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Abstract 
Serotonin or 5-hydroxytryptamine (5-HT) is a monoaminergic neurotransmitter that is known to influence behaviour in vari-
ous animal species. Its actions, however, are complex and not well-understood yet. Here, we tested whether and how two 
5-HT receptor agonists and a 5-HT receptor antagonist influence behaviour in common waxbills (Estrilda astrild), focusing 
on aggression, movement and feeding. We applied acute administration of either 8-OH-DPAT (a 5-HT1A receptor agonist), 
fluoxetine (a selective serotonin reuptake inhibitor; SSRI) or WAY 100,635 (a 5-HT1A receptor antagonist), and then quanti-
fied behaviour in the context of competition for food. Waxbills treated with the SSRI fluoxetine showed an overall decrease 
of aggressive behaviour, activity and feeding, while we found no significant effects of treatment with the other serotonergic 
enhancer (8-OH-DPAT) or with the antagonist WAY 100,635. Since both 8-OH-DPAT and WAY 100,635 act mainly on 
5-HT1A receptor pathways, while fluoxetine more generally affects 5-HT pathways, our results suggest that receptors other 
than 5-HT1A are important for serotonergic modulation of waxbill behaviour.

Significance statement
The serotonergic system is of interest for current behavioural research due to its influence on a range of behaviours, including 
aggression, affiliative behaviour, feeding and locomotion in various species. There are, however, numerous discrepancies 
regarding the behavioural effects of serotonin across studies. We used acute pharmacological manipulations of the serotoner-
gic system in common waxbills, using two serotonin enhancers (8-OH-DPAT and fluoxetine) and a serotonin blocker (WAY 
100,635). Behavioural effects of these pharmacological manipulations on aggressiveness, movement and feeding, during 
tests of competition over food, indicated an anxiogenic-like effect of fluoxetine, but not of 8-OH-DPAT and WAY 100,635. 
This suggests a distinct role for different serotonergic pathways on waxbill behaviour.
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Introduction

The behaviour of social and gregarious animals is often 
adapted to access and compete for resources such as food 
and mates within the group (Dickinson and Koenig 2018), 
and to establish dominance hierarchies (Drews 1993; 
Chase and Lindquist 2009; Paull et al. 2010; Ziomkiewicz 
2016; Theodoridi et al. 2017). In many animal species, 
the mechanisms underlying aspects of social behaviour, 
including aggressive and impulsive behaviours, involve 
serotonergic function (e.g., Brown et al. 1979; Popova 
et al. 1997; Duke et al. 2013), which is a critical neu-
ral circuitry mediating context-dependent modulation of 
behaviour (Oliveira 2009). Serotonergic modulation can, 
affect multiple aspects of behaviour, including aggressive 
responses, mood, impulsivity, locomotor activity, affili-
ation and feeding, in both invertebrates and vertebrates 
(e.g. Evenden and Ängeby-Möller 1990; Saadoun and 
Cabrera 2002; Tse and Bond 2002; Ögren et al. 2008; 
Schweighofer et al. 2008; Oliveira 2009; Crockett et al. 
2010; Mennigen et al. 2010; Kiser et al. 2012; Maximino 
et al. 2013; Björklund Aksoy 2017; Stettler et al. 2021), 
including birds (Steffens et al. 1997; Sperry et al. 2003; 
Dennis et al. 2008, 2013; dos Santos et al. 2015).

The role of serotonin (5-HT) in aggression and its rela-
tion to other behavioural dimensions, such as affiliation, 
feeding or movement, can be complex, with responses 
often depending on species’ identity, dosages used, social 
status or context (Hillegaart and Hjorth 1989; Evenden and 
Ängeby-Möller 1990; Steffens et al. 1997; Kravitz 2000; 
Harrison and Markou 2001; Saadoun and Cabrera 2002; 
Sperry et al. 2003; Gaworecki and Klaine 2008; Mennigen 
et al. 2010; Barry 2013; dos Santos et al. 2015; Hunting-
ford 2019). Key experimental evidence implicating 5-HT 
as mediator of aggression and other behaviours have come 
from studies with pharmacological manipulations, designed 
to selectively and/or generally facilitate or to inhibit the 
serotonergic pathways (Tse and Bond 2002; Sperry et al. 
2003; Dennis et al. 2008; Lorenzi et al. 2009; Lillesaar 
2011; Maximino et al. 2013; Björklund Aksoy 2017). For 
instance, enhancing serotonergic function has been found 
to diminish aggressiveness in mammals (Olivier et  al. 
1995; Adams et al. 1996, Lopez-Mendoza et al. 1998), 
birds (Fachinelli et al. 1996; Sperry et al. 2003), fish (Win-
berg et al. 2001; Clotfelter et al. 2007; Dzieweczynski et al. 
2016; Stettler et al. 2021), reptiles (Deckel 1996) as well 
as in crustaceans (Huber et al. 1997; Kravitz 2000). Sup-
pressing serotonergic action has revealed opposite effects, 
with treated individuals seemingly becoming more aggres-
sive, in a variety of model systems that include humans 
(Crockett et al. 2008, 2009), rodents (Lopez-Mendoza et al. 
1998; de Boer et al. 1999, 2000;), birds (i.e., Buchanan 

et al. 1994) and fish species (Clotfelter et al. 2007; Paula 
et al. 2015; Stettler et al. 2021). Unsurprisingly, some dis-
crepancies have been found between study species, treat-
ments, dosages used and experimental contexts, as seen 
in Stettler et al. (2021), for example, where the agonist 
8-OH-DPAT increased aggression in a cooperatively breed-
ing cichlid (Neolamprologus pulcher), and the antagonist 
WAY 100,635 decreased aggression.

Behaviours like foraging or locomotion can also be 
affected by 5-HT, for example with serotonergic function 
reducing feeding motivation (e.g., birds: Saadoun and 
Cabrera 2002; fish: Gaworecki and Klaine 2008; Mennigen 
et al. 2010), but here too some discrepant results have been 
found (Steffens et al. 1997; dos Santos et al. 2015). With 
serotonergic enhancers like 8-OH-DPAT (agonist) and fluox-
etine (a selective serotonin reuptake inhibitor, SSRI) either 
increasing or decreasing locomotor behaviour, depending on 
the study species (e.g.: rodents: Hillegaart and Hjorth 1989; 
Evenden and Ängeby-Möller 1990; Harrison and Markou 
2001; and fish: Kohlert et al. 2012; Barry 2013; Dziewec-
zynski et al. 2016).

5-HT activity is affected by a large family of receptors, 
with the 5-HT1A and 5-HT1B subtypes being particularly 
influential in the modulation of several behaviours, includ-
ing aggressiveness (e.g., humans: Nelson and Chiavegatto 
2001; rodents: Olivier et al. 1995; de Boer and Koolhaas 
2005; birds: Dennis et al. 2008). The 5-HT1A-like receptors 
are divided into two distinct groups based on their neural 
location: i) autoreceptors, known to suppress firing of sero-
tonergic neurons when activated, therefore reducing 5-HT 
activity (Sprouse and Aghajanian 1987; Polter and Li 2010; 
dos Santos et al. 2015); and ii) heteroreceptors, that, when 
activated, execute intracellular effects (Carey et al. 2004; 
Polter and Li 2010). However, in avian models, information 
on serotonergic mechanisms underlying behavioural media-
tion, receptors and specific pathways is yet sparse (Buchanan 
et al. 1994; Sperry et al. 2003; Dennis et al. 2008, 2013).

Since there is limited information on the influence of ser-
otonergic mediation in avian behaviour, we chose to focus 
on its effects in the common waxbills (Estrilda astrild), a 
highly gregarious bird found in flocks year-round, roosting, 
allopreening and bathing communally (Clement et al. 1993; 
Payne 2010). The common waxbill is, therefore, ideal to 
study the influence of 5-HT on behaviour, as this neuro-
transmitter may affect the drive to be social (Young 2013). 
Groups of common waxbills (hereafter, waxbills) form dom-
inance hierarchies with mildly steep slopes, meaning that 
dominant individuals may sometimes be displaced by lower 
ranked birds, and individual differences in aggressiveness 
can be studied with behavioural trials of competition for food 
(Funghi et al. 2015, 2018; Beltrão et al. 2021a). Although 
there are repeatable individual differences in aggressiveness 
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and social dominance, male and female waxbills are on aver-
age similarly aggressive and dominant (Funghi et al. 2015, 
2018; Beltrão et al. 2021a, b). In this study, we focused on 
5-HT1A receptors due to their widespread distribution in the 
brain (e.g., humans: Saulin et al. 2012; pigeon, Columba 
livia: dos Santos et al. 2015). We treated waxbills with 
8-OH-DPAT (a 5-HT1A receptor agonist), WAY 100,635 (a 
5-HT1A receptor antagonist) and fluoxetine (a SSRI that pre-
vents 5-HT reuptake) and observed their overall locomotor 
activity, feeding, aggressiveness and allopreening, to inves-
tigate serotonergic effects on behaviour. Following most 
existing studies, usually using non-avian models, we hypoth-
esized that the agonist 8-OH-DPAT and the SSRI fluoxetine 
would decrease waxbill aggressiveness and increase affilia-
tive interactions, while the antagonist WAY 100,635 would 
have opposite effects. Our study is one of the few done in 
birds and analysing both sexes.

Material and methods

Model species

We acquired 24 adult wild-type common waxbills (12 males 
and 12 females), aged approximately around 3–4 years, from 
certified breeders in September 2019 and housed them in a 
room with birdcages at CIBIO (Vairão, Portugal). The birds 
were ringed for individual identification and housed in six 
cages, in mixed-sex groups of 4 birds per cage (2 males and 
2 females), remaining in each designated cage until the end 
of experiments. These metal cages (88.5 × 30 × 40 cm) had 
4 perches and a gridded front (Fig. 1). The room had natural 
ventilation, temperature, and light, complemented with light 
from full spectrum lamps on the ceiling, on a cycle adjusted 
to the natural photoperiod (lights on ca. 30 min before sun-
rise, and off ca. 30 min after dawn). The birds were provided 

with ad libitum food (a commercial mix of seeds for exotics 
birds, Tropical Finches Prestige, Versele-Laga, composed 
by panicum yellow 42%, yellow millet 28%, japanese mil-
let 11.5%, canary seed 8,5%, red millet 5%, panicum red 
4%, niger seed 1%), water in two drinkers, mixed grit with 
crushed oyster shells (Grit with Coral Prestige, Versele-
Laga) on the cage floor, to provide a calcium supplement, 
and bathtubs were made available twice a week.

Manipulation of the 5‑HT system and experimental 
design

Experiments took place between September and Novem-
ber 2019, corresponding to the non-reproductive season 
of waxbills in the Iberian Peninsula (Sanz-Aguilar et al. 
2015; Beltrão et al. 2021c). Also, for consistency, experi-
ments took place during the morning, between 9:30am and 
12:45 pm, since birds are generally more active during the 
morning, and to avoid hormonal variations that occur along 
the day. Two hours before each behavioural test, we food 
deprived birds by removing all feeders from a cage. After 
1h40min of food deprivation, each bird of the same cage 
was briefly removed to receive an injection, with treatments 
scheduled in a balanced manner through time (see supple-
mentary material Table A.1). Each bird was then returned 
to its cage after the injection, and after 20 min (completing 
2 h of food deprivation) the behavioural test of competition 
for food started.

Each bird cage was tested once a week, with an interval 
of 7 days between tests on the same cage to prevent pos-
sible carry over effects of the treatments. There were seven 
rounds of tests, thus lasting 7 weeks in total, and the order of 
the treatments differed among cages in a balanced manner, 
so that date is not a confounding factor in the experiment 
(calendar in Table A.1). In one of the seven rounds, all 4 
birds (2 males and 2 females) of the same cage received 

Fig. 1  Photographs from: (A) the six test cages, each containing 4 individuals (2 males and 2 females) and (B) an individual cage during a test of 
competition for food
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control treatment (PBS). In the other six remaining rounds, 
one male and one female in the cage received PBS, and the 
other male and female of the same cage received an injec-
tion with either 8-OH-DPAT, fluoxetine or WAY 100,635. 
Each individual received the 8-OH-DPAT, fluoxetine and 
WAY 100,635 treatments only once (Table A.1). This hap-
pened in all the six birdcages. All treatments (control, 8-OH-
DPAT, fluoxetine and WAY 100,635) were administered by 
intramuscular injection on the right side of the chest, in the 
pectoral muscle. The volume of the injections was 20 µl, 
administered with insulin syringes of 0.5 ml (29G). Dos-
ages were based on previous studies (song sparrows (Melo-
spiza melodia morphna): Sperry et al. 2003; wild cleaner 
wrasses (Labroides dimidiatus): Paula et al. 2015), whose 
results indicated that the dosages were able to produce 
significant biological effects without causing harm to the 
individuals. These were as follow: 1 mg kg-1 of body mass 
of 5-HT1A receptor agonist 8-OH-DPAT (H8520 Sigma-
Aldrich, Darmstadt, Germany); 10 mg kg-1 of the selective 
5-HT reuptake inhibitor (SSRI) fluoxetine (F132 Sigma-
Aldrich); 1.5 mg kg-1 of the 5-HT1A receptor antagonist 
WAY 100,635 (W108 Sigma-Aldrich). These were diluted 
in 20 µl of phosphate-buffered saline (PBS). Dosages were 
adjusted to the mean body weight of waxbills (9 g), which 
we measured before the onset of experiments. The control 
injections consisted only of 20 µl of PBS.

Competition for food test

We used a behavioural test involving the competition for 
food to assess social aggressiveness, following protocols 
developed earlier for the waxbills (Funghi et al. 2015, 2018). 
After 2 h of food deprivation, we placed a feeder attached 
to the front grid in the centre of the cage (Fig. 1), and video 
recorded the behaviour of the birds for 15 min with a video 
camera (Canon LEGRIA HF M306) placed on a grid wall 
ca. 1.5 m in front of the test cage. From the recorded videos, 
we quantified five behavioural variables (data in Table A.2), 
using separate focal observations for each of the four indi-
viduals in the cage: 1) total duration at the feeder: the total 
time, in seconds, that the focal individual spent on all its vis-
its to the feeder. 2) latency to the feeder: the amount of time, 
in seconds, that the focal individual took to go to the feeder 
for the first time. 3) movements: the total number of changes 
in position between six different areas in the cage: each of 
the four perches, the feeder and the ground. Every movement 
to a different area, whether adjacent to the initial area or 
more distant, was counted as one movement, and movements 
within the same area were not counted. 4) allopreening: the 
total amount of time, in seconds, that an individual preened 
or groomed another individual. 5) aggressiveness: the total 
number of aggressive displays or attacks made by the focal 
individual (i.e., opening the beak towards another individual 

with stretched neck and spread wings, displacements, peck-
ing, chasing). Behavioural quantification of the videos was 
always performed by the same observer (BCS), using The 
Observer XT 11 (Noldus Information Techonology b.v., 
Wageningen, the Netherlands) and blind to the experimental 
treatment (names of the video files were coded).

Statistical analysis

Since two of the behavioural measures (e.g., ‘total duration 
at the feeder’ and ‘latency to the feeder’) both relate to feed-
ing and were correlated (-0.583, p < 0.001), we summarized 
them with a principal component analysis (PCA) from the 
correlation matrix. The first principal component (hereafter 
‘FeedingPC ‘) from this PCA explained 77.4% of variance 
and had a strong positive loading for ‘Total duration at the 
feeder’ (0.890) and a strong negative loading for ‘Latency 
to the feeder’ (-0.890). High scores indicate more time spent 
at the feeder and a lower latency to go there for the first 
time. The remaining behavioural variables were not strongly 
mutually correlated (all |r|≤ 0.55, using data from the control 
treatments; see Table A.3) and, since they refer to different 
behaviours and hypotheses, they were analysed separately. 
Inspection of histograms showed positively skewed distribu-
tions for ‘allopreening’ and ‘aggressiveness’, so they were 
log(x + 1) transformed to approach normality. The variables 
‘movements’ and ‘FeedingPC’ showed approximately nor-
mal distributions. Data for ‘FeedingPC’ can also be found 
in Table A.2.

We ran general linear mixed models (GLMMs), sepa-
rately for each of the four behavioural variables (‘Feed-
ingPC’, ‘movements’, ‘allopreening’ and ‘aggressiveness’) 
to test for within-individual differences between the control 
treatment and any of the serotonergic treatments, using the 
lmer() function in the R package “lme4” (v.1.1–23; Bates 
et al. 2014). In each GLMM, a behavioural trait was the 
dependent variable, treatment (control, 8-OH-DPAT, fluox-
etine or WAY 100,635) was included as a fixed factor, cage 
identity was included as a random factor, to account for 
possible non-independence of data from within the same 
cage, and individual identity was included as a random fac-
tor nested within cages, to control for between-individual 
differences in behaviour. As controls, we only used the data 
from tests where all four individuals in a cage received PBS 
injection. We report the GLMM contrasts (i.e., the simple 
coefficients, without having run an ANOVA on the GLMM), 
which tests for differences between the reference level of the 
treatment (the control treatment) and each of the remain-
ing levels (8-OH-DPAT, fluoxetine or WAY 100,635). We 
examined residuals using the command check_model() in 
the R package “performance” (v 0.7.0; Lüdecke et al. 2020), 
and in all models residuals were approximately normally 
distributed, homoscedastic and with homogeneous variance 
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in relation to fitted values. Since we tested three different 
compounds, we only consider an effect statistically signifi-
cant when P is smaller than the Bonferroni-adjusted criterion 
for statistical of 0.05/3 = 0.017. All analyses were conducted 
in R v. 4.0.0 (R Core Team 2020). Since male and female 
waxbills had very similar responses to our experimental 
treatments (supplementary Fig. A.1) we report analyses for 
the two sexes together.

Results

Compared to the control treatment, treatment with the SSRI 
fluoxetine was associated with a lower FeedingPC score (i.e., 
longer latency to go to the feeder for the first time, and less 
time at the feeder;  t69 = -2.726; p = 0.008, Fig. 2A; Table 1). 
FeedingPC scores when treated with 8-OH-DPAT or WAY 
100,635 did not differ significantly from the control treat-
ment (Table 1).

Treatment with the SSRI fluoxetine decreased movements 
compared to the control  (t69 = -3.428; p = 0.001, Table 1, 
Fig. 2B). The number of movements when treated with 
8-OH-DPAT or WAY 100,635 did not differ significantly 
from the control treatment (Table 1, Fig. 2B).

Compared to the control, f luoxetine significantly 
decreased aggressive behaviour  (t69 = -2.819; p = 0.006, 
Table 1, Fig. 2C), while treatments with 8-OH-DPAT and 
WAY 100,635 did not change aggressive behaviour (Table 1, 
Fig. 2C). Finally, the amount of allopreening was not signifi-
cantly affected by any of the treatments (Table 1, Fig. 2D).

Fig. 2  Effects of the com-
pounds tested comparatively 
to the control. (A) Feeding 
response (FeedingPC); (B) 
Movements; (C) Aggressive-
ness; (D) Duration of allopreen-
ing (in seconds). The mean and 
the standard error are repre-
sented for each. Significance 
is indicated as the contrast 
compared with the control 
treatment: * P < 0.05/3 = 0.17

Table 1  GLMM for the different behaviours analysed in the competi-
tion for food test

Note: Positive values of t indicate increases relative to the control 
treatment; negative values indicate decreases. Degrees of freedom are 
141 except for the effect of sex, which are 22, and the total number of 
behavioural assays was 168. Significant P values are indicated in bold 
(the threshold for significance for the effects of treatments is 0.05 / 
3 = 0.017)

β SE t P

FeedingPC
8-OH-DPAT 0.321 0.337 0.953 0.344
Fluoxetine -0.919 0.337 -2.726 0.008
WAY 100,635 -0.36 0.337 -1.068 0.289
Sex 0.391 0.312 1.255 0.223
Movements
8-OH-DPAT 16.625 9.663 1.721 0.09
Fluoxetine -33.125 9.663 -3.428 0.001
WAY 100,635 -7.917 9.663 -0.819 0.415
sex 10.875 8.979 1.211 0.242
Aggressiveness
8-OH-DPAT 0.229 0.347 0.661 0.511
Fluoxetine -0.977 0.347 -2.819 0.006
WAY 100,635 -0.408 0.347 -1.176 0.244
sex 0.645 0.271 2.385 0.029
Allopreening
8-OH-DPAT -0.847 0.538 -1.575 0.120
Fluoxetine 0.089 0.538 0.166 0.869
WAY 100,635 -0.604 0.538 -1.124 0.265
sex 0.413 0.573 0.721 0.479
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Discussion

We tested if short term changes in 5-HT activity influenced 
waxbills aggression, feeding, movements and allopreen-
ing. As predicted, we found that treatment with fluoxetine, 
a selective 5-HT reuptake inhibitor (SSRI), resulted in an 
overall decrease of waxbill’s aggressive behaviour, activ-
ity and feeding. However, treatment with 8-OH-DPAT, 
a selective 5-HT1A receptor agonist, and WAY 100,635, 
a 5-HT1A receptor antagonist, did not show discernible 
effects on waxbill behaviour. In what follows, we discuss 
serotonergic effects for the studied behaviours separately.

Fluoxetine-treated waxbills decreased activity levels 
compared to controls. Similar effects have been demon-
strated in some fish species, in which short-term exposure 
to fluoxetine suppressed activity (Beulig and Fowler 2008; 
Kohlert et al. 2012; Barry 2013; Dzieweczynski et al. 
2016). These instances of hypoactivity may be interpreted 
as anxiety-like behaviour because fluoxetine is not usually 
described as sedative. Anxiety is a secondary response to 
stress, which may take many forms, occurring when the 
stressor is absent or not clearly identified (reviewed in Fos-
sat et al. 2014; Bacqué-Cazenave et al. 2020). In our case, 
perhaps the test of competition for food (including the food 
deprivation period and handling) is a stressor whose effect 
serotonin action may intensify. Several studies in fish and 
rodent species, have also reported anxiogenic-like effects 
following acute treatment with SSRIs (Griebel et al. 1994; 
Sánchez and Meier 1997; Maximino et al. 2013; Theo-
doridi et al. 2017). Acute rises in 5-HT can either increase 
(Griebel et al. 1994; Bagdy et al. 2001) or decrease (Inoue 
et al. 1996, 2004; Sánchez and Meier 1997) anxiety-like 
responses (Grillon et al. 2007), because 5-HT affects mul-
tiple brain structures that mediate anxiety via different 
pathways and receptors (Graeff et al. 1997; Grillon et al. 
2007). Fluoxetine, as a SSRI, does not act specifically on 
receptors but rather on 5-HT overall availability, thus it 
may, in theory, interact with all 5-HT receptors (Shiray-
ama et al. 1993; Sánchez and Meier 1997). For instance, 
Bagdy et al. (2001) suggested that the anxiogenic-like 
responses after a single dose of SSRIs, like fluoxetine, 
could be attributable to the activation of 5-HT2C receptors 
in the amygdala (Westenberg and den Boer 1988; Grie-
bel et al. 1994; Burghardt et al. 2004, 2007; Grillon et al. 
2007) as the SSRI fluoxetine has been noted to be related 
with these receptor subtypes (Jenck et al. 1994; Pälvimäki 
et al. 1996; Bonhaus et al. 1997). Other studies support 
the affinity of the SSRI for the 5-HT2 receptor family 
(Hyttel 1994; Sánchez and Meier 1997; Peng et al. 2014), 
implying that it acts as an antagonist for the 5-HT2C recep-
tors (Sánchez 1996; Sánchez and Meier 1997). Thus, our 
results might be attributable to pathways other than that 

involving the 5-HT1A receptor, as the SSRI fluoxetine may 
also present high affinity for 5-HT2C receptors. While at 
this point we cannot empirically demonstrate an influence 
of the 5-HT2C pathways in waxbill activity levels, we may 
nonetheless suggest that this hypothesis merits future addi-
tional research. Perhaps this link between 5-HT shifts and 
anxiety response enhances animals’ defence mechanisms, 
which may serve to protect them from numerous sources 
of dangers and inform other conspecifics of possible risks 
(Dickinson and Koenig 2018).

Unlike the case for the SSRI fluoxetine, we found that nei-
ther treatment with 8-OH-DPAT, a 5-HT1A receptor agonist, 
nor with the antagonist WAY 100,635 affected movement. 
5-HT can modulate activity in a rather complex manner, 
with similar dosages or similar exposure times sometimes 
exerting distinct behavioural responses (reviewed in Bac-
qué-Cazenave et al. 2020; Flaive et al. 2020), which may 
explain why in our results only some 5-HT pathways but not 
all affected movement. For instance, in rodents, the activa-
tion of the 5-HT1A receptor usually produces anxiolytic-like 
effects (stimulate locomotor behaviour), depending on the 
site of injection and the type of 1A receptors being activated 
(Hillegaart and Hjorth 1989; Evenden and Ängeby-Möller 
1990; Harrison and Markou 2001).

Regarding feeding behaviour, waxbills treated with the 
SSRI fluoxetine took longer to reach and spent less time at 
the feeder, similarly to previous results from studies in fish 
species (Gaworecki and Klaine 2008; Mennigen et al. 2010; 
Weinberger and Klaper 2014; Dzieweczynski et al. 2016). 
Similarly, to the results with movement, no other treatment 
(8-OH-DPAT and WAY 100,635) changed the feeding 
behaviour of waxbills. The absence of significant effects by 
WAY 100,635 on feeding response has been reported before, 
for example with pigeons (dos Santos et al. 2009).

In some species, treatment with 8-OH-DPAT decreased 
food intake (pigs: Ebenezer et al. 1999; chickens: Saadoun 
and Cabrera 2002), while it was also seen to increase food 
intake (pigeons: Steffens et al. 1997; dos Santos et al. 2015). 
5-HT has been associated with an overall inhibitory effect 
of feeding (Denbow et al. 1982; Blundell 1984; Baranyiová 
1990; Ebenezer et al. 1999; De Vry and Schreiber 2000; 
Saadoun and Cabrera 2002), but with little evidence for a 
relevant participation of the 5-HT1A receptor (but see Reis 
and Marinho 2005, for effects on quails Coturnix japonica, 
and Mancilla-Diaz et al. 2005, for brain region-specific 
effects on rats Rattus novergicus), thus explaining the 
absence of effects in waxbills’ feeding behaviour, for both 
the 5-HT1A receptor agonist and antagonist (8-OH-DPAT 
and WAY 100,635, respectively).

None of our experimental treatments affected the 
amount of allopreening but increasing serotonergic 
availability with fluoxetine resulted in fewer aggressive 
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interactions. This latter result agrees with the meta-
analysis of Carrillo et al. (2009), regarding the effects 
of pharmacological increases in 5-HT levels (with either 
SSRIs, 5-hydroxytryptophan, L-tryptophan, or 5-HT) on 
aggressive behaviour across vertebrates (birds, dogs, fish, 
hamsters, mice, rats, and monkeys), showing the overall 
inhibitory effect of higher levels of 5-HT on aggression. 
Since we found that fluoxetine also inhibited waxbill gen-
eral activity and feeding, besides their aggressiveness, 
we cannot discard a general sedative effect of this drug 
in our birds. For example, in gerbils (Meriones unguica-
latus), the effects of fluoxetine on social behaviour are 
influenced by previous housing conditions, with proso-
cial effects observed in individuals that were previously 
housed singly and sedative effects in individual previously 
maintained in groups (Hendrie et al. 2003). An alternative 
explanation is that fluoxetine produced anxiogenic effects, 
and in this way inhibited ongoing behaviours. In several 
species, acute SSRIs usually produce an anxiogenic-like 
effects in different behavioural paradigms (e.g., mouse: 
Mombereau et al. 2010; rat: Greenwood et al. 2008; fish: 
Maximino et al. 2013).

The inhibitory effect of acute fluoxetine on aggres-
sion has been most often attributed to the activation of 
both 5-HT1A and 5-HT1B autoreceptors, in several spe-
cies (Piñeyro and Blier 1999; Sperry et al. 2003; Gril-
lon et al. 2007; Beulig and Fowler 2008; Dennis et al. 
2008; Gaworecki and Klaine 2008; Mennigen et al. 2010; 
Homberg 2012; Kohlert et al. 2012; Barry 2013), leading 
to a reduction of the firing rate of serotonergic neurons 
(Piñeyro and Blier 1999; Grillon et al. 2007; Homberg 
2012), but also to its influence on the 5-HT2C pathway (de 
Moura et al. 2022). The activation of 5-HT1A receptors by 
treatment with a 5-HT1A receptor agonist has been shown 
to decrease aggression in some species (hamsters: Joppa 
et al. 1997; song sparrows: Sperry et al. 2003; fighting 
fish: Clotfelter et al. 2007;), although there are also stud-
ies where it increased aggression (chickens: Dennis et al. 
2008; cichlid fish: Stettler et al. 2021). Also, the 5-HT1A 
receptor antagonist was shown to increase aggressiveness 
of treated bluestreak cleaner wrass females (Labroides 
dimidiatus) towards same-sex conspecifics (Paula et al. 
2015), although other reports did not find similar effects 
(Sánchez 1997; Lopez-Mendoza et al. 1998; Bell et al. 
1999; Clotfelter et  al. 2007). In our experiments with 
waxbills, both 8-OH-DPAT and WAY 100,635 (5-HT1A 
receptor agonist and antagonist, respectively) did not 
affect aggression. In general, the lack of an effect for both 
treatments could be due to species differences (i.e., no 
participation of the 5-HT1A receptor on aggression in wax-
bills, 5-HT baseline levels), dose effects, or procedural 
differences.

In conclusion, fluoxetine treatment had a consistent effect 
in decreasing activity, feeding and aggressiveness in wax-
bills, producing an overall anxiogenic-like effect. No signifi-
cant effects of 8-OH-DPAT and WAY 100,635 were found. 
Since 8-OH-DPAT and WAY 100,635 affect mainly 5-HT1A 
receptor pathways, it is possible that the effects of fluoxetine 
that we found were due to its action on the 5-HT2C receptor 
pathways instead. Our results may also be partially depend-
ent on the dosage applied, resulting in hypoactivity under 
the effect of fluoxetine (Dagh 2013). Future studies should 
investigate potential effects when using different dosages, 
distinct time action frames, and other receptors that may also 
share a role in waxbills’ aggressive-like response, specifi-
cally on 5-HT2C receptor family.
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