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Abstract

Defensive strategies, like other life-history traits favored by natural selection, may pose constraints on reproduction. A
common anti-predator defense strategy that increases immediate survival is autotomy—the voluntary release of body parts.
This type of morphological damage is considered to impose future costs for reproduction and fitness. We tested an alterna-
tive hypothesis that animals are robust (able to withstand and overcome perturbations) to this type of damage and do not
experience any fitness costs in reproductive contexts. We explored the effects of experimental leg loss on the reproductive
behavior of one species of Neotropical Prionostemma harvestmen. These arachnids undergo autotomy frequently, do not
regenerate legs, and their courtship and mating necessitate the use of legs. We assessed the effect of losing different types
of legs (locomotor or sensory) on courtship behavior and mating success in males. We found no differences in the mating
success or in any measured aspect of reproductive behavior between eight-legged males and males that experienced loss of
legs of any type. Additionally, we found that morphological traits related to body size did not predict mating success. Over-
all, our experimental findings support the null hypothesis that harvestmen are robust to the consequences of morphological
damage and natural selection favors strategies that increase robustness.

Significance statement

In order to survive encounters with predators, animals have evolved many defensive strategies. Some of those behaviors,
however, can come with a cost to their overall body condition. For example, some animals can voluntarily lose body parts
(tails, legs, etc.) to escape. This process can then affect many aspects of an animal’s life, including reproduction. In a group of
harvestmen (daddy long-legs) from Costa Rica, we tested the hypothesis that males are robust to the potential consequences
of losing legs, and will not experience costs. We found that males that lost either legs used for locomotion or for sensory
perception reproduced in the same way as animals with all of their legs. Consequently, we demonstrate that these arachnids
are able to withstand the loss of legs with no effects on reproduction.
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Introduction

Defensive strategies might compromise the body condition
of animals, which can then affect their ability to reproduce.
This dynamic can result in trade-offs between natural and
sexual selection if strategies that ensure survival interfere
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Verhulst et al. 1999; Basolo and Alcaraz 2003). It has been
found that visual ornaments and weapons (i.e., horns, ant-
lers) may increase the risk of predation, even though those
structures are crucial in competition for mates (Zuk and
Kolluru 1998). For example, in environments with preda-
tors, male fishes had smaller sperm-transfer organs than in
environments without predators (Langerhans et al. 2005).
Similarly in male fireflies, higher signaling rates increased
the likelihood of being predated (Woods et al. 2007), even
though more conspicuous courtship signals are preferred by
females (Branham and Greenfield 1996).

Certain defensive strategies that are favored by natural
selection can compromise the overall body condition of an
animal. To escape predators, many animal taxa have evolved
the ability to voluntarily detach an appendage before or dur-
ing a predator attack (Roth and Roth 1984; Fleming et al.
2007; Emberts et al. 2019). This defense strategy—known as
autotomy—can increase immediate survival (Emberts et al.
2017, 2019). However, autotomy is often assumed to yield
long-term consequences on fitness, as detached append-
ages or body parts often play a role in courtship, mating,
or sperm transfer (reviewed in Emberts et al. 2019). Evi-
dence regarding the effects of autotomy on reproduction is
equivocal nonetheless, as the loss of body parts is known to
bring negative, neutral, or even positive effects to reproduc-
tion (Emberts et al. 2019; Michaud et al. 2020; Cirino et al.
2021; Garcia-Hernandez and Machado 2021; Talavera et al.
2021). For example, after ‘tail’ autotomy, female scorpions
experienced decreased fecundity, whereas males did not
experience decreases in mating success (Garcia-Herndndez
and Machado 2021). On the other hand, claw autotomy did
not affect mating success in male crabs (McCambridge et al.
2016). Additionally, males and females of Coreidae insects
invested more in testes growth after leg loss (Joseph et al.
2018; Somjee et al. 2018; Miller et al. 2019), and autoto-
mized males produced more offspring than non-autotomized
males (Cirino et al. 2021). The consequences of autotomy
occur because autotomized individuals show altered
courtship displays and/or diminished locomotor capabili-
ties (Bateman and Fleming 2006; Emberts et al. 2019;
Garcia-Hernandez and Machado 2021).

Alternatively, animals may have evolved robustness to
variation in their own bodies so that autotomy does not affect
reproduction. Robustness is the persistence of a behavior
under environmentally induced perturbations (Kitano
2004). The robustness hypothesis then poses that animals
have evolved mechanisms and traits to operate in the face
of variable and challenging genetic and environmental con-
ditions (Nijhout et al. 2017). For this study, we interpret
robustness in autotomy as the ability of animals to contend
(i.e., successfully mate) with variation in body form (i.e.,
leg loss and altered body plan caused by autotomy). Robust-
ness and adaptability to bodily variation have been explored
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in the fields of biomechanics (Mongeau et al. 2013; Clark
and Triblehorn 2014; Jayaram and Full 2016; Jayaram et al.
2018), systems biology (Kitano 2007; Félix and Wagner
2008; Lesne 2008; Nijhout et al. 2017), and even in the field
of disability studies (Thomas 2007; Snyder and Mitchell
2010; Goodley 2016; Taylor 2017). Here, we expand on our
previous work (Escalante et al. 2020, 2021; Escalante and
Elias 2021), and formally test one robustness hypothesis in
the context of behavioral ecology.

We study the effects of leg autotomy on mating success
in Prionostemma, a Neotropical Sclerosomatidae harvest-
men. This group of arachnids are ideal to explore this topic
because autotomy is frequently high (Guffey 1999;
Escalante et al. 2013, 2020, 2021; Dominguez et al. 2016;
Powell et al. 2021a, b). Unlike most autotomizing animals,
harvestmen do not regenerate legs before or after sexual
maturity (Gnaspini and Hara 2007). In harvestmen, legs
play a crucial role in reproduction for males (Willemart
et al. 2006; Fowler-Finn et al. 2014, 2018, 2019; Machado
et al. 2015). The North American Leiobunum males perform
behaviors like leg wrapping and tangling during courtship
and mating (Fowler-Finn et al. 2014; Sasson et al. 2020).
These behaviors are crucial for mating (Fowler-Finn et al.
2014). In our study species, individuals use forelegs for
extensive leg tapping behaviors during mating interactions.
The sexual behavior of a congener of our study species has
also been observed and similarly relies on leg behaviors dur-
ing mating (Classen-Rodriguez, unpubl.). Altogether, these
behavioral and morphological features suggest that there is
strong selection on harvestmen to be robust and withstand
the potential consequences of leg loss on reproduction.

Sclerosomatid harvestmen have two types of legs:
locomotor and sensory (Fig. 1). Six legs (from pairs I,
III, and IV) are locomotory and their primary function
is movement (Sensenig and Shultz 2006; Escalante et al.
2019), but they are also used during mating interactions to
position and sometimes restrain mates (Fowler-Finn et al.
2014). The second pair of legs are modified and special-
ized in sensory perception (Shultz and Pinto-da-Rocha
2007; Willemart et al. 2009). Sensory legs are used to
probe the environment and to potentially detect and iden-
tify other individuals (Sensenig and Shultz 2006; Escalante
et al. 2019). Interestingly, both locomotor and sensory legs
are involved in courtship and mating (Fowler-Finn et al.
2014), and both leg types are frequently autotomized
in Prionostemma harvestmen (Dominguez et al. 2016;
Escalante et al. 2020; Escalante and Elias 2021).

We tested the null hypothesis that harvestmen are behav-
iorally robust to the potential consequences of leg loss on
mating success and mating behavior agains the alternative
hypothesis of reproductive costs of autotomy. We experimen-
tally induced autotomy of locomotor or sensory legs on eight-
legged males. This procedure allowed us to control for types
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Fig. 1 Behavioral outcomes of the trials testing for the effect of the
experimental loss of two different types of legs of males on the repro-
ductive behavior of the Neotropical Prionostemma sp.5 harvestmen.
The number of trials that ended in each type of outcome did not differ
between treatments (see 9 for further statistical details). The top left
diagram represents a harvestmen in top view (its proximal side is to
the right) and the four leg pairs and types (locomotor or sensory) are
labeled

of legs missing and the time since autotomy. We ran mating
trials with eight-legged females and males with experimen-
tally induced autotomy (as well as eight-legged males) and
recorded the outcome of the trials (no courtship, rejection,
or mating, see definitions below). This allowed testing a first
prediction of the robustness hypothesis: that experimental leg
loss of any type will not affect male mating success. We also
quantified the duration of pre-copulatory interactions and mat-
ing behaviors in the trials. A second prediction of the robust-
ness hypothesis we tested was that eight-legged and autoto-
mized males will spend similar amounts of time performing
pre-copulatory and mating behaviors. A third prediction we
tested was that autotomized males would perform the same
leg behaviors in courtship and mating with the remaining legs.
With this framework, we explored whether behavioral plastic-
ity may be the mechanism for robustness, allowing harvest-
men to avoid any negative consequences of autotomy.

Methods
Study site and species

We conducted fieldwork at Las Cruces Biological Station,
province of Puntarenas, Costa Rica (8° 47’ N, 82° 57" W,

1200 m in elevation) from June 20 to August 08, 2017. We
studied one undescribed species of Prionostemma (Sclero-
somatidae: Opiliones) from Costa Rica for which previous
research has examined their ecology and behavior (Grether
and Donaldson 2007; Wade et al. 2011; Proud et al. 2012;
Grether et al. 2014; Dominguez et al. 2016; Escalante and
Elias 2021). To be consistent with that previous research
(Proud et al. 2012; Escalante et al. 2019, 2020), we refer to
our study species as ‘sp.5.” Voucher specimens were depos-
ited in the Essig Museum of Entomology at UC Berkeley.

Field surveys, collection and animal care

To observe mating interactions in the field and note if inter-
acting males and females had eight legs or if they were miss-
ing legs, we conducted nighttime field surveys. We searched
for harvestmen in the forest floor from 20:00 to 0:00 h for 25
nights, as tropical harvestmen are active at nighttime (Proud
et al. 2012). We sorted individuals as males or females based
on their behavior and by using external morphological prox-
ies (body size and shape). To verify that the external mor-
phology proxies correspond with internal genitalia (the pres-
ence of fully developed ovipositor or penis), we dissected
ten individuals of each putative sex. In the surveys, we col-
lected adult eight-legged animals for laboratory trials. We
housed the collected harvestmen in 20X 10X 15 cm terraria
in a laboratory with a natural light regime (12 h/12 h) and
continuous airflow. Each terrarium held 5 individuals of the
same sex at a given time. We added fresh leaves and short
branches for them to perch. We fed harvestmen with fruits,
dry cat food, and dead insects once every day. Individuals
were housed for 12 to 72 h before the trials.

Experimental autotomy treatments

To experimentally test the effect of the loss of different leg
types (locomotor and sensory) on mating behavior and the
mating success of males, we experimentally induced autot-
omy in a subset of the eight-legged harvestmen collected in
the field. For this, we held the animal by most of its legs and
firmly held the base of the target leg’s femur with forceps.
Letting go of all legs except the target leg resulted in the
individuals immediately releasing the leg. Autotomy was
induced 1.5-2 h before the trials, which allowed us to control
for the time since leg loss, and to ensure that their overall
condition and behavior was unaffected (as done in Escalante
and Elias 2021). Briefly, to quantify this we observed their
movement, leg probing around the terrarium, and posture
before and immediately after autotomy, as well as immedi-
ately before the mating trials.

We conducted 135 single-choice mating trials in which
all females were eight-legged, but males varied in their leg
condition. Our aim was to reflect the intensity of autotomy in
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the field for this species. Of those trials, we excluded seven
trials from the analyses because the harvestmen did not con-
tact each other. Males were randomly assigned to three treat-
ments: (1) males missing two locomotor legs (from pair I,
Fig. 1) (n=41 trials), (2) males missing the two sensory legs
(pair I, Fig. 1) (n=43), and (3) eight-legged sham control
males, which we handled in the same way but without induc-
ing autotomy (n=44) (Fig. 1). All individuals were used
only once. In this population, 53% of 574 harvestmen were
missing at last one leg (Escalante and Elias 2021). As for
the type of leg missing, 22% of all individuals were missing
one locomotor leg, 10% were missing two or three locomotor
legs, 13% were missing one sensory leg, and 2% two sensory
legs (Escalante and Elias 2021). We induced autotomy of
locomotor legs I and not of legs IIT or IV, as the forelegs are
used in sexual behavior, whereas hindlegs are not. Addi-
tionally, we chose these treatments to be consistent with the
experimental design of our previous research that shows that
losing two legs is the threshold for changes in locomotor
performance (Escalante et al. 2020), oxygen consumption
(Escalante et al. 2021), and habitat use (Escalante and Elias
2021). We thus consider that our experimental treatments
allowed us to test for the effect of different types of autotomy
on mating behavior and mating success.

Mating trials

We conducted trials in transparent circular arenas (20 cm
diameter, 30 cm high) with white paper as a substrate, as in
Fowler-Finn et al. (2014). Females were acclimated to the
arena for 5 min, and then, the male was placed in the arena.
We recorded the interactions with a GoPro camera (HERO 4
Edition; GoPro, San Mateo, CA, USA) recording at 120 fps
for later behavioral analyses. Trials were conducted between
19:00 and 0:00 h under dim red lights and lasted until copu-
lation occurred (in which case we recorded the whole pro-
cess) or 30 min passed.

The outcome of the trials was visually scored as: (a) no
courtship, if the males did not display any courtship behav-
ior after having had contact with the female. In Scleroso-
matidae harvestmen, the courtship stage includes extensive
tapping of the males as they contact the female, using their
legs and pedipalps (the anterior pair of appendages, located
between the mouth parts and the first pair of legs). Once
both are in contact and in a face-to-face orientation, the male
extends his mouthpart appendages (‘“‘chelicerae’) above the
dorsal side of the female (Fowler-Finn et al. 2014). The male
then attempts to hook his chelicerae to the basal segments
of the female legs II (coxae) (Fowler-Finn et al. 2014). (b)
Rejection, if the male courted and achieved chelicerae-coxal
hooking but the female showed behaviors associated with
rejection—the female lowered the proximal ventral side
of her body to be in close contact with the ground, which

@ Springer

restricts mating (Fowler-Finn et al. 2014; Sasson et al. 2020,
Classen-Rodriguez unpubl.). (c) Mating, when we observed
intromission—penis insertion—(Fowler-Finn et al. 2014,
2018). We consider intromission a good proxy of fitness in
these harvestmen (Macias-Ordéiiez et al. 2010; Machado
et al. 2015).

To further quantify the potential effects of autotomy on
mating interactions, we extracted two behaviors from videos:
(1) the length of the pre-copulatory interaction (hereafter
referred to as ‘interaction’), measured as the time between
the first leg contact and either a clear rejection from the
female or the start of the genital intromission; and (2) mat-
ing length, measured as the time from the start to the end of
the intromission, when the pair separated. Since our study
involved observing two focal animals in a controlled setting,
it was not possible to record data blindly.

Morphological predictors of mating success

Variation in certain phenotypic traits influences sexual
behavior and mating success in other North American
Leiobunum harvestmen (Fowler-Finn et al. 2014, 2018,
2019; Sasson et al. 2020). To examine the influence of mor-
phological traits, we measured the total length of the left leg
I in males and females, the male pedipalp femur length, and
the dorsal body area of both males and females (which was
obtained by tracing the perimeter of each animal). With the
latter two measurements, we calculated the female to male
body area ratio to have a proxy for body size that incorpo-
rated size variation within the pairs. Measurements were
done to the nearest 0.05 mm on preserved specimens (95%
ethanol) using a camera attached to a dissection scope (Leica
M205 FA), and measured using the Leica Application Suite
software. We selected these morphological traits following
previous studies (Fowler-Finn et al. 2014; Kilmer and Rod-
riguez 2017; Escalante et al. 2019).

Data analyses

We tested for the effect of the male leg condition treatments
on the outcome of mating interactions by performing a mul-
tinomial logistic regression. We used the trial outcome (no
courtship, rejection, or mating) as the categorical response
variable, and the leg condition treatment as a categorical
predictor variable. The length of males’ leg I, the male pedi-
palp femur length, and the female/male body size ratio were
included as continuous predictors. In this model, we also
included the interactions between the predictor variables.
Given that we tested a null hypothesis of no effect, we
calculated the effect size and the statistical power of the
odds ratio of our comparisons (Cohen 1988; Nakagawa
and Cuthill 2007). We made the three paired comparisons
between the three experimental treatments (eight-legged
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males, males missing locomotor legs, and males miss-
ing sensory legs). We compared the number of trials that
resulted in mating relative to the sample size of each treat-
ment. Then, we calculated the odds ratio and the r statistic
from a contingency table (Nakagawa and Cuthill 2007) com-
posed of the two treatments. We interpreted the effect sizes r
of <0.20 as small, 0.21-0.80 as medium, and > 0.81 as large
(Cohen 1988; Nakagawa and Cuthill 2007). Next, we calcu-
lated the power (1-f>0.95) of each paired comparison as
delineated in Rosner (2015). In addition to calculating these
two parameters for our findings, we calculated the effect size
and power of the difference size that our sample size would
have allowed to detect. Comparing both scenarios, we were
able to infer strong evidence for the absence of an effect.

We also tested the effects of the experimental male’s leg
condition on quantitative features of mating behavior. We
ran one generalized linear model (GLM) with leg condition
treatments as a predictor and the duration of pre-copulatory
interactions as a response variable. We ran another GLM
using leg condition treatment as predictor variables and mat-
ing duration as a response variable. Lastly, we ran a logistic
regression using the duration of pre-copulatory interactions
as a predictor variable and the trial outcome (interaction or
mating) as response variable.

To control for potential between-treatment phenotypical
variation, we ran three additional GLMs using leg condition
treatment as the predictor variable and each morphologi-
cal measure (male leg I length, pedipalp femur length, and
female to body size ratio) as a response variable. Addition-
ally, we ran correlation tests between the three morphologi-
cal measures. All tests were run on R (Team 2019). The
complete and raw dataset is available on Dryad here.

Results

In the field, we observed 10 mating interactions that
included all combinations of leg conditions (both eight-leg-
ged and autotomized males). In the laboratory experiment,
the leg condition of males did not predict the outcomes of
mating interactions (no courtship, rejection, or mating).
Males missing locomotor or sensory legs were as likely to
perform courtship as eight-legged males, and the rates of
mating success were similar across the three leg condition
treatments (20%, 17%, and 23%, respectively) (multinomial
logistic regression: Estimate=-3.50+3.12, P=0.91, Fig. 1).
With our sample size (total N =135 individuals), we had
adequate power (1-§ > 0.80) to detect differences even of
small size (e.g., effect size: r=0.20). If we had observed
differences between any of our groups, our estimate of effect
size r as well as the statistical power to detect differences
between treatments would have been low (eight-legged
males and males missing locomotor legs: N =385, effect

size: r=0.04, power: 1-f=0.054; eight-legged males and
males missing sensory legs: N =87, effect size: r=0.03,
power: 1-$=0.053; males missing locomotor legs and males
missing sensory legs: N =84, effect size: r=0.08, power:
1-f=0.10).

The outcome of the mating interactions was not pre-
dicted by the length of male leg I (Estimate =2.88 +2.74,
P =0.29), the male pedipalp femur length (Esti-
mate=1.53 +1.407, P=0.27, Fig. 2), or the female/male
body area (Estimate=8.99 +1.05, P=0.28) (Table 1).
None of the interaction terms of the models between
leg condition treatments and the morphological meas-
ures were significant (treatment*length of leg I: Esti-
mate=4.07 +£5.29, P=0.99, treatment*pedipalp femur size:
Estimate =1.47 +2.58, P=0.95, and female/male body area:
Estimate=-1.97+1.65, P=0.90).

The experimental loss of different types of legs (either
locomotor or sensory) had no effect on any measured feature
of reproductive behavior. The duration of pre-copulatory
interactions did not differ between treatments (Fig. 3), and
was not affected by the male leg I length or the female/male
body area (Table 2). Interestingly, we found a marginally
significant trend that males with smaller pedipalp femur
length were involved in trials with longer pre-copulatory
interactions (correlation coefficient between pedipalp femur
length and interaction length: r=-0.23, Table 2). Addition-
ally, the mating duration did not differ between the leg con-
dition treatments and was not affected by any morphological
variable (Table 2, Fig. 3). Finally, whether the interactions
resulted in rejection or in mating was not predicted by the in
duration of the pre-copulatory interaction (logistic regres-
sion: Estimate=0.014+0.013, P=0.33).

Eight- Missing 2 Missing 2
o
Treatment legged locomotor legs sensory legs
Mating [e] @@ O O @ao O @D [e] o @m
No mating @ OCD @O CCUMCONIHD GED (HREIEED @D @D [¢]
1.0 1.1 1.2 1.3 1.4

Male pedidpalp femur length (mm)

Fig.2 The male pedipalp femur length as a morphological predictor
of mating success in the Neotropical Prionostemma sp.5 harvestmen
in relation to the experimental leg condition in males. Pedipalp femur
length did not predict if the mating trials resulted in mating or not
(see 9 for further statistical details). This morphological feature did
not differ between treatments (see 9)
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Table 1 Morphological measures of Prionostemma sp.5 harvestmen as a function of experimental leg condition treatment of males and trial

outcome
Male leg 1 length Male pedipalp femur  Female to male
(mm) length (mm) body area ratio
Experimental Control mean 59.6 1.19 1.82
Treatments standard error (n) 0.42 (34) 0.02 (36) 0.04 (34)
range 52.9—64.9 1.0—14 14—22
Males missing 2 locomotor legs mean 59.2 1.24 1.84
standard error (n) 0.98 (13) 0.01 (33) 0.03 (33)
range 53.2—66.8 1.1—1.4 1.3—22
Males missing 2 sensory legs mean 58.9 1.21 1.81
standard error (n) 0.46 (30) 0.02 (35) 0.04 (31)
range 52.0—62.9 1.1—14 14—22
Outcomes No courtship mean 59.8 1.21 1.83
standard error (n) 0.54 (19) 0.02 (29) 0.04 (27)
range 56.6—66.8 1.0—14 14—22
Rejection mean 59.1 1.22 1.81
standard error (n) 0.46 (40) 0.01 (54) 0.03 (52)
range 52.0—64.9 1.1—14 1.3—22
Mating mean 59.1 1.2 1.83
standard error (n) 0.59 (18) 0.02 (21) 0.05 (19)
range 52.9—62.1 1.1—1.4 14—-22
70 B Eight-legged (Fp/95=0.37, P=0.66) (Table 1). Moreover, those measures
were not correlated with each other (leg I length and pedi-
60 @ Missing 2 locomotor legs palp femur length: r=0.15, P=0.18, leg I length and size

B Missing 2 sensory legs

Duration (s)

Pre-copulatory
interaction

Mating

Fig.3 Mean (+SE) durations of pre-copulatory and mating interac-
tions in relation to the experimental leg condition treatment of Prion-
ostemma sp.5 male harvestmen. Mean duration for either of these two
behaviors did not differ among treatments (see 9 for statistical details).
The sample size is shown inside each bar

We found no differences in the morphological measures
between the male harvestmen of different leg condition treat-
ments. The eight-legged, locomotor autotomy, or sensory
autotomy treatments did not differ in the male leg I length
(F,/74=0.45, P=0.64), the male pedipalp femur length
(Fy/101=2.2, P=0.12), or the female to male body area ratio
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ratio: r=0.16, P=0.19, and pedipalp femur length and size
ratio: r=-0.07, P=0.51).

The overall reproductive behavior (video S1) did not dif-
fer between eight-legged and autotomized males. All males
performed behaviors such as leg and pedipalp tapping, coxal
hooking, and leg grooming. However, we observed variation
in the reproductive behavior between eight-legged males and
males missing legs. For instance, males that lost locomo-
tor legs performed the leg tapping courtship behavior with
the remaining legs, and males that lost sensory legs did the
leg tapping with legs I. Lastly, in two trials in which the
outcome was rejection, the eight-legged male lost one loco-
motor leg of pair I during the courtship interaction with the
female (however, it was not possible to observe what exactly
caused it).

Discussion

Autotomy and reproduction in harvestmen

Our experimental findings provided support for the three
predictions of the robustness hypothesis: the experimental

loss of either locomotor or sensory legs in Prionostemma
sp.5 male harvestmen did not affect their mating success
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Table 2 Statistical results of

o Variable Parameter Experimental Male leg 1 Male pedipalp Female to male
th? mf)dels. testing for the e;ffect treatments length (mm) femur length body area ratio
of losing different types of (mm)
legs (experimental treatments)
in males of Prionostemma Pre-copulatory Estimate 2.84 03 -43.78 6.34
sp-5 harvestmen on the pre- interaction length  Standard error ~ 4.37 0.89 2251 12.18
copulatory interaction length () ’ ’ ’ ’

(s) and on mating duration (s) P 051 0.74 0.057 0.605

while interacting with eight- Mating duration (s)  Estimate 28.95 -1.79 2.89 18.36

legged females Standard error  23.69 5.62 97.82 61.49
P 0.25 0.76 0.97 0.77

(prediction 1) or any measured reproductive behavior (pre-
diction 2). Additionally, autotomized males performed
leg-related behaviors with different legs than eight-legged
individuals (prediction 3). Our effect size estimates showed
that we had adequate power to detect differences between
the mating success of our experimental treatments. There-
fore, we consider that our findings provide evidence of an
absence of an effect of leg loss on mating success. Our labo-
ratory data are supported by our field observations—we saw
mating interactions of males and females that were missing
legs. Altogether, despite the extensive use of appendages
during courtship and mating in Sclerosomatidae harvestmen
(Fowler-Finn et al. 2014, 2019, Classen-Rodriguez unpubl.),
these arachnids are robust to variation in body form and
show no negative consequences of leg loss in the fitness-
related behaviors that we measured here.

We suggest that the costs of autotomy to harvestmen may
not be as great as has been proposed for other taxa (Maginnis
2006; Fleming et al. 2007; Matsuoka et al. 2011; Emberts
et al. 2019). Additionally, in a diverse range of animals it
has been shown that individuals perform equally well or
are easily able to adjust their behaviors to a modified body
condition (DeWitt et al. 1999; Mikolajewski 2004; Kuo et al.
2015; Jagnandan and Higham 2017; Wilshin et al. 2018).
Autotomized harvestmen of the same species we studied
here showed no difference in survival in the field when
compared to eight-legged individuals (Escalante and Elias
2021). Hence, our findings are in line with recent studies that
suggest that robustness is prevalent in harvestmen. Future
comparative work across this clade of harvestmen (as Burns
et al. 2013; Burns and Shultz 2015, 2016; Kahn et al. 2018)
should examine populations and species that show different
levels of autotomy to test the robustness hypothesis.

Losing different types of legs and plasticity

As predicted, losing legs (of any type) did not affect the
mating success or mating behavior of Prionostemma males.
Autotomized males showed plasticity in the type of leg used
during pre-copulatory leg tapping behaviors. In another
study, the loss of sensory legs affected the habitat use of

recently autotomized Prionostemma harvestmen, whereas
the loss of locomotor legs did not (Escalante and Elias
2021). Additionally, losing two or more locomotor legs
changed the proportion of locomotory gates used by indi-
viduals as potential strategies to escape predators (Escalante
et al. 2020). Thus, while not affecting fitness, variation in
body form does affect behavior and the ways that individuals
move and interact with each other and with potential preda-
tors. Our results here then highlight that animals incorporate
plasticity in order to compensate for bodily perturbations
(i.e., bodily damage) (Emberts et al. 2019).

Morphology, courtship, and mating

Variation in phenotypic traits in Prionostemma sp.5 males
did not appear to affect the duration or the outcomes of
mating interactions. We initially expected that males with
smaller legs, pedipalps, as well as males with a smaller
body size relative to females would have lower mating
success, as observed in a variety of taxa (Morrell et al.
2005; Fowler-Finn et al. 2014; Wada 2017). However, only
males with smaller pedipalp femur length had longer pre-
copulatory interactions. While we predicted that pedipalp
size would be target of sexual selection, our results suggest
that the majority of phenotypic traits we measured are not
targets of mate choice in this species. Interestingly, this is
a novel finding for these arachnids, as body size predicted
the likelihood of mating in some Leiobunum harvestmen
(Fowler-Finn et al. 2014, 2018, 2019; Sasson et al. 2020).

Robustness and the evolution of autotomy

Overall, our findings suggest that the evolution of autot-
omy as a defensive strategy is accompanied by traits that
favor robustness. As autotomy evolved at least nine differ-
ent times in animals (Emberts et al. 2019), it is reasonable
to expect that some of those taxa might also have evolved
multiple ways to withstand potential consequences of that
bodily damage. This would allow animals to avoid expe-
riencing the consequences of autotomy on critical behav-
iors such as courtship and mating that use body parts that
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might be autotomized. Selection on robustness for behav-
iors in other contexts is also likely. For instance, the ability
to compensate for autotomy on locomotion likely drives
the multiple mechanical, behavioral, and morphological
compensatory mechanisms that animal use to mitigate the
effects of leg loss (Jagnandan et al. 2014; Jagnandan and
Higham 2017; Wilshin et al. 2018; Escalante et al. 2020).
Other important behavioral contexts such as parental care,
foraging, molting, and navigation are also likely robust and
should be investigated.

Cripping the study of autotomy and behavioral ecology

In the field of disability studies, the term cripping has been
used to describe the act of deconstructing ‘mainstream rep-
resentations [and] practices’ to bring to light assumptions
about able-bodiedness and its exclusionary effects (Sandahl
2003; McRuer 2006; Barounis 2009; Hutcheon and Wol-
bring 2013). This field also focuses on how social construc-
tions limit and foreclose the understandings of what dis-
ability and able-bodiedness are (Thomas 2007; Snyder and
Mitchell 2010; Goodley 2016; Taylor 2017). Instead, they
look to bodily variation and adaptability, ideas that resonate
with the hypothesis of robustness we tested here.

In the study of autotomy, experiments are often inter-
preted through an ableist lens, as changes in behavior stem-
ming from autotomy are assumed to be detrimental from a
fitness perspective. We suggest an alternative approach that
emphasizes the robustness of animals, as has been done in
the field of biomechanics (Mongeau et al. 2013; Clark and
Triblehorn 2014; Jayaram et al. 2018) and systems biology
(Kitano 2007; Félix and Wagner 2008; Nijhout et al. 2017).
Across evolutionary time, animals encounter a variety of
contexts that create variation in body forms and physiology
(the dis/ability spectrum). We suggest that traits that increase
survival across this spectrum will be favored and thus ani-
mals evolve to be robust, flexible, plastic, and resilient (able
to recover to initial performance). Inspired by the field of
disability studies, we suggest that our construction of fitness-
related hypotheses is too limited to individuals that we per-
ceive to be intact or normal and that our understanding of
behavioral ecology suffers as a result. Autotomy provides
a window into studying and understanding animal robust-
ness in a variety of contexts. We suggest that the robustness
of animals and behavioral strategies (and variation therein)
across the dis/ability spectrum can be incorporated in how
we think and theorize about organismal evolution and behav-
ior. By doing so, we can better understand the variation of
selective pressures in natural settings and how individuals
respond given naturally occurring variation in behavioral
strategies, traits, and conditions.

@ Springer
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