are discussed 
and potential avenues for future research are highlighted.

Keywords Chemical communication · Queen pheromones · Eusociality · Behavioral assays

Introduction

The evolutionary success of social insects is attributable 
to their highly integrated colonial lifestyles, where numer-
ous individual insects cooperate to survive, compete with 
conspecifics, and produce sexual forms (reproductive 
individuals) (Wilson 1971; Lin and Michener 1972). Ants 
(Hymenoptera: Formicidae), in particular, manifest immense 
diversity, abundance, and ecological impact (Wheeler 1910; 
Schultheiss et al. 2022). Studies of ants have illuminated the 
inner workings of insect societies despite the independent 
emergence of sociality in multiple diverse lineages and the 
consequent uniqueness of each major eusocial taxon (Wilson 
1971).

Male ants contribute little or nothing to the mainte-
nance and growth of the colony, confining their activities 
to competing for matings during their reproductive seasons. 

Females are generally divided into two interdependent castes 
that showcase a reproductive division of labor. Members of 
the queen caste can mate and usually monopolize egg-laying 
in the colony. Meanwhile the workers, normally daughters 
of the queen and mostly sterile, perform routine yet essential 
tasks such as foraging, nest building, and brood care, act-
ing as the extended phenotype of the queen (Wheeler 1910; 
Hölldobler and Wilson 1990; Smith et al. 2008b; Beekman 
and Oldroyd 2019).

Despite a clear functional separation, the extent of mor-
phological differentiation between the two castes nonethe-
less varies widely. The queen caste in many ant species 
is morphologically and physiologically distinct from the 
worker caste. Such workers are not only smaller in size, 
but they also lack sperm storage organs (spermathecae) and 
often functional ovaries, rendering them completely sterile 
and incapable of laying eggs (Keller et al. 2014; Trible and 
Kronauer 2017). In some species, workers retain reproduc-
tive potential but exhibit subtle and consistent differences 
from the queen caste. If the queen is missing, such workers 
may ascend to be the dominant reproductive females (Powell 
and Tschinkel 1999; Penick et al. 2021). In a minority of ant 
species, the two castes are not morphologically or physi-
ologically well differentiated (Peeters 1991). Rarely, species 
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have secondarily lost one of these castes (Peeters and Ito 
2001; Monnin and Peeters 2008; Goudie and Oldroyd 2018).

Regardless of the degree of caste dimorphism, the colony 
must be informed of the presence of the queen or the domi-
nant reproductive female to function optimally (Keller and 
Nonacs 1993). Communication in ant colonies is primarily 
chemical in nature, which is related to their ancestral sub-
terranean habits (Tschinkel 2015, 2021), although visual, 
vibrational, and tactile signals or cues are also deployed in 
some instances (Hölldobler and Wilson 1990; Hölldobler 
1995; Barbero et al. 2009; Golden and Hill 2016; Knaden 
2019; Yilmaz and Spaethe 2022).

Chemical compounds used for intraspecific communica-
tion are termed pheromones (Karlson and Lüscher 1959). 
The potential durability and transmissibility of pheromones 
may have helped ants to evolve massive colony sizes and 
become the dominant invertebrates in most terrestrial eco-
systems (Schultheiss et al. 2022). A variety of pheromones 
are deployed by ants, exemplified by alarm pheromones for 
threat alerts and trail pheromones for navigational guid-
ance between various locations (Jackson and Ratnieks 
2006; Grüter and Keller 2016; Vargo 2019). The studies of 
ant pheromones have not only deepened our knowledge of 
their social biology but also inspired such seemingly dis-
tinct efforts as designing network computation algorithms 
(Bonabeau et al. 2000).

In many eusocial insects, although the queen(s) does not 
actively participate in the colony maintenance and brood-
rearing tasks, her presence has dramatic effects on worker 
brood care activities, nestmate discrimination, developmen-
tal trajectories of larvae, and colony coherence, reproductive 
output, and social structure (Wilson 1971; Hölldobler and 
Wilson 1990; Kocher and Grozinger 2011; Matsuura 2012; 
Ayasse and Jarau 2014; Vollet-Neto et al. 2018).

Most, if not all, of these effects are mediated through 
queen pheromones, a set of pheromones either exclusively 
produced by the queen or produced in higher quantities com-
pared to workers (Sramkova et al. 2008; Smith et al. 2012b; 
Traynor et al. 2014). Thus, much like invisible wires that 
connect the queen to the rest of her colony and extend her 
influence, queen pheromones are key regulators of colony 
ontogeny and the emergent superorganismal features of 
insect societies (Wheeler 1910) (Fig. 1).

Debates remain regarding the function and mode of 
action of queen pheromones, which were at times consid-
ered to comprise means of queen control over reproductive 
activities of nestmates (Fletcher and Ross 1985) but are 
now widely acknowledged to be honest signals of identity 
and quality of the queen (Keller and Nonacs 1993; Villalta 
et al. 2018). Queen pheromone-induced behavioral shifts in 
workers thus may be explained ultimately by the alignment 
of their evolutionary interests with the queen’s from a kin 

Fig. 1  Summary of generalized 
functional properties of queen 
pheromones in ants, as exempli-
fied in a polygyne Solenopsis 
invicta colony. These functions 
include: 1) Attracting work-
ers to the queen; 2) Promoting 
colony maintenance tasks, such 
as brood care; 3) Inducing nest-
mate discrimination; 4) Inhibit-
ing larval sexual development, 
through worker behaviors; 5) 
Inhibiting adult reproductive 
physiology, thereby preventing 
dealation, ovarian develop-
ment, and egg laying in other 
queens, gynes, and workers; 
6) Inducing worker policing 
(in many cases, eggs serve as 
agents for the dissemination of 
queen pheromones); 7) Inducing 
the execution of supernumerary 
queens in monogyne colonies; 
8) Mediating the regulation of 
queen acceptance in polygyne 
colonies. Gray numbers indicate 
functional categories where a 
chemical basis has not yet been 
demonstrated
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selection perspective (Hamilton 1964; Foster et al. 2006). 
Workers are expected to achieve a higher inclusive fitness 
return associated with the ecological benefits of colony life 
if they help rear sisters rather than produce their own off-
spring in social hymenopterans, especially when the colony 
is headed by a single monogamous queen, the presumed 
ancestral condition for most eusocial insect lineages (Hughes 
et al. 2008; Boomsma and Gawne 2018; Kay et al. 2019). 
Thus, when the kinship structure changes following loss of 
the queen, workers prioritize their direct fitness and compete 
for reproduction pending establishment of a new reproduc-
tive hierarchy, rather than performing colony maintenance or 
other duties (Bourke 1988; Wenseleers et al. 2020b). Excep-
tions occur in species with obligately sterile workers, where 
workers are selected to maximize the rate of sexualization 
of the remaining brood because, by definition, they lack any 
route for direct fitness returns.

Pheromones can be categorized generally as having either 
releaser or primer effects. Releaser effects include imme-
diate, typically behavioral responses, while primer effects 
are slower and progressive, often physiological responses 
(Conte and Hefetz 2008; Vargo 2019). A difficulty in deci-
phering queen pheromones stems from their multifunctional 
and multicomponent characteristics: at times, multiple 
molecules synergistically trigger a response, while in other 
instances, a single compound can elicit both releaser and 
primer effects (Grozinger et al. 2007).

Thus far, only the queen pheromones in honey bees are 
sufficiently well studied that a systematic understanding 
linking the identities of constituent chemicals, modes of 
action, and known functions has emerged (Keeling et al. 
2003; Bortolotti and Costa 2014; Princen et  al. 2019). 
Despite over seven decades of effort, we have only identi-
fied pheromonal compounds in a few ant species that were 
associated with some, but not all, known and expected func-
tions of queen pheromones. Meanwhile, the past decade has 
seen considerable progress of queen pheromone identifica-
tion in otherwise understudied groups of social insects such 
as sweat bees, wasps and termites.

This review provides a comprehensive discussion of func-
tional properties of queen pheromones in ants, structured 
with a strong focus on bioassay results and the underlying 
natural history and sociobiology of ant colonies, which is 
lacking in recent reviews of similar topics (Table 1). Despite 
the evident limited focus on ants, the pheromonal effects 
discussed are largely congruent with other social insects 
(Table 2). I first cover the effects of queen pheromones on 
colony integrity and coherence. I then discuss how queen 
pheromones help to maintain the reproductive dominance 
of the queens as well as the overall reproductive division 
of labor in a colony. Next, I review recent studies on how 
queen pheromones mediate the regulation of colony social 
structures, specifically regarding the number of queens in 

the colony. Lastly, I discuss general characteristics of queen 
pheromones and highlight unanswered questions as a guide 
to future research regarding eusocial insect queen phero-
mones (Box 1).

Effects on colony integrity and coherence

Induction of retinue and rescue behavior

Upon examining the queen in an ant colony, one notices 
that she is surrounded by “retinue” workers that often 
lick her cuticle or otherwise groom her, a scenario com-
monly observed in other social insects such as honeybees 
and termites (Wilson 1971; Bortolotti and Costa 2014). 
A prominent releaser effect of the queen pheromone is 
attraction, enabling workers to locate the queen, so as 
to care for or rescue her. In a way, the queen acts as 
the “gravity center” that holds the colony together. This 
notion is evident in the rock ant Temnothorax rugatu-
lus, a frequently emigrating species; when a colony was 
experimentally split into two nests under equal condi-
tions, all members almost always reunited with the queen 
in one of the nests (Doering and Pratt 2016).

Early investigations pointed to the existence of chemi-
cal pheromones by showing that queens were attractive 
to their workers, and that this attraction capacity could be 
transferred in chemical extracts. Pheidole workers would 
adopt corpses of Lasius queens treated with Pheidole queen 
extracts (Stumper 1956). Queenless workers of Myrmica 
will generally accept queens of a closely related species 
(Brian 1986a, 1988a, b), which is likely due to the simi-
larity of the chemical makeup of queen recognition signals 
among recently diverged taxa, a feature that ultimately may 
pave the way for the rise of social parasites (Lenoir et al. 
2001). The chemical basis of retinue behavior pheromones 
was verified from experiments showing the same effect by 
queen corpses or queen cuticular extracts in a wide range of 
taxa (Watkins and Cole 1966; Jouvenaz et al. 1974; Fowler 
and Roberts 1982; Hölldobler and Wilson 1983; Wilson and 
Hölldobler 1985).

Fire ant workers (Solenopsis invicta) exhibit emphatic 
and swift responses to a queen exposed outside of the col-
ony: workers will (1) quickly be attracted to her, (2) cluster 
around her, (3) move brood items to or around her, (4) form 
a pheromonal trail that the queen can follow back to the nest, 
and/or (5) pull the queen towards the nest, should she not 
move voluntarily (Glancey et al. 1983). Workers exhibit the 
same series of stereotyped behaviors toward a paper dummy 
dosed with reproductive queen hexane extract as they do 
toward live queens or fresh queen corpses, i.e., collectively 
retrieving the treated dummy into the nest and keeping it 
there for hours (Trible and Ross 2016; Zeng et al. 2022). 
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Additionally, queenless workers infrequently exhibit vibrant 
body shaking upon retrieving a queen (Zeng, personal obser-
vation), which resembles the jerking response to a queen or 
king in termites (Funaro et al. 2018, 2019).

A general correlation between the intensity of attraction 
and the fecundity or weight of a queen was noted by many 
studies (Sommer and Hölldobler 1995; Hannonen et al. 
2002). Such a trend is pertinent to other queen pheromone 
effects in the discussion that follows, and is most parsimoni-
ously explained by a higher level of pheromone production 
occurring in more fertile queens (Fletcher and Blum 1983a). 
This collective, accurate assessment of the fertility condition 
of an individual is fundamental to the signaling function of 
queen pheromones (Keller and Nonacs 1993).

Promotion of colony maintenance

In many ant species, a newly mated queen performs all nec-
essary tasks to initiate the growth of the colony by herself. 
She prepares a nest site (e.g., digs a burrow in the soil) and 
raises the first cohort of workers from the eggs she then lays. 
But when worker adults emerge, the queen stops engaging in 
colony maintenance tasks and transitions to acting strictly as 
an egg layer (Cassill et al. 2002; Majidifar et al. 2022). The 
continued presence of the queen not only ensures the steady 
production of fertilized eggs and, subsequently, additional 
brood and adults, but a few studies suggest that the queen 
also boosts the level of worker activity in brood care and acts 
to maintain the cohesion of the colony. In other words, the 
queen (or queen pheromones) may function as a “catalyst” 
to promote colonial development and maintenance, on top 
of being a “gravity center” to maintain colony cohesion, as 
shown in the studies below.

In broodless colonies of Cataglyphis cursor, overall 
worker activities were reduced after queen removal (Berton 
et al. 1992). Queenright workers of Myrmica sp. and Manica 
sp. antennated the brood more often and stayed longer with 
the brood than queenless workers (Vienne et al. 1998). In 
contrast, queenless workers tend to leave the nest, interacting 
more often with adult workers instead of the brood. Simi-
larly, in Atta sexdens, workers departed more frequently 
from the nest, exhibited higher mortality and lowered refuse 
accumulation, but showed no change in foraging efficiency, 
when the queen was removed (Della Lucia et  al. 2003; 
Sousa-Souto and Souza 2006). In Temnothorax curvispino-
sus, queenright sub-colonies outperformed queenless coun-
terparts in various task efficiencies and were more resistant 
to fungal pathogens (Keiser et al. 2018). In Temnothorax 
crassispinus, queen presence promoted defecation within the 
nest which may help to suppress mold (Giehr et al. 2019).

These studies showed that the presence of the queen 
induced a higher level of brood care, stronger cohesion, and 
better overall performance of the colony. At the proximate Ta
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level, these shifts in worker behavior might be manifested 
as secondary effects of the attractiveness of the queen caus-
ing, for instance, a more structured spatial distribution of 
the brood and, as a result, more efficient brood care. These 
results are consistent with findings in honeybees where queen 

mandibular pheromones are shown to stimulate a wide range 
of worker task performance, including foraging, defense, nest 
building, and brood rearing (Bortolotti and Costa 2014). How-
ever, unlike honey bees, these effects in ants remained to be 
associated with a chemical basis (Box 1, Q1).

Table 2  Current knowledge of queen pheromones research in major 
groups of social insects. Among the color-filled cells, darker green 
indicates that identified compounds or groups of compounds convey 
the corresponding pheromonal effect in a social insect group. Lighter 
green signifies a pheromonal basis demonstrated through the effect of 

contact or bodily or tissue extract of the queen. Yellow represents the 
effect shown through queen removal or isolation experiments. Gray 
indicates the effect observed when the queen is present, with a specu-
lated pheromonal basis. White denotes that the effect was either not 
shown or not expected

ecnanimoD evitcudorpeR gniniatniaMnoisehoC ynoloC gniniatniaM Mediating Colony 
Social Structure

Attracting workers and eliciting 

unique response 

Promoting colony 

maintenance and 

coherance

Inducing 

nestmate 

discrimination

Regulating larval sexual 

development 

Inhibiting reproductive 

physiology of adult females

Inducing worker 

policing 

Inducing execution of superfluous 

reproductive adults

Mediating queen 

acceptance in 

polygyne colonies

Honey Bees (family 

Apidae, Apis spp.)

Kaminski et al. 1990; Keeling et 

al. 2003

Winston et al. 1989, 

1991 (maintaining 

swarm)

Breed et al. 

1992

Pettis et al. 1995; 

Melathopolous et al. 1996

Hoover et al. 2003; Katzav-Gozansky 

et al. 2006

Ratnieks 1995 

(Dufour's gland 

secretion)

Gilley 2001; Tarpy and Fletcher 

2003 (honeybee workers typically 

don't kill queens but will help in 

queen duels)

Bumble Bees (family 

Apidae, Bumbus sp
van Doorn and Chrambach 1989

Alaux et al. 2004; Lopez-

Vaamonde et al. 2007

Van Oystaeyen et al. 2014; Amsalem 

et al. 2015; Holman et al. 2017; 

Orlova and Amsalem 2012

Zanette et al. 2012 Van Doorn 1986 

Stingless Bees (family 

Apidae, Friesella sp.)

Imperatriz-Fonseca and Zucchi 

1995; Jarau et al. 2010
Nunes et al. 2014

Sweat Bees (family 

Halictidae) 

Steitz and Ayasse 2020 

(inducing workers to quickly 

back away)

Steitz et al. 2019; Steitz and Ayasse 

2020

Ants (family 

Formicidae)
1 elbaT eeS1 elbaT eeS1 elbaT eeS1 elbaT eeS1 elbaT eeS1 elbaT eeS1 elbaT eeS1 elbaT eeS

Wasps (family 

Vespidae)
Ishay et al. 1965 Ishay et al. 1965

Gamboa et al. 

1986

 Ikan 1969 (initiate queen 

cell construction); Mori and 

Otsuka 1985

Oi et al. 2015, 2016 Oi et al. 2015

Termites
(Reticulitermes spp.)

Funaro et al. 2018 (eliciting 

antennation and shaking of the 

body by workers and soldiers)

Matsuura et al. 2010 

(stimulating egg-

carrying and piling 

behavior)  

Konishi and 

Matsuura 2021 

Matsuura et al. 2010 

(inhibition of the 

differentiation of workers 

into supplementary queens)

Yamamoto and Matsuura, 2011 

(suppression of egg laying in 

secondary queens)

Sun et al. 2020

Box 1  Questions and prospective avenues for further study of ant queen pheromones 

Q1:
The presence of the queen has been shown to increase task performance efficiency, the health condition, and the cohesion of workers. How-

ever, the pheromonal basis of these effects remains to be confirmed through experiments using queen corpses or chemical extracts.
Q2:
Does the effect on nestmate discrimination have a pheromonal basis? If so, what specific mechanisms are involved in how queen pheromones 

affect worker nestmate discrimination?
Q3:
Experiments have demonstrated that workers respond to queen pheromones by actively suppressing larval sexual development. However, do 

larvae also sense queen pheromones? And do queen pheromones directly affect larval physiology?
Q4:
Under the influence of the queen, ant workers exhibit targeted destruction of broods based on specific sex, caste, and life-stage. How does a 

queen pheromone function to trigger only a narrowed subset of the discriminatory behavioral repertoire of nurse workers?
Q5:
There is a strong but variable connection between the queen pheromones responsible for nestmate recognition, fertility signaling, and regula-

tion of reproduction. A major task is to determine whether, in specific cases, these comprise one or more unique semiochemical systems and 
modes of action. Furthermore, it is important to investigate if the mode of action (physiology) of certain effects is consistent across different 
ant lineages.

Q6:
As more genetic components have been identified that underlie social polymorphism in ants, What are the roles of queen pheromones in regu-

lating colony social structure (polygyny) in species other than S. invicta?
Q7:
Unsaturated CHCs (cuticular hydrocarbons) serve as signals for queen supergene status in S. invicta. The identification of the complete blend 

will reveal the first set of pheromones involved in the regulation of colony social structure in a highly eusocial insect.
Q8:
CHCs have been identified as fertility signals in numerous, but not all, species. How do these fertility signals change across different ant line-

ages? Is there a relationship between phylogenetic distance and the similarity of fertility signal compounds?
Q9:
In the evolution of ant sociality, at what point did queen pheromones become essential? Is there a relationship between the degree of queen-

worker dimorphism and the strength of the effect of queen pheromones (Smith and Liebig, 2017)?
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Induction of nestmate discrimination

Similar to other eusocial insects, the nest of an ant colony 
comprises the physical structure, food storage, and brood 
items. It requires substantial investment to build and is 
valuable to looting and raiding, often from sympatric con-
specific colonies (Holldobler and Michener 1980; Tschin-
kel 1992; Sturgis and Gordon 2012). To safeguard the nest 
from intruders and ensure sustainable growth, a colony must 
deploy effective nestmate discrimination. Each ant colony 
carries a set of cuticular chemical odor labels, which workers 
use to distinguish nestmate from non-nestmate conspecifics 
(Ozaki et al. 2005; Sturgis and Gordon 2012).

The presence of the queen has a significant impact on the 
odor label of a colony, such that queenless colonies exhibit 
reduced territoriality, acting as if they have lost some com-
ponent of their distinct colony identity. Compared to queen-
less workers, workers from queenright colonies are more 
subject to aggression by non-nestmate conspecific workers, 
as well as being more aggressive themselves towards such 
workers.

Queenless S. invicta workers of the monogyne social 
form (single queen per colony) received little aggression 
from their original nestmates when returned to the natal 
queenright colony. However, if they tended a foreign queen 
for only 15 minutes, they were attacked by their original 
nestmates (Obin and Vander Meer 1989). Queenless workers 
also became less aggressive themselves after queen removal, 
becoming completely docile after about two weeks (Van-
der Meer and Alonso 2002). Thus, in monogyne fire ants, a 
colony’s unique chemical identity is attributable, at least in 
part, to its sole reproductive queen.

Similar phenomena were demonstrated in other spe-
cies. Queenless workers of Cataglyphis niger did not show 
aggression towards and did not receive aggression from 
original nestmate workers from the queenright parent colony 
(Lahav et al. 1998). In Camponotus species, worker aggres-
sion towards non-nestmates largely disappeared in queen-
less colonies and reappeared after an unrelated queen was 
adopted into the colony (Carlin and Hölldobler 1983, 1986, 
1987). Additionally, queens with less developed ovaries or 
that were incompletely inseminated had a weaker such effect 
than normal queens (Carlin and Hölldobler 1987).

However, as a counterexample, queen presence had little 
impact on nestmate discrimination in Camponotus aethiops, 
a discrepancy that was attributed to the presence of heritable 
chemical cues on workers (van Zweden et al. 2009). Another 
example came from Rhytidoponera confusa, where nestmate 
discrimination also was not affected by the presence of the 
queen (Crosland 1990). Queen-worker dimorphism in R. 
confusa is not pronounced and the colonies can reproduce 
without the queen (Ward 1981, 1983). Because the queen is 
not an indispensable component of the colony identity, it is 

plausible that her absence does not impact worker nestmate 
recognition abilities (Carlin and Hölldobler 1991).

These results point to the intricate nature of nestmate 
discrimination in ant colonies, which is governed by both 
environmentally derived cues and genetic factors (Carlin and 
Hölldobler 1983; Helanterä et al. 2011; Sturgis and Gordon 
2012; Caliari Oliveira et al. 2022). Unraveling the specific 
mechanisms by which queen pheromones affect nestmate 
discrimination remains a challenge (Box 1, Q2). One pos-
sibility is that workers obtain queen cuticular odor cues in 
small colonies through common contact with the queen 
(Lahav et al. 1998). Another possibility is that queenless 
workers retain the ability to detect non-nestmates but lack 
the incentives to act aggressively toward them.

Maintenance of reproductive dominance

Inhibition of larval sexual development

As the hallmark of eusociality, reproductive division of labor 
necessitates that members of the queen caste maintain their 
reproductive dominance. In small colonies, the queen may 
manipulate larval caste fate and suppress adult reproduction 
through physical actions (Heinze and Smith 1990), which is 
frequently observed in wasp societies where caste dimor-
phisms are not distinct (Ross and Matthews 1991). How-
ever, in populous colonies, the effect is often achieved via an 
essential and well-studied class of queen primer pheromones 
that exert their effects onto almost all life stages of female 
colony members (Smith and Liebig 2017; Holman 2018).

To begin with, queen pheromones have been shown to 
inhibit sexualization (development as queens) of female lar-
vae, thus biasing female development toward worker produc-
tion over gyne (virgin winged queen) production.

Early studies on the subject came from Myrmica species, 
where the queen induces improved larval survival, earlier 
pupation, and lower larval and pupal weights, in apparent 
accord with the notion of the queen stimulating general 
colony function and cohesion (Brian 1957, 1986b; Brian 
and Carr 1960). When the queen was present, large gyne-
destined larvae received less care from workers than small 
worker-destined larvae (Brian and Hibble 1963); moreover, 
the workers lethally bite gyne-destined larvae (Brian and 
Carr 1960; Brian 1973). The presumed pheromone was not 
volatile while, notably, structural and topological features 
of the queen played a role in the pheromonal effect (Brian 
1970, 1973).

In the Pharaoh’s ant, Monomorium pharaonis, the pres-
ence of a fertile queen inhibited development of sexual brood 
(Petersen-Braun 1975, 1977). Unlike the case in Myrmica, 
this effect was disseminated specifically by the queen-laid 
eggs, but not queen corpses or solvent extracts (Berndt and 
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Nitschmann 1979; Edwards 1987; Boonen and Billen 2017). 
Queenright workers always accept worker broods from a 
foreign colony but would cannibalize any introduced sexual 
broods (Edwards 1991). Monocyclic diterpene neocem-
brene, a compound produced only by egg-laying queens, 
was found to be a pheromonal component in M. pharaonis as 
it elicited weak “queen retinue” attraction as well as inhib-
ited production of sexuals (Edwards and Chambers 1984; 
Oliveira et al. 2020).

Evidence from the two above examples and many 
other species strongly suggested that queen pheromones 
affect caste development through the behavior of workers, 
including biting the larvae to suppress growth evident by 
bite marks on larvae, or simply killing sexualized larvae 
(see Supplementary Information for more details; Table 1; 
Box 1, Q3). This is also the case in honey bees and stingless 
bees where workers control the caste fate of larvae, besides 
genetic and maternal factors (Bueno et al. 2023).

Adult workers probably sense queen pheromones mainly 
through antennal chemoreceptors, which was supported by 
strong electrophysiological responses of worker antennae 
towards queen extracts and candidate queen pheromones 
(D’Ettorre et al. 2004b; Holman et al. 2010; de Narbonne 
et al. 2016). Following perception, workers respond to queen 
pheromones by actively suppressing the sexual development 
of some larvae via the behaviors above (Box 1, Q4).

Inhibition of reproductive physiology of adult 
females

As the best studied effect in many groups of social insects, 
queen pheromones suppress physiological changes tied to 
the onset of reproduction in adult females in the colony, 
which can be measured in diverse behavioral and physiologi-
cal changes in the trajectory of reproductive development, 
including dealation, ovarian activation, weight gain, and 
finally egg laying.

Dealation, or wing shedding, is the first observable indi-
cation of the onset of reproduction development in adult 

gynes in many ants. Take the example of S. invicta, virgin 
gynes in queenright colonies typically remain winged until 
a mating flight event, after which the newly mated gynes 
kick off their wings to initiate colony funding underground 
(Tschinkel 2013). However, these gynes can dealate as soon 
as 12 h after separation from fertile queens, with their alary 
muscles beginning to histolyze simultaneously followed by 
ovarian development, and oviposition starts in another 2 to 
3 days (Fletcher and Blum 1981, 1983b; Vargo and Laurel 
1994). By this time, the gyne begins to exhibit attractive-
ness in the formation of a queen retinue and to produce the 
inhibitory pheromones (Vargo 1999).

The fecundity of a queen is correlated to her weight and 
the ability to suppress reproductive development in nest-
mate queens. The correlation is likely due to a link between 
weight and the level of pheromone production (Fig. 2). Evi-
dence comes from the fact that queenless monogyne work-
ers consistently recognized and adopted the heavier queen 
of two presented as their new queen (Fletcher and Blum 
1983a). Corpses of heavier queens suppressed dealation for 
longer than light-weight queen corpses (Fletcher and Blum 
1983b; Willer and Fletcher 1986). Such an inhibitory effect 
acts on other egg-laying reproductive queens as well: the 
addition of live queens or queen corpses reduced fecundity 
of all nestmate queens in polygyne colonies (Vargo and 
Laurel 1994).

Perception of queen pheromones via the antennal sensilla 
leads to a downregulation of dopamine production, which 
in turn suppresses the production of juvenile hormones 
(JH) and inhibits reproductive development (Robinson and 
Vargo 1997; Boulay et al. 2001). JHs are critical regulators 
not only of reproduction, but of development and behav-
ior, throughout the lifecycle of insects (Jindra et al. 2013). 
Topical treatment of alate gynes with JH or JH analogue 
induced dealation in S. invicta even in the presence of the 
queen, overriding the inhibitory effect of the queen phero-
mone (Vargo and Laurel 1994). Notably, JH treatment can 
yield opposing effects on reproductive development depend-
ing on the species and the size of the treatment doses used, 

Fig. 2  Characteristics of ant 
queen pheromones exemplified 
by Solenopsis invicta 
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suggesting a condition-dependent cost of JH and calling for 
more studies on the endocrinological regulation of reproduc-
tion (Robinson and Vargo 1997; Cuvillier-Hot et al. 2004; 
Penick et al. 2011; Holman 2012).

The inhibitory effects on worker reproduction received 
detailed studies in Camponotus, where eggs are again the 
dissemination agents of the pheromones. The addition of 
queen-laid eggs prohibited workers from laying eggs in 
queenless colonies; in addition, worker-laid eggs were less 
prone to destruction when applied with queen cuticular 
hydrocarbons (CHCs) (Endler et al. 2004). As a further 
support, surface chemical profiles of eggs corresponded to 
the cuticular chemical profiles of the respective egg-laying 
queen or worker (Endler et al. 2006).

In Lasius species, the compound 3-methylhentriacontane 
(3-MeC31) suppressed egg-laying of workers, making it the 
first identified queen pheromone with inhibitory effects on 
worker reproduction (Holman et al. 2010, 2013; Holman 
2012). Further analysis indicated a slower evolution of this 
compound compared to other CHCs in Lasius, hinting at 
potential evolutionary constraints on queen signals, but did 
not agree with the findings in Temnothorax species (Brunner 
et al. 2011; Holman et al. 2013). Other studies have shown 
inhibitory effects on worker reproductive physiology by live 
queens, queen corpses, queen-laid eggs, or queen CHCs 
across various ant taxa (Table 1; Supplementary Informa-
tion; Box 1, Q5).

Another general effect of such inhibitory pheromones is 
a shortening of longevity. Reproduction and longevity are 
typically a trade-off in animals (De Loof 2011; Blacher et al. 
2017). However, in social insects, reproduction and longev-
ity are instead positively linked (Blacher et al. 2017), per-
haps due to a reproductive division of labor where queens 
are liberated from costly daily tasks. When worker ants 
become reproductively active after queen removal, they 
also showed extended lifespans, as documented in some ant 
species as well as in other social insects (Tsuji et al. 1996; 
Kohlmeier et al. 2017; Vollet-Neto et al. 2018; Majoe et al. 
2021; Negroni et al. 2021).

Harpegnathos saltator workers are fully capable of repro-
duction (Peeters et al. 2000). Removal of the queen (and her 
pheromones) prompted workers to engage in antennal duels, 
a ritualistic competition to re-establish hierarchy that occurs 
in many ponerine species (Powell and Tschinkel 1999; 
Peeters et al. 2000; Penick et al. 2014). Winners of these 
duels transition into gamergates (Sasaki et al. 2016), which 
had about five times the lifespan of normal workers (Yan 
et al. 2022). These gamergates displayed queen-like physi-
ology, with decreased brain and optic lobe volumes, and 
decreased venom production. They also behaved more like 
queens, remaining inside the nest and hiding from intruders 
(Penick et al. 2021). Nevertheless, these queen-like traits can 

revert back to a worker-like state if a gamergate is exposed 
to a strong source of queen pheromones (Penick et al. 2021), 
such is the case in other social insects (Van Oystaeyen et al. 
2014).

Induction of worker policing

Although the queen is the dominant reproductive member, 
workers in many ant species can potentially produce males 
by laying unfertilized eggs. These egg-laying workers pose 
a source of conflict over male parentage within the colony, 
as well as a cost to the colony productivity (Helanterä and 
Sundström 2007; Bourke and Franks 2019). The queen(s) 
represses reproduction of workers through pheromonal 
inhibition as discussed above, or through behaviors such 
as destruction of worker-laid eggs (Bourke 1991). Workers 
themselves also police reproduction of nestmate workers, 
a behavior documented in many social hymenopterans that 
might have evolved concurrently with eusociality (Ratnieks 
1988; Frank 1995, 2003; Wenseleers et al. 2020a).

Typical acts of policing in social insect colonies include 
direct aggression toward adults or destruction of their eggs 
(Ratnieks and Visscher 1989; Beekman and Oldroyd 2005). 
Mechanistically, workers must (i) recognize queen presence 
through queen pheromones and (ii) correctly assess the fer-
tility status of colony members, as well as recognize the 
origin of offspring through pheromones present on the egg 
surface or post-embryonic cuticle (Ratnieks 1995; Oi et al. 
2015b). In some species, queens actively mark suspect indi-
viduals with pheromones to “command” worker policing.

Pachycondyla workers would lay viable embryonated 
eggs when the workers were physically separated from the 
queen (Dietemann and Peeters 2000). Worker-laid eggs were 
eaten more frequently by nestmate workers than queen-laid 
eggs, and such policing was more prominent when the queen 
was present (D’Ettorre et al. 2004a). Notably, the potential 
pheromonal cues by which workers distinguish egg origin 
were persistent and non-transferable through mutual contact 
between the eggs (D’Ettorre et al. 2006).

Workers in the genus Formica could distinguish nest-
mate eggs from non-nestmate eggs (Helanterä and Rat-
nieks 2009; Helanterä et al. 2014), and worker-laid eggs 
from queen-laid eggs, but the latter ability was displayed 
only when an adult queen was present (Helanterä and 
Sundström 2005, 2007). Corresponding to the above find-
ing, hydrocarbon profiles of eggs displayed robust and 
consistent differences among species, colonies, and even 
among matrilines within a colony, demonstrating a link 
between genetic variation and potential pheromonal varia-
tion (Helanterä et al. 2014; Helanterä and d’Ettorre 2015).

In some cases, the egg-laying workers themselves, but 
not their eggs, were subject to policing. In Temnothorax 
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unifasciatus, that reproductive workers were attacked, not 
by random nestmates, but only by a select few workers 
who would become dominant reproductives upon queen 
removal (Stroeymeyt et al. 2007). Likewise, in Novomes-
sor cockerelli (previously Aphaenogaster cockerelli), 
worker-laid eggs did not differ from queen-laid eggs in 
their surface chemical profiles and were not policed (Smith 
et al. 2008a). Instead, egg-laying workers were attacked by 
nestmate workers (Smith et al. 2011). Reproductive status 
is signaled by unbranched alkanes, as the application of 
these compounds on non-reproductive workers induced 
nestmate aggression, but only in the presence of a queen 
(Smith et al. 2009). The queen also attacked and marked 
reproductive workers for aggression by discharging com-
pounds from her Dufour’s gland onto the target worker 
(Smith et al. 2012a). This is similar to the finding in Dino-
ponera quadriceps, where high-ranking gamergates mark 
challengers with Dufour’s gland secretion to direct aggres-
sion by low-ranking workers (Monnin et al. 2002).

In Odontomachus brunneus, a hydrocarbon, (Z)-9-non-
acosene, was identified as a fertility signal, based on three 
lines of evidences: (i) its higher abundance in reproduc-
tive individuals, (ii) the typical submissive gesture of nest-
mate workers towards workers treated with the compound 
(Fig. 3), and (iii) the nestmate policing (biting and pull-
ing) of treated workers in queenright colonies (Medeiros 
et al. 1992; Smith et al. 2012b, 2013). The role of this 
compound was conserved across geographic populations, 
but it must function synergistically with other pheromonal 
chemicals (Smith et al. 2013, 2015).

Induction of execution of superfluous reproductive 
adults

A queenright monogyne colony is generally not expected to 
accept additional reproductive queens as this would decrease 
indirect fitness benefits to workers despite the apparent ben-
efit of larger social groups (Hamilton 1964; Gardner et al. 
2011). In species with strong caste dimorphism, superfluous 
queens are eliminated by workers, which may be considered 
as an extreme form of policing, as these queens cannot tran-
sition back to a worker-like state and contribute to colony 

tasks. As a requirement, workers rely on queen pheromones 
that signal the presence and identity of the true queen.

Monogyne Solenopsis invicta workers imprint on the phe-
romonal signature of their mother queen, killing any other 
dealate (wingless reproductive) queens presented to the 
colony (Fletcher and Blum 1983a; Gotzek and Ross 2007). 
Only when a colony is rendered queenless for a few days 
will it accept an unrelated queen, and the longer the colony 
stays queenless, the more accepting of a foreign queen it 
becomes (Fletcher 1986; Vander Meer and Alonso 2002). 
Additionally, when presented with multiple reproductive 
queens, such hopelessly queenless workers usually select 
the most physogastric one, which might be due to a higher 
amount of fertility signal produced by such queens (Fletcher 
and Blum 1983a).

In Aphaenogaster senilis, workers attack supernumer-
ary gynes and only the oldest gyne ascends to become the 
sole reproductive queen (Chéron et al. 2009). In Argentine 
ants, Linepithema humile, queenless colonies show lower 
aggression towards intruder queens compared to queenright 
colonies, which usually kill intruder queens within 24 h 
(Vásquez and Silverman 2008). Here, adoption decisions 
were not influenced by fecundity, but by similarity of CHC 
profile to the nestmate queens (Vásquez and Silverman 2008; 
Vásquez et al. 2008). This was contrary to Camponotus flori-
danus, where a more fertile queen would be accepted into 
a queenright colony while a less fertile queen would not 
(Moore and Liebig 2010). Thus, there appears to be variable 
linkages between queen pheromones involved in nestmate 
recognition, fertility signaling, and regulation of reproduc-
tion in ants.

Regulation of colony social structure

An archetypical colony of social insects is composed of a 
single family, headed by a single queen and her offspring 
workers. It is less known that multiple-queen colonies occur 
in many ant taxa and such variation of colony social struc-
ture, being either monogyne (single-queen) or polygyne 
(polygyne), exist both within species and across species. 
Phylogenetic analysis suggested that eusociality of ants 

Fig. 3  Workers (gray) of 
Odontomachus species display 
typical submissive gestures 
(crouching their bodies and 
retracting their antennae) upon 
detecting a queen (red) or queen 
pheromones
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evolved under the monogyne condition, while polygyne 
forms subsequently evolved independently in many ant taxa 
(Ross and Carpenter 1991; Hughes et al. 2008). In a general 
sense, the evolution of social structure (from monogyny to 
polygyny) and the evolution of eusociality in ants, raised 
similar problems as to why individuals are willing to forgo 
personal reproductive success for the benefit of group repro-
ductive output.

Queen pheromones are also involved in the regulation of 
such variation in colony social structure, an important but 
often overlooked class of function. Although this function 
of queen pheromones may be ubiquitous in diverse ant taxa 
(Hölldobler and Carlin 1985; Evison et al. 2012; Abril and 
Gómez 2019), the only such case that has received careful 
study to date is the regulation of colony social form in S. 
invicta (Box 1, Q6).

In stark contrast to the single-queen, monogyne form, 
the polygyne form houses multiple reproductive queens, as 
many as a few hundred, in a colony. The two social forms are 
distinct from each other in many other natural history traits, 
such as nest density in the wild, the average weights of alate 
gynes and reproductive queens, colony founding mode, and 
worker size distributions (Keller and Ross 1995; Gotzek and 
Ross 2007; Tschinkel 2013; Huang and Wang 2014). The 
genetic underpinning of this social form polymorphism in 
S. invicta and several congeners is an inversion-based self-
ish genetic element termed the Social b (Sb) supergene. The 
element spans a large portion of chromosome 16, compris-
ing three adjacent inversions and encompassing over 500 
described genes (Yan et al. 2020; Stolle et al. 2022; Helleu 
et al. 2022).

In monogyne colonies, all female members are homozy-
gous for alternate, wild-type haplotype (SB), and only 
one SB/SB reproductive queen is tolerated. In polygyne col-
onies, all reproductive queens and over half of the worker 
population are heterozygous at the supergene locus. Poly-
gyne workers enforce this striking genotype composition of 
their queens in a green-beard fashion, accepting additional 
Sb-carrying queens but executing SB/SB queens, including 
nestmate SB/SB gynes shortly after they emerge as adults 
(Ross and Keller 1998; Keller and Ross 1998).

The pheromonal basis of the supergene genotype signal 
was first demonstrated by the findings that polygyne work-
ers rubbed against SB/SB queens were attacked by their 
nestmate workers (Keller and Ross 1998). Specific cuticu-
lar hydrocarbons were found to be uniquely present on the 
cuticle of SB/Sb queens, the abundance of which increased 
as the fertility of the queen increased (Eliyahu et al. 2011). 
Trible and Ross (2016) showed that polygyne workers 
showed strong preferences toward polygyne queen extracts 
over monogyne queen extracts, confirming the presence of 
a supergene pheromone. Zeng et al. (2022) then showed that 
a complex blend of unsaturated CHCs functioned as this 

signal of queen supergene status to workers (Box 1, Q7). 
However, beyond the recognition of supergene status, the 
precise mechanisms by which multiple Sb-carrying queens 
are permitted in polygyne colonies remain elusive. A poten-
tial general explanation may be that Sb queens are perceived 
as identical individuals, despite substantial variation in their 
fertility status and material apportionment (Ross 1988).

Discussion

Ant queen pheromones exhibit a variety of functional prop-
erties revealed by experimental analysis (summarized in 
Fig. 1), many of which are observed in other social insects 
including non-hymenopteran groups (e.g., termites), illus-
trating that convergent functions of queen pheromones arose 
across multiple independent origins of eusociality (Bortolotti 
and Costa 2014; Oi et al. 2015b; Funaro et al. 2018; Mitaka 
and Akino 2021). In essence, queen pheromones convey her 
presence to adult members of the colony, while signaling 
(1) her fertility and health condition, and at times (2) her 
individual identity and genotype status. The informed colony 
members then develop or behave accordingly to optimize 
the efficiency and productivity of the colony, or to adjust 
the colony social structure. It is reasonable to predict similar 
fundamental roles of queen signals in the ontogeny of other 
social animal colonies. Importantly, such signals may not 
be confined to chemical compounds but could involve mul-
tiple sensory modalities, which again necessitate a thorough 
understanding of their natural history to make useful predic-
tions (Orlova and Amsalem 2021).

Several functions or properties of queen pheromones 
described in this review are hypothetical, because the chemical 
nature of the putative signals was not demonstrated experimen-
tally. In other words, the inferred functions were associated 
with the presence of the queen without direct causal mech-
anisms or links to isolated chemicals or even crude solvent 
extracts from queens having been established. These studies 
serve as useful starting points to conceive functional frame-
works for identifying specific compounds, and can provide 
guidance to future studies. Nonetheless, one must ask why, 
after decades of research focused on the problem, only very 
few compounds have been identified and explicitly shown to 
induce one or more of the discussed pheromonal effects.

The successful identification of the honeybee queen man-
dibular pheromones reveals that characterization of a complete 
blend of queen pheromones requires a combination of reliable 
bioassays and sophisticated chemical approaches (Butler and 
Fairey 1964; Butler et al. 1997), the lack of which, perhaps, is 
slowing progress in ants. As reviewed in the previous sections, 
the effects of queen pheromones are often manifested through 
worker behaviors. Thus, evaluating worker response behav-
iors to candidate pheromonal compounds can be an effective 
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approach to designing informative bioassays. In behavioral 
assays, it is valuable to practice blind experiments when pos-
sible to reduce observational bias and enhance validity of data. 
However, it is not always straightforward to devise an assay 
scoring system that is highly informative while rooted in a 
firm understanding of the natural history of the species and 
the natural context of the behavior. It cannot be overstated how 
important it is that investigators become intimately familiar 
with the social biology of the focal species in order to design 
and implement the most informative and meaningful bioassays.

Assigning a single numeric score to measure complex 
behavioral traits in a social context is difficult but can be 
achieved based on a sufficiently large dataset and validation 
of the biological meaning of the score through back-testing 
(Wild et al. 2021). Alternatively, it is often efficient to take 
measurements of distinct actions that are reliably quantifia-
ble and use these directly, such as the number of antennation 
inspections by workers towards a treated glass slide (Diete-
mann et al. 2003). Another way to design an informative 
bioassay is by observing and quantifying behaviors unique 
to the study species. For instance, workers of Odontoma-
chus brunneus display submissive gestures when a queen 
or other dominant individual is nearby (Fig. 3) (Medeiros 
et al. 1992), which was used as an indicator for screening 
pheromone compounds (Smith et al. 2012b, 2013, 2015).

A few characteristics of queen pheromones are helpful 
for the identification of their specific components. Candidate 
compounds are often uniquely present in the queen caste in 
species with pronounced caste dimorphism, and the amount 
of candidate compounds are usually correlated with fertility 
status (Holman et al. 2010, 2013). Consequently, a more fer-
tile queen should exert a stronger pheromonal effect (Fletcher 
and Blum 1983a; Willer and Fletcher 1986; Ortius and Heinze 
1999; Oi et al. 2015a). However, as exceptions are common in 
biology, these apparent general characteristics of queen phero-
mones do not always hold true. For instance, piperidine mol-
ecules, despite their abundance and a positive correlation with 
fertility, did not signal queen fertility in S. invicta; instead, 
trace polar compounds displayed the expected pheromonal 
effects (Eliyahu et al. 2011; Zeng et al. 2022).

Chemical ecologists often aspire to identify a single mol-
ecule with extensive, if not the complete array of, effects 
comprising the focal behavioral or other trait released or 
primed by the putative pheromone (Jacobson 2012; Ebra-
him et al. 2023). That being said, such reductionist think-
ing often oversimplifies the complex chemical composi-
tion, multiple glandular and tissue origins, and variable 
functions of most insect pheromones, especially social 
insect queen pheromones exemplified by the well-studied 
honey bee queen pheromones (Keeling et al. 2003; Slessor 
et al. 2005; Symonds and Elgar 2008; Princen et al. 2019). 
Thus far, known glandular and cellular sources of phero-
monal components in ants include the oenocytes, poison 

sac, postpharyngeal gland, metapleural gland, and Dufour’s 
gland (Vargo 1997; Vargo and Hulsey 2000; Yek and Muel-
ler 2011; Kocher and Grozinger 2011). Multiple glandular 
sources of queen pheromones affecting a singular behavioral 
response have been demonstrated clearly in S. invicta (Vargo 
and Hulsey 2000), and we can expect the same for other ant 
species.

Many recent attempts to identify queen pheromones have 
focused on the CHCs (Van Oystaeyen et al. 2014; Oi et al. 
2015b, a; Smith and Liebig 2017; Holman 2018) (Box 1, Q8), 
which is grounded in their essential signaling roles in the colony 
social life and the relative ease of their quantification and identi-
fication (Martin and Drijfhout 2009; Kroiss et al. 2011). While 
studies on CHCs remain important, more studies are starting to 
highlight other molecule classes playing roles of queen phero-
mones (Smith et al. 2016; Villalta et al. 2018; Steitz and Ayasse 
2020). Once we obtain a holistic blend of identified pheromonal 
compounds of the proper ratio that encapsulates the full range 
of functional properties in even a few model ant species, with 
advances in the neurophysiology of odor reception and genetic 
basis of reproductive division of labor, we will grasp more fully 
how queen pheromones work to regulate colony social life of 
ants (Yan and Liebig 2021) (Box 1, Q9).
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