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Abstract 
Defensive strategies, like other life-history traits favored by natural selection, may pose constraints on reproduction. A 
common anti-predator defense strategy that increases immediate survival is autotomy—the voluntary release of body parts. 
This type of morphological damage is considered to impose future costs for reproduction and fitness. We tested an alterna-
tive hypothesis that animals are robust (able to withstand and overcome perturbations) to this type of damage and do not 
experience any fitness costs in reproductive contexts. We explored the effects of experimental leg loss on the reproductive 
behavior of one species of Neotropical Prionostemma harvestmen. These arachnids undergo autotomy frequently, do not 
regenerate legs, and their courtship and mating necessitate the use of legs. We assessed the effect of losing different types 
of legs (locomotor or sensory) on courtship behavior and mating success in males. We found no differences in the mating 
success or in any measured aspect of reproductive behavior between eight-legged males and males that experienced loss of 
legs of any type. Additionally, we found that morphological traits related to body size did not predict mating success. Over-
all, our experimental findings support the null hypothesis that harvestmen are robust to the consequences of morphological 
damage and natural selection favors strategies that increase robustness.

Significance statement
In order to survive encounters with predators, animals have evolved many defensive strategies. Some of those behaviors, 
however, can come with a cost to their overall body condition. For example, some animals can voluntarily lose body parts 
(tails, legs, etc.) to escape. This process can then affect many aspects of an animal’s life, including reproduction. In a group of 
harvestmen (daddy long-legs) from Costa Rica, we tested the hypothesis that males are robust to the potential consequences 
of losing legs, and will not experience costs. We found that males that lost either legs used for locomotion or for sensory 
perception reproduced in the same way as animals with all of their legs. Consequently, we demonstrate that these arachnids 
are able to withstand the loss of legs with no effects on reproduction.
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Introduction

Defensive strategies might compromise the body condition 
of animals, which can then affect their ability to reproduce. 
This dynamic can result in trade-offs between natural and 
sexual selection if strategies that ensure survival interfere 
with the ability to mate (Chenoweth et al. 2008; Sharma 
et al. 2012). On the one hand, defensive strategies that allow 
animals to escape predators and survive are favored by natu-
ral selection. On the other hand, behaviors and other traits 
that favor the likelihood of mating are favored by sexual 
selection. Previous work has explored trade-offs in morpho-
logical, physiological, and behavioral traits (Endler 1995; 
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Verhulst et al. 1999; Basolo and Alcaraz 2003). It has been 
found that visual ornaments and weapons (i.e., horns, ant-
lers) may increase the risk of predation, even though those 
structures are crucial in competition for mates (Zuk and 
Kolluru 1998). For example, in environments with preda-
tors, male fishes had smaller sperm-transfer organs than in 
environments without predators (Langerhans et al. 2005). 
Similarly in male fireflies, higher signaling rates increased 
the likelihood of being predated (Woods et al. 2007), even 
though more conspicuous courtship signals are preferred by 
females (Branham and Greenfield 1996).

Certain defensive strategies that are favored by natural 
selection can compromise the overall body condition of an 
animal. To escape predators, many animal taxa have evolved 
the ability to voluntarily detach an appendage before or dur-
ing a predator attack (Roth and Roth 1984; Fleming et al. 
2007; Emberts et al. 2019). This defense strategy—known as 
autotomy—can increase immediate survival (Emberts et al. 
2017, 2019). However, autotomy is often assumed to yield 
long-term consequences on fitness, as detached append-
ages or body parts often play a role in courtship, mating, 
or sperm transfer (reviewed in Emberts et al. 2019). Evi-
dence regarding the effects of autotomy on reproduction is 
equivocal nonetheless, as the loss of body parts is known to 
bring negative, neutral, or even positive effects to reproduc-
tion (Emberts et al. 2019; Michaud et al. 2020; Cirino et al. 
2021; García-Hernández and Machado 2021; Talavera et al. 
2021). For example, after ‘tail’ autotomy, female scorpions 
experienced decreased fecundity, whereas males did not 
experience decreases in mating success (García-Hernández 
and Machado 2021). On the other hand, claw autotomy did 
not affect mating success in male crabs (McCambridge et al. 
2016). Additionally, males and females of Coreidae insects 
invested more in testes growth after leg loss (Joseph et al. 
2018; Somjee et al. 2018; Miller et al. 2019), and autoto-
mized males produced more offspring than non-autotomized 
males (Cirino et al. 2021). The consequences of autotomy  
occur because autotomized individuals show altered 
courtship displays and/or diminished locomotor capabili-
ties (Bateman and Fleming 2006; Emberts et al. 2019; 
García-Hernández and Machado 2021).

Alternatively, animals may have evolved robustness to 
variation in their own bodies so that autotomy does not affect 
reproduction. Robustness is the persistence of a behavior 
under environmentally induced perturbations (Kitano 
2004). The robustness hypothesis then poses that animals 
have evolved mechanisms and traits to operate in the face 
of variable and challenging genetic and environmental con-
ditions (Nijhout et al. 2017). For this study, we interpret 
robustness in autotomy as the ability of animals to contend 
(i.e., successfully mate) with variation in body form (i.e., 
leg loss and altered body plan caused by autotomy). Robust-
ness and adaptability to bodily variation have been explored 

in the fields of biomechanics (Mongeau et al. 2013; Clark 
and Triblehorn 2014; Jayaram and Full 2016; Jayaram et al. 
2018), systems biology (Kitano 2007; Félix and Wagner 
2008; Lesne 2008; Nijhout et al. 2017), and even in the field 
of disability studies (Thomas 2007; Snyder and Mitchell 
2010; Goodley 2016; Taylor 2017). Here, we expand on our 
previous work (Escalante et al. 2020, 2021; Escalante and 
Elias 2021), and formally test one robustness hypothesis in 
the context of behavioral ecology.

We study the effects of leg autotomy on mating success 
in Prionostemma, a Neotropical Sclerosomatidae harvest-
men. This group of arachnids are ideal to explore this topic  
because autotomy is frequently high (Guffey 1999;  
Escalante et al. 2013, 2020, 2021; Domínguez et al. 2016; 
Powell et al. 2021a, b). Unlike most autotomizing animals, 
harvestmen do not regenerate legs before or after sexual 
maturity (Gnaspini and Hara 2007). In harvestmen, legs 
play a crucial role in reproduction for males (Willemart 
et al. 2006; Fowler-Finn et al. 2014, 2018, 2019; Machado  
et al. 2015). The North American Leiobunum males perform 
behaviors like leg wrapping and tangling during courtship 
and mating (Fowler-Finn et al. 2014; Sasson et al. 2020). 
These behaviors are crucial for mating (Fowler-Finn et al. 
2014). In our study species, individuals use forelegs for 
extensive leg tapping behaviors during mating interactions. 
The sexual behavior of a congener of our study species has 
also been observed and similarly relies on leg behaviors dur-
ing mating (Classen-Rodríguez, unpubl.). Altogether, these 
behavioral and morphological features suggest that there is 
strong selection on harvestmen to be robust and withstand 
the potential consequences of leg loss on reproduction.

Sclerosomatid harvestmen have two types of legs: 
locomotor and sensory (Fig. 1). Six legs (from pairs I, 
III, and IV) are locomotory and their primary function 
is movement (Sensenig and Shultz 2006; Escalante et al. 
2019), but they are also used during mating interactions to 
position and sometimes restrain mates (Fowler-Finn et al. 
2014). The second pair of legs are modified and special-
ized in sensory perception (Shultz and Pinto-da-Rocha 
2007; Willemart et al. 2009). Sensory legs are used to 
probe the environment and to potentially detect and iden-
tify other individuals (Sensenig and Shultz 2006; Escalante 
et al. 2019). Interestingly, both locomotor and sensory legs 
are involved in courtship and mating (Fowler-Finn et al.  
2014), and both leg types are frequently autotomized  
in Prionostemma harvestmen (Domínguez et  al. 2016; 
Escalante et al. 2020; Escalante and Elias 2021).

We tested the null hypothesis that harvestmen are behav-
iorally robust to the potential consequences of leg loss on 
mating success and mating behavior agains the alternative 
hypothesis of reproductive costs of autotomy. We experimen-
tally induced autotomy of locomotor or sensory legs on eight-
legged males. This procedure allowed us to control for types 
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of legs missing and the time since autotomy. We ran mating 
trials with eight-legged females and males with experimen-
tally induced autotomy (as well as eight-legged males) and 
recorded the outcome of the trials (no courtship, rejection, 
or mating, see definitions below). This allowed testing a first 
prediction of the robustness hypothesis: that experimental leg 
loss of any type will not affect male mating success. We also 
quantified the duration of pre-copulatory interactions and mat-
ing behaviors in the trials. A second prediction of the robust-
ness hypothesis we tested was that eight-legged and autoto-
mized males will spend similar amounts of time performing 
pre-copulatory and mating behaviors. A third prediction we 
tested was that autotomized males would perform the same 
leg behaviors in courtship and mating with the remaining legs. 
With this framework, we explored whether behavioral plastic-
ity may be the mechanism for robustness, allowing harvest-
men to avoid any negative consequences of autotomy.

Methods

Study site and species

We conducted fieldwork at Las Cruces Biological Station, 
province of Puntarenas, Costa Rica (8° 47’ N, 82° 57’ W, 

1200 m in elevation) from June 20 to August 08, 2017. We 
studied one undescribed species of Prionostemma (Sclero-
somatidae: Opiliones) from Costa Rica for which previous 
research has examined their ecology and behavior (Grether 
and Donaldson 2007; Wade et al. 2011; Proud et al. 2012; 
Grether et al. 2014; Domínguez et al. 2016; Escalante and 
Elias 2021). To be consistent with that previous research 
(Proud et al. 2012; Escalante et al. 2019, 2020), we refer to 
our study species as ‘sp.5.’ Voucher specimens were depos-
ited in the Essig Museum of Entomology at UC Berkeley.

Field surveys, collection and animal care

To observe mating interactions in the field and note if inter-
acting males and females had eight legs or if they were miss-
ing legs, we conducted nighttime field surveys. We searched 
for harvestmen in the forest floor from 20:00 to 0:00 h for 25 
nights, as tropical harvestmen are active at nighttime (Proud 
et al. 2012). We sorted individuals as males or females based 
on their behavior and by using external morphological prox-
ies (body size and shape). To verify that the external mor-
phology proxies correspond with internal genitalia (the pres-
ence of fully developed ovipositor or penis), we dissected 
ten individuals of each putative sex. In the surveys, we col-
lected adult eight-legged animals for laboratory trials. We 
housed the collected harvestmen in 20 × 10 × 15 cm terraria 
in a laboratory with a natural light regime (12 h/12 h) and 
continuous airflow. Each terrarium held 5 individuals of the 
same sex at a given time. We added fresh leaves and short 
branches for them to perch. We fed harvestmen with fruits, 
dry cat food, and dead insects once every day. Individuals 
were housed for 12 to 72 h before the trials.

Experimental autotomy treatments

To experimentally test the effect of the loss of different leg 
types (locomotor and sensory) on mating behavior and the 
mating success of males, we experimentally induced autot-
omy in a subset of the eight-legged harvestmen collected in 
the field. For this, we held the animal by most of its legs and 
firmly held the base of the target leg’s femur with forceps. 
Letting go of all legs except the target leg resulted in the 
individuals immediately releasing the leg. Autotomy was 
induced 1.5–2 h before the trials, which allowed us to control 
for the time since leg loss, and to ensure that their overall 
condition and behavior was unaffected (as done in Escalante 
and Elias 2021). Briefly, to quantify this we observed their 
movement, leg probing around the terrarium, and posture 
before and immediately after autotomy, as well as immedi-
ately before the mating trials.

We conducted 135 single-choice mating trials in which 
all females were eight-legged, but males varied in their leg 
condition. Our aim was to reflect the intensity of autotomy in 
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Fig. 1  Behavioral outcomes of the trials testing for the effect of the 
experimental loss of two different types of legs of males on the repro-
ductive behavior of the Neotropical Prionostemma sp.5 harvestmen. 
The number of trials that ended in each type of outcome did not differ 
between treatments (see 9 for further statistical details). The top left 
diagram represents a harvestmen in top view (its proximal side is to 
the right) and the four leg pairs and types (locomotor or sensory) are 
labeled
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the field for this species. Of those trials, we excluded seven 
trials from the analyses because the harvestmen did not con-
tact each other. Males were randomly assigned to three treat-
ments: (1) males missing two locomotor legs (from pair I, 
Fig. 1) (n = 41 trials), (2) males missing the two sensory legs 
(pair II, Fig. 1) (n = 43), and (3) eight-legged sham control 
males, which we handled in the same way but without induc-
ing autotomy (n = 44) (Fig. 1). All individuals were used 
only once. In this population, 53% of 574 harvestmen were 
missing at last one leg (Escalante and Elias 2021). As for 
the type of leg missing, 22% of all individuals were missing 
one locomotor leg, 10% were missing two or three locomotor 
legs, 13% were missing one sensory leg, and 2% two sensory 
legs (Escalante and Elias 2021). We induced autotomy of 
locomotor legs I and not of legs III or IV, as the forelegs are 
used in sexual behavior, whereas hindlegs are not. Addi-
tionally, we chose these treatments to be consistent with the 
experimental design of our previous research that shows that 
losing two legs is the threshold for changes in locomotor 
performance (Escalante et al. 2020), oxygen consumption 
(Escalante et al. 2021), and habitat use (Escalante and Elias 
2021). We thus consider that our experimental treatments 
allowed us to test for the effect of different types of autotomy 
on mating behavior and mating success.

Mating trials

We conducted trials in transparent circular arenas (20 cm 
diameter, 30 cm high) with white paper as a substrate, as in 
Fowler-Finn et al. (2014). Females were acclimated to the 
arena for 5 min, and then, the male was placed in the arena. 
We recorded the interactions with a GoPro camera (HERO 4 
Edition; GoPro, San Mateo, CA, USA) recording at 120 fps 
for later behavioral analyses. Trials were conducted between 
19:00 and 0:00 h under dim red lights and lasted until copu-
lation occurred (in which case we recorded the whole pro-
cess) or 30 min passed.

The outcome of the trials was visually scored as: (a) no 
courtship, if the males did not display any courtship behav-
ior after having had contact with the female. In Scleroso-
matidae harvestmen, the courtship stage includes extensive 
tapping of the males as they contact the female, using their 
legs and pedipalps (the anterior pair of appendages, located 
between the mouth parts and the first pair of legs). Once 
both are in contact and in a face-to-face orientation, the male 
extends his mouthpart appendages (“chelicerae”) above the 
dorsal side of the female (Fowler-Finn et al. 2014). The male 
then attempts to hook his chelicerae to the basal segments 
of the female legs II (coxae) (Fowler-Finn et al. 2014). (b) 
Rejection, if the male courted and achieved chelicerae-coxal 
hooking but the female showed behaviors associated with 
rejection—the female lowered the proximal ventral side 
of her body to be in close contact with the ground, which 

restricts mating (Fowler-Finn et al. 2014; Sasson et al. 2020, 
Classen-Rodríguez unpubl.). (c) Mating, when we observed 
intromission—penis insertion—(Fowler-Finn et al. 2014, 
2018). We consider intromission a good proxy of fitness in 
these harvestmen (Macías-Ordóñez et al. 2010; Machado 
et al. 2015).

To further quantify the potential effects of autotomy on 
mating interactions, we extracted two behaviors from videos: 
(1) the length of the pre-copulatory interaction (hereafter 
referred to as ‘interaction’), measured as the time between 
the first leg contact and either a clear rejection from the 
female or the start of the genital intromission; and (2) mat-
ing length, measured as the time from the start to the end of 
the intromission, when the pair separated. Since our study 
involved observing two focal animals in a controlled setting, 
it was not possible to record data blindly.

Morphological predictors of mating success

Variation in certain phenotypic traits influences sexual 
behavior and mating success in other North American 
Leiobunum harvestmen (Fowler-Finn et  al. 2014, 2018, 
2019; Sasson et al. 2020). To examine the influence of mor-
phological traits, we measured the total length of the left leg 
I in males and females, the male pedipalp femur length, and 
the dorsal body area of both males and females (which was 
obtained by tracing the perimeter of each animal). With the 
latter two measurements, we calculated the female to male 
body area ratio to have a proxy for body size that incorpo-
rated size variation within the pairs. Measurements were 
done to the nearest 0.05 mm on preserved specimens (95% 
ethanol) using a camera attached to a dissection scope (Leica 
M205 FA), and measured using the Leica Application Suite 
software. We selected these morphological traits following 
previous studies (Fowler-Finn et al. 2014; Kilmer and Rod-
ríguez 2017; Escalante et al. 2019).

Data analyses

We tested for the effect of the male leg condition treatments 
on the outcome of mating interactions by performing a mul-
tinomial logistic regression. We used the trial outcome (no 
courtship, rejection, or mating) as the categorical response 
variable, and the leg condition treatment as a categorical 
predictor variable. The length of males’ leg I, the male pedi-
palp femur length, and the female/male body size ratio were 
included as continuous predictors. In this model, we also 
included the interactions between the predictor variables.

Given that we tested a null hypothesis of no effect, we 
calculated the effect size and the statistical power of the 
odds ratio of our comparisons (Cohen 1988; Nakagawa 
and Cuthill 2007). We made the three paired comparisons 
between the three experimental treatments (eight-legged 
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males, males missing locomotor legs, and males miss-
ing sensory legs). We compared the number of trials that 
resulted in mating relative to the sample size of each treat-
ment. Then, we calculated the odds ratio and the r statistic 
from a contingency table (Nakagawa and Cuthill 2007) com-
posed of the two treatments. We interpreted the effect sizes r 
of < 0.20 as small, 0.21–0.80 as medium, and > 0.81 as large 
(Cohen 1988; Nakagawa and Cuthill 2007). Next, we calcu-
lated the power (1–β > 0.95) of each paired comparison as 
delineated in Rosner (2015). In addition to calculating these 
two parameters for our findings, we calculated the effect size 
and power of the difference size that our sample size would 
have allowed to detect. Comparing both scenarios, we were 
able to infer strong evidence for the absence of an effect.

We also tested the effects of the experimental male’s leg 
condition on quantitative features of mating behavior. We 
ran one generalized linear model (GLM) with leg condition 
treatments as a predictor and the duration of pre-copulatory 
interactions as a response variable. We ran another GLM 
using leg condition treatment as predictor variables and mat-
ing duration as a response variable. Lastly, we ran a logistic 
regression using the duration of pre-copulatory interactions 
as a predictor variable and the trial outcome (interaction or 
mating) as response variable.

To control for potential between-treatment phenotypical 
variation, we ran three additional GLMs using leg condition 
treatment as the predictor variable and each morphologi-
cal measure (male leg I length, pedipalp femur length, and 
female to body size ratio) as a response variable. Addition-
ally, we ran correlation tests between the three morphologi-
cal measures. All tests were run on R (Team 2019). The 
complete and raw dataset is available on Dryad here.

Results

In the field, we observed 10 mating interactions that 
included all combinations of leg conditions (both eight-leg-
ged and autotomized males). In the laboratory experiment, 
the leg condition of males did not predict the outcomes of 
mating interactions (no courtship, rejection, or mating). 
Males missing locomotor or sensory legs were as likely to 
perform courtship as eight-legged males, and the rates of 
mating success were similar across the three leg condition 
treatments (20%, 17%, and 23%, respectively) (multinomial 
logistic regression: Estimate = -3.50 ± 3.12, P = 0.91, Fig. 1). 
With our sample size (total N = 135 individuals), we had 
adequate power (1–β > 0.80) to detect differences even of 
small size (e.g., effect size: r = 0.20). If we had observed 
differences between any of our groups, our estimate of effect 
size r as well as the statistical power to detect differences 
between treatments would have been low (eight-legged 
males and males missing locomotor legs: N = 85, effect 

size: r = 0.04, power: 1–β = 0.054; eight-legged males and 
males missing sensory legs: N = 87, effect size: r = 0.03, 
power: 1–β = 0.053; males missing locomotor legs and males 
missing sensory legs: N = 84, effect size: r = 0.08, power: 
1–β = 0.10).

The outcome of the mating interactions was not pre-
dicted by the length of male leg I (Estimate = 2.88 ± 2.74, 
P = 0.29), the male pedipalp femur length (Esti-
mate = 1.53 ± 1.407, P = 0.27, Fig. 2), or the female/male 
body area (Estimate = 8.99 ± 1.05, P = 0.28) (Table  1). 
None of the interaction terms of the models between 
leg condition treatments and the morphological meas-
ures were significant (treatment*length of leg I: Esti-
mate = 4.07 ± 5.29, P = 0.99, treatment*pedipalp femur size: 
Estimate = 1.47 ± 2.58, P = 0.95, and female/male body area: 
Estimate = -1.97 ± 1.65, P = 0.90).

The experimental loss of different types of legs (either 
locomotor or sensory) had no effect on any measured feature 
of reproductive behavior. The duration of pre-copulatory 
interactions did not differ between treatments (Fig. 3), and 
was not affected by the male leg I length or the female/male 
body area (Table 2). Interestingly, we found a marginally 
significant trend that males with smaller pedipalp femur 
length were involved in trials with longer pre-copulatory 
interactions (correlation coefficient between pedipalp femur 
length and interaction length: r = -0.23, Table 2). Addition-
ally, the mating duration did not differ between the leg con-
dition treatments and was not affected by any morphological 
variable (Table 2, Fig. 3). Finally, whether the interactions 
resulted in rejection or in mating was not predicted by the in 
duration of the pre-copulatory interaction (logistic regres-
sion: Estimate = 0.014 ± 0.013, P = 0.33).

1.0 1.1 1.2 1.3 1.4
Male pedidpalp femur length (mm)

Treatment Eight-
legged

Missing 2 
locomotor legs

Missing 2 
sensory legs

Mating

No mating

Fig. 2  The male pedipalp femur length as a morphological predictor 
of mating success in the Neotropical Prionostemma sp.5 harvestmen 
in relation to the experimental leg condition in males. Pedipalp femur 
length did not predict if the mating trials resulted in mating or not 
(see 9 for further statistical details). This morphological feature did 
not differ between treatments (see 9)
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We found no differences in the morphological measures 
between the male harvestmen of different leg condition treat-
ments. The eight-legged, locomotor autotomy, or sensory 
autotomy treatments did not differ in the male leg I length 
 (F2/74 = 0.45, P = 0.64), the male pedipalp femur length 
 (F2/101 = 2.2, P = 0.12), or the female to male body area ratio 

 (F2/95 = 0.37, P = 0.66) (Table 1). Moreover, those measures 
were not correlated with each other (leg I length and pedi-
palp femur length: r = 0.15, P = 0.18, leg I length and size 
ratio: r = 0.16, P = 0.19, and pedipalp femur length and size 
ratio: r = -0.07, P = 0.51).

The overall reproductive behavior (video S1) did not dif-
fer between eight-legged and autotomized males. All males 
performed behaviors such as leg and pedipalp tapping, coxal 
hooking, and leg grooming. However, we observed variation 
in the reproductive behavior between eight-legged males and 
males missing legs. For instance, males that lost locomo-
tor legs performed the leg tapping courtship behavior with 
the remaining legs, and males that lost sensory legs did the 
leg tapping with legs I. Lastly, in two trials in which the 
outcome was rejection, the eight-legged male lost one loco-
motor leg of pair I during the courtship interaction with the 
female (however, it was not possible to observe what exactly 
caused it).

Discussion

Autotomy and reproduction in harvestmen

Our experimental findings provided support for the three 
predictions of the robustness hypothesis: the experimental 
loss of either locomotor or sensory legs in Prionostemma 
sp.5 male harvestmen did not affect their mating success 

Table 1  Morphological measures of Prionostemma sp.5 harvestmen as a function of experimental leg condition treatment of males and trial 
outcome

Male leg 1 length 
(mm)

Male pedipalp femur 
length (mm)

Female to male 
body area ratio

Experimental 
Treatments

Control mean 59.6 1.19 1.82
standard error (n) 0.42 (34) 0.02 (36) 0.04 (34)
range 52.9—64.9 1.0—1.4 1.4—2.2

Males missing 2 locomotor legs mean 59.2 1.24 1.84
standard error (n) 0.98 (13) 0.01 (33) 0.03 (33)
range 53.2—66.8 1.1—1.4 1.3—2.2

Males missing 2 sensory legs mean 58.9 1.21 1.81
standard error (n) 0.46 (30) 0.02 (35) 0.04 (31)
range 52.0—62.9 1.1—1.4 1.4—2.2

Outcomes No courtship mean 59.8 1.21 1.83
standard error (n) 0.54 (19) 0.02 (29) 0.04 (27)
range 56.6—66.8 1.0—1.4 1.4—2.2

Rejection mean 59.1 1.22 1.81
standard error (n) 0.46 (40) 0.01 (54) 0.03 (52)
range 52.0—64.9 1.1—1.4 1.3—2.2

Mating mean 59.1 1.2 1.83
standard error (n) 0.59 (18) 0.02 (21) 0.05 (19)
range 52.9—62.1 1.1—1.4 1.4—2.2
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Fig. 3  Mean (+ SE) durations of pre-copulatory and mating interac-
tions in relation to the experimental leg condition treatment of Prion-
ostemma sp.5 male harvestmen. Mean duration for either of these two 
behaviors did not differ among treatments (see 9 for statistical details). 
The sample size is shown inside each bar
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(prediction 1) or any measured reproductive behavior (pre-
diction 2). Additionally, autotomized males performed 
leg-related behaviors with different legs than eight-legged 
individuals (prediction 3). Our effect size estimates showed 
that we had adequate power to detect differences between 
the mating success of our experimental treatments. There-
fore, we consider that our findings provide evidence of an 
absence of an effect of leg loss on mating success. Our labo-
ratory data are supported by our field observations—we saw 
mating interactions of males and females that were missing 
legs. Altogether, despite the extensive use of appendages 
during courtship and mating in Sclerosomatidae harvestmen 
(Fowler-Finn et al. 2014, 2019, Classen-Rodríguez unpubl.), 
these arachnids are robust to variation in body form and 
show no negative consequences of leg loss in the fitness-
related behaviors that we measured here.

We suggest that the costs of autotomy to harvestmen may 
not be as great as has been proposed for other taxa (Maginnis 
2006; Fleming et al. 2007; Matsuoka et al. 2011; Emberts 
et al. 2019). Additionally, in a diverse range of animals it 
has been shown that individuals perform equally well or 
are easily able to adjust their behaviors to a modified body 
condition (DeWitt et al. 1999; Mikolajewski 2004; Kuo et al. 
2015; Jagnandan and Higham 2017; Wilshin et al. 2018). 
Autotomized harvestmen of the same species we studied 
here showed no difference in survival in the field when 
compared to eight-legged individuals (Escalante and Elias 
2021). Hence, our findings are in line with recent studies that 
suggest that robustness is prevalent in harvestmen. Future 
comparative work across this clade of harvestmen (as Burns 
et al. 2013; Burns and Shultz 2015, 2016; Kahn et al. 2018) 
should examine populations and species that show different 
levels of autotomy to test the robustness hypothesis.

Losing different types of legs and plasticity

As predicted, losing legs (of any type) did not affect the 
mating success or mating behavior of Prionostemma males. 
Autotomized males showed plasticity in the type of leg used 
during pre-copulatory leg tapping behaviors. In another 
study, the loss of sensory legs affected the habitat use of 

recently autotomized Prionostemma harvestmen, whereas 
the loss of locomotor legs did not (Escalante and Elias 
2021). Additionally, losing two or more locomotor legs 
changed the proportion of locomotory gates used by indi-
viduals as potential strategies to escape predators (Escalante 
et al. 2020). Thus, while not affecting fitness, variation in 
body form does affect behavior and the ways that individuals 
move and interact with each other and with potential preda-
tors. Our results here then highlight that animals incorporate 
plasticity in order to compensate for bodily perturbations 
(i.e., bodily damage) (Emberts et al. 2019).

Morphology, courtship, and mating

Variation in phenotypic traits in Prionostemma sp.5 males 
did not appear to affect the duration or the outcomes of 
mating interactions. We initially expected that males with 
smaller legs, pedipalps, as well as males with a smaller 
body size relative to females would have lower mating 
success, as observed in a variety of taxa (Morrell et al. 
2005; Fowler-Finn et al. 2014; Wada 2017). However, only 
males with smaller pedipalp femur length had longer pre-
copulatory interactions. While we predicted that pedipalp 
size would be target of sexual selection, our results suggest 
that the majority of phenotypic traits we measured are not 
targets of mate choice in this species. Interestingly, this is 
a novel finding for these arachnids, as body size predicted 
the likelihood of mating in some Leiobunum harvestmen 
(Fowler-Finn et al. 2014, 2018, 2019; Sasson et al. 2020).

Robustness and the evolution of autotomy

Overall, our findings suggest that the evolution of autot-
omy as a defensive strategy is accompanied by traits that 
favor robustness. As autotomy evolved at least nine differ-
ent times in animals (Emberts et al. 2019), it is reasonable 
to expect that some of those taxa might also have evolved 
multiple ways to withstand potential consequences of that 
bodily damage. This would allow animals to avoid expe-
riencing the consequences of autotomy on critical behav-
iors such as courtship and mating that use body parts that 

Table 2  Statistical results of 
the models testing for the effect 
of losing different types of 
legs (experimental treatments) 
in males of Prionostemma 
sp.5 harvestmen on the pre-
copulatory interaction length 
(s) and on mating duration (s) 
while interacting with eight-
legged females

Variable Parameter Experimental 
treatments

Male leg 1 
length (mm)

Male pedipalp 
femur length 
(mm)

Female to male 
body area ratio

Pre-copulatory 
interaction length 
(s)

Estimate 2.84 -0.3 -43.78 6.34
Standard error 4.37 0.89 22.51 12.18
P 0.51 0.74 0.057 0.605

Mating duration (s) Estimate 28.95 -1.79 2.89 18.36
Standard error 23.69 5.62 97.82 61.49
P 0.25 0.76 0.97 0.77
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might be autotomized. Selection on robustness for behav-
iors in other contexts is also likely. For instance, the ability 
to compensate for autotomy on locomotion likely drives 
the multiple mechanical, behavioral, and morphological 
compensatory mechanisms that animal use to mitigate the 
effects of leg loss (Jagnandan et al. 2014; Jagnandan and 
Higham 2017; Wilshin et al. 2018; Escalante et al. 2020). 
Other important behavioral contexts such as parental care, 
foraging, molting, and navigation are also likely robust and 
should be investigated.

Cripping the study of autotomy and behavioral ecology

In the field of disability studies, the term cripping has been 
used to describe the act of deconstructing ‘mainstream rep-
resentations [and] practices’ to bring to light assumptions 
about able-bodiedness and its exclusionary effects (Sandahl 
2003; McRuer 2006; Barounis 2009; Hutcheon and Wol-
bring 2013). This field also focuses on how social construc-
tions limit and foreclose the understandings of what dis-
ability and able-bodiedness are (Thomas 2007; Snyder and 
Mitchell 2010; Goodley 2016; Taylor 2017). Instead, they 
look to bodily variation and adaptability, ideas that resonate 
with the hypothesis of robustness we tested here.

In the study of autotomy, experiments are often inter-
preted through an ableist lens, as changes in behavior stem-
ming from autotomy are assumed to be detrimental from a 
fitness perspective. We suggest an alternative approach that 
emphasizes the robustness of animals, as has been done in 
the field of biomechanics (Mongeau et al. 2013; Clark and 
Triblehorn 2014; Jayaram et al. 2018) and systems biology 
(Kitano 2007; Félix and Wagner 2008; Nijhout et al. 2017). 
Across evolutionary time, animals encounter a variety of 
contexts that create variation in body forms and physiology 
(the dis/ability spectrum). We suggest that traits that increase 
survival across this spectrum will be favored and thus ani-
mals evolve to be robust, flexible, plastic, and resilient (able 
to recover to initial performance). Inspired by the field of 
disability studies, we suggest that our construction of fitness-
related hypotheses is too limited to individuals that we per-
ceive to be intact or normal and that our understanding of 
behavioral ecology suffers as a result. Autotomy provides 
a window into studying and understanding animal robust-
ness in a variety of contexts. We suggest that the robustness 
of animals and behavioral strategies (and variation therein) 
across the dis/ability spectrum can be incorporated in how 
we think and theorize about organismal evolution and behav-
ior. By doing so, we can better understand the variation of 
selective pressures in natural settings and how individuals 
respond given naturally occurring variation in behavioral 
strategies, traits, and conditions.
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