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Abstract
Balancing time allocation among competing behaviours is an essential part of energy management for all animals. However,
trade-offs in time allocation may vary according to the sex of the individual, their age, and even underlying physiology. During
reproduction, higher energetic demands and constrained internal resources place greater demand on optimizing these trade-offs
insofar that small adjustments in time-activity may lead to substantial effects on an individual’s limited energy budget. The most
extreme case is found in animals that undergo capital breeding, where individuals fast for the duration of each reproductive
episode. We investigated potential underlying drivers of time-activity and describe aspects of trade-offs in time-activity in a wild,
capital breeding pinniped, the grey sealHalichoerus grypus, during the lactation period. For the first time, we were able to access
full 24-h activity budgets across the core duration of lactation as well as characterize how aspects of stress-coping styles influence
time allocation through the use of animal-borne accelerometers and heart rate monitors in situ. We found that there was a distinct
trade-off in time activity between time spent Resting and Alert (vigilance). This trade-off variedwith the pup’s development, date,
and maternal stress-coping style as indicated by a measure of heart rate variability, rMSSD. In contrast, time spent Presenting/
Nursing did not vary across the duration of lactation given the variables tested. We suggest that while mothers balance time spent
conserving resources (Resting) against time expending energy (Alert), they are also influenced by the inherent physiological
drivers of stress-coping styles.

Significance statement
How animals apportion their time among different behaviours is key to their success. These trade-offs should be finely balanced
to avoid unnecessary energy expenditure. Here, we examine how grey seal mothers balance their activity patterns during the
short, but energetically demanding, period of pup-rearing. Animal-borne accelerometers provided a uniquely detailed and
continuous record of activity during pup-rearing for 38 mothers. We also used heart rate monitors to provide measures of each
individual’s stress-coping style. We found that mothers balance time Resting against remaining Alert while time Presenting/
Nursing was largely independent of all factors measured. Stress-coping styles were found to drive the balancing and variation of
all behaviours. This novel indication that differences in personality-like traits may drive whole activity budgets should be

considered when assessing trade-offs in time allocation across
a much wider variety of species.

Keywords Maternal behaviour . Time-activity allocation .

Heart rate variability . Pinniped . Lactation . Stress-coping
styles

Introduction

Monitoring changes in fine-scale behaviour is critical to ex-
amining trade-offs associated with time allocation. Activity
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budgets are a fixed and finite resource where time spent in one
behavioural state automatically creates a rebalancing of the
remaining time spent in any other behavioural category.
Animals must allocate time among a variety of competing
interests and demands across their life-history and have been
shown to be driven by a range of intrinsic and extrinsic
drivers. Sex-specific and age-specific trade-offs in behaviour
have been examined extensively in the literature as they are
often associated with demographic variables that are impor-
tant predictors of population trajectories over time (Loison
et al. 1999; Wolf et al. 2005; Byrnes et al. 2011; Hastings
et al. 2011; Bishop et al. 2017). Conspecific density also plays
an important role in driving a wide variety of behavioural
trade-offs and can be key in determining reproductive success
in a variety of species (Festa-Bianchet et al. 1998; Horning
and Mellish 2012; Maniscalco 2014). Environmental factors,
such as thermal regimes, are already known drivers of
population-level behavioural trade-offs in a variety of taxa,
and have been shown to be strong drivers of individuals
balancing thermoregulatory needs with that of other behav-
iours (Liwanag et al. 2009; Turbill et al. 2011; Paterson et al.
2012; Heerah et al. 2013; Udyawer et al. 2017; Pagano et al.
2018). However, life history requirements may dictate that
certain elements of time-activity budgets are less plastic than
others.

There has also been a growing interest in how individuals
differ in stress management (stress-coping styles) that may
dictate an individual’s response to competing inputs from
the environment, be they natural or anthropogenic stressors
(von Borell et al. 2007; Koolhaas et al. 1999, 2011; Schmidt
et al. 2010; Liu et al. 2014; Briefer et al. 2015; Pohlin et al.
2017). Individuals have been shown to differ in behavioural
responses to stress, ranging from more proactive to more re-
active coping styles dependent upon the underlying feedback
loops associated with the sympathetic and parasympathetic
response pathways (Koolhaas et al. 2010). An individual’s
position on this pro-reactive spectrum can be characterized
by a suite of different heart rate characteristics and behavioural
traits (Koolhaas et al. 2011). Changes in short-term heart rate
variability, such as rMSSD (root mean square of successive
differences in interbeat intervals), can be a good indicator of
these stress-coping styles and have been measured in a wide
variety of species and contexts (Marchant-Forde et al. 2004;
Reefmann et al. 2009; Schmidt et al. 2010; Briefer et al. 2015;
Grandi and Ishida 2015). To date, few studies have examined
the impact of differences in stress-coping style on how indi-
viduals balance time-activity budgets in wild animals (e.g.
Závorka et al. 2016). However, an individual’s stress coping
style is likely to influence the trade-offs that are made within
activity budgets in response to other intrinsic or extrinsic
drivers.

Typically, time allocation studies utilize visual observation
methods, often inferring behaviour for an entire population

through intensive scan sampling, but are limited to periods
where the individuals of interest are visible (Altmann 1974;
Maniscalco et al. 2010; Witter et al. 2012). Recently, acceler-
ometers have allowed collection of remote, fine-scale behav-
iour free from observer biases (e.g. Naito et al. 2010; Shaffer
et al. 2014; Wang et al. 2015), especially relevant for the study
of avian and marine mammal behaviour where individuals
may remain inaccessible or out of sight much of the time
(Goldbogen et al. 2006, 2013; Sakamoto et al. 2009;
Stothart et al. 2016). Recording continuously and at high res-
olution, tri-axial accelerometers can be used to identify chang-
es in body position, dynamic movement patterns, and even
changes in affective state (Wilson et al. 2014), even when an
animal is outside of its observable period. Collecting behav-
ioural data over a 24-h period for days at a time with the use of
accelerometers will overcome the inherent biases associated
with traditional observational studies and provide more real-
istic representations of how individuals balance behavioural
trade-offs with respect to intrinsic and extrinsic pressures over
time.

Pinnipeds represent an interesting case study for the use of
accelerometry to determine fine-scale behavioural trade-offs.
Telemetered pinniped research has typically focused on their
at-sea behaviour (Biuw et al. 2003; Williams et al. 2004;
Skinner et al. 2010; Viviant et al. 2010; Andrews and
Enstipp 2016; Jeanniard-du-dot et al. 2017), rather than during
the terrestrial phase of pinniped life history including repro-
duction and nursing. As capital breeding phocids, grey seals
(Halichoerus grypus), rely on a fixed reserve of energy stores
during their lactation period (Fedak and Anderson 1982;
Lydersen and Kovacs 1999; Mellish et al. 1999, 2000).
Lactating females must balance behaviours that act towards
conserving energy (Resting), transferring resources to her pup
(Presenting/Nursing), and remaining vigilant (Alert) to protect
her pup which together contribute to defining early pup sur-
vival (Hall et al. 2001). Over-expenditure during lactation has
costs for the mother (e.g. Pomeroy et al. 1999). Balancing
these three behavioural states likely represents a trade-off
where too much time spent expending energy by remaining
Alert may have a detrimental effect on conserving resources
(Resting) and effort towards transferring energy to the pup
(Presenting/Nursing). Vigilance (Alert) has already been stud-
ied extensively in terrestrial mammals in the context of trade-
offs in time-activity (Caro 1987; Arenz and Leger 1999;
Beauchamp 2007; Pangle and Holekamp 2010).

Pinniped mothers are known to respond to a variety of
intrinsic and extrinsic pressures, such as exhibiting differential
investment of time and internal energetic resources between
pup sexes (Anderson and Fedak 1987), pup developmental
stages (Fedak and Anderson 1982; Mellish et al. 2000;
McDonald and Crocker 2006), and between years with vary-
ing favourability of environmental conditions (McMahon
et al. 2016; Desprez et al. 2018) which in turn may lead to
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differential survival of offspring (McMahon et al. 2000; Noren
2002; Hastings et al. 2009). Maintaining the high energy
throughput associated with capital breeding in grey seal
mothers means that optimizing and balancing behaviour and
time allocation with the competing demands of intrinsic and
extrinsic drivers over time is key for raising a pup without
compromising either mother or offspring.

Here, we examine how individual patterns of time alloca-
tion, as measured through accelerometry, vary in relation to a
range of extrinsic and intrinsic factors, including coping style,
with the aim of identifying fundamental trade-offs in time
allocation. We focus on three behavioural states (Resting,
Alert and Presenting/Nursing) where trade-offs in time-
activity likely exist in lactating grey seals as they make up
most of a mother’s daily activity budget (typically > 90%
time). Likely extrinsic drivers of behavioural trade-offs in-
clude pup sex (Anderson and Fedak 1987), conspecific den-
sity (Pomeroy et al. 2000a; Twiss et al. 2003), ambient tem-
perature (Twiss et al. 2002), local topography (access to water;
Twiss et al. 2000; Redman et al. 2001; Stewart et al. 2014),
and diurnal-nocturnal changes in activity (Culloch et al. 2016;
Fraser et al. 2019). Previously, various intrinsic predictors
have been found to influence maternal behaviour (maternal
mass and length, Pomeroy et al. 1999; phase of lactation and
pup developmental stage, Bowen et al. 1992). No study to
date has considered intrinsic and extrinsic drivers simulta-
neously to examine time-allocation trade-offs associated with
long-term activity budgets, nor examined the role of individ-
ual differences in coping styles in modulating time-allocation
patterns in a wild animal. We predict that stress-coping style
will be a major determinant of differences in behavioural
trade-offs across mothers.

Methods

Data logger deployments

Grey seal activity was determined using head-mounted data-
logging tri-axial accelerometers (AXY-Depth, Technosmart
Europe, Italy) as described in Shuert et al. (2018). Over two
consecutive breeding seasons, 38 adult female grey seals were
equipped with accelerometers for the core duration of lacta-
tion while on land. Adult female grey seals were captured on
the Isle of May in Scotland (56.1° N, 2.55° W) between the
months of October and December in 2015 and 2016.
Accelerometers were applied during an initial handling event
around day 5 of lactation and removed around day 15, prior to
the cessation of lactation. At each handling event, mothers
were chemically immobilized via a mass-specific dose of
tiletamine-zolazepam (‘Zoletil’, Virbac, U.K.; see Pomeroy
et al. 2000b). Upon sedation, each mother and pup were
weighed to the nearest 0.2 kg using a portable digital scale

and tripod as part of a research program on grey seal demog-
raphy (Pomeroy et al. 1999; Bennett et al. 2007).
Accelerometers were housed in custom-designed ballistic ny-
lon pouches attached onto dry pelage using a thin layer of
superglue (Loctite, formula 422; Fig. 1) and were configured
to sample at 50 Hz for the 2015 breeding season (nind = 18)
and 25 Hz (due to an error in the firmware) during 2016 (n-
ind = 20). Seven mothers were sampled in both 2015 and 2016.

As an indicator of stress-coping style we measured resting
heart rate variability (HRV; Koolhaas et al. 1999, 2010; von
Borell et al. 2007; Coppens et al. 2010; Liu et al. 2014; Briefer
et al. 2015) for individual seals. Over the course of acceler-
ometer deployments, study females were also equipped with
modified heart rate monitoring activity belts (FirstBeat
Technologies Ltd. ™). Each heart rate monitor was placed
on the back with the central transmitter housing on the midline
with leads extending down both flanks to silver chloride elec-
trodes located immediately posterior to the fore flippers (Fig.
1). A small section of pelage was clipped to match the size of
the electrode, held in place by a small plastic donut packed
with medical-grade electrogel, and secured with a small cover
plate on each donut. The heart rate monitors sample (1000 Hz)
and transmit inter-beat interval data (IBIs, milliseconds) to a
portable base station located up to 200 m from instrumented
seals, rather than logging data. While this means that the heart
rate data were not sampled continuously over lactation, data
were collected over multiple 5-min periods where the animal
was at rest for at least 95% of the 5 min and not engaged in
high-levels of activity during the 5 min. Recordings were
made for each individual seal morning and afternoon (daylight
hours only) and across the duration of lactation.

Raw IBI values were checked for artefacts using the default
options in the Firstbeat™ Sports software (v. 4.5.0.2) installed
on the receiver station, which automatically corrected poten-
tially missing beats (extreme long IBIs) by interpolation, and
deleted spurious extra beats (extreme short IBIs; Sami et al.

Fig. 1 Example showing placement of head-mounted accelerometers and
heart rate monitor on a study female with her pup in view
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2004). Corrected IBI data were also compared to 1 min dura-
tion ECG data for 12 individuals and was found to be highly
accurate (mean difference between Firstbeat™ IBI data and
ECG measurements was 0.87 ± 0.16 ms; SDT, unpublished
data). In addition, we filtered IBI data further by identifying
invariable sequences of IBIs (two or more consecutive identi-
cal inter-beat intervals; flats) or monotonically changing IBIs
(two or more identical non-zero changes in IBIs; stairs) using
custom R scripts. Only those 5-min traces with less than 50%
of these flats and stairs were included in subsequent analyses
(2015: mean traces per seal (± standard error, SE) = 24 ± 6;
2016: mean traces per seal = 37 ± 7). We computed the root
mean square of successive differences in inter-beat-intervals
(rMSSD; ms) for each of these 5 min traces using the R pack-
age ‘RHRV’ (Rodriguez-Linares et al. 2017). We used the
median rMSSD for each individual across the entire season
as our measure of resting HRV to assess whether stress-coping
styles would have any influence over time-activity budgets.

Accelerometer-derived activity budgets

Accelerometer data were transformed and summarized by 33
feature variables that characterize various elements of static
and dynamic acceleration, corresponding to body position and
movement, respectively, as well as elements of power spec-
trum density and frequency within the signal (Shuert et al.
2018). These variables were used to classify the entirety of
the accelerometry data for the duration of the deployed time
for each individual into 6 behavioural states at the resolution
of 1-s. The behavioural states included were Resting, Alert,
Flippering pup, Locomotion, Presenting/Nursing, and
Comfort Movements. Video footage was used to label
accelerometry data to train a random forest model that was
then used to classify each female’s activity budget as detailed
in Shuert et al. (2018). It was not possible to record data blind
because our study involved focal animals in the field. For the
purposes of this study, we focus on three of these behaviours
that make up the greater part (> 90%) of a female’s activity
budget during lactation and are therefore more likely to exhibit
trade-offs in time-activity allocation; Resting, Alert, and
Presenting/Nursing (Table 1). It should be noted that these

are behavioural categories determined exclusively from
accelerometry data and do not provide information on the
location of a female’s pup nor any other contextual informa-
tion that might be typically found in an ethological study.
Therefore, the behaviour Presenting/Nursing represents a spe-
cific body position which we associate with nursing effort on
the part of the grey seal mother (see Table 1), rather than a
discrete measure of milk transfer or interaction with a pup.
Activity budgets were summarized by consecutive day and
night period, split by the timing of civil twilight in order to
match previous efforts to study activity (e.g. Murie and
Lavigne 1991; Harris et al. 2001; Culloch et al. 2016); day
light hours included civil twilight at both ends of what consti-
tuted a day.

Factors influencing behaviour and model
parameterization

Predictors of time spent in each of the three key behavioural
states (Resting, Alert, and Presenting/Nursing) were modelled
separately using binomial GLMMs with a logit link function.
Predictors were included as fixed-effects and were classified
as either intrinsic to each female-pup pair or extrinsic variables
acting upon each female-pup pair. As target mother arrival on
the colony was closely monitored, the parturition date for our
study females in each breeding season was estimated to within
a day and therefore allowed for an estimate of maternal post-
partum mass. Intrinsic fixed effects included initial mother
post-partum mass as an indicator of size and condition, the
stage of the pup on a given day (classed as stage I to IV
according to Kovacs and Lavigne 1986; Woldstad and
Jenssen 1999), pup sex, and the phase of lactation (Lphase)
split into three phases (early: 1–6 days, mid: 7–10 days, late:
11+ days post-partum). Each mother’s resting heart rate vari-
ability (rMSSD) was also included as an intrinsic variable to
evaluate the influence of stress-coping style on whole activity
budgets (Coppens et al. 2010; Monestier et al. 2015). Weather
variables were collected continuously across each breeding
season from a weather station located in the centre of the
island (Supplemental Fig. 1). For the purposes of this analysis,
extrinsic fixed effects included daily maximum temperature

Table 1 Description of behaviour states for assessing time trade-offs in
lactating female grey seals, a summary of static heave acceleration (stZ;
median with 1st and 3rd quartile in brackets) found to be the most
important variable for classifying behaviour in head-mounted

accelerometers, as well as the mean proportion (± SD) of time spent in
each behavioural state across deployments as classified through
accelerometry (behaviour definitions and acceleration summary adapted
from Shuert et al. 2018)

Behaviour Description Accel. (stZ) Prop.

Resting Seal is motionless, head on ground 0.720 (0.044, 0.836) 0.607 ± 0.11

Alert Seal is stationary, head is up and moving, may look at pup 0.817 (0.722, 0.878) 0.303 ± 0.11

Presenting/Nursing Seal is rolled laterally so that nipples are presented to pup 0.173 (− 0.228, 0.711) 0.051 ± 0.05
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(DMT), daily mean wind speed (Mwind), and total daily pre-
cipitation (Precip). We included date, modelled as a polyno-
mial of days since October 1st, to represent seasonal changes
in colony density which roughly follows a negative second
order polynomial pattern, with the highest density mid-way
through the season. Grey seal mothers remain with their pup
throughout lactation and occupy a relatively small area (typi-
cally ranging no more than c. 20 m from their birth site;
Pomeroy et al. 2000b). Therefore, we recorded each mother’s
locations within the colony, based on 7 geographic regions on
the island that seals use (see definitions in Supplemental
Fig. 1) to represent gross differences in colony topography
and access to water.

A preliminary analysis found that the behavioural data
were overdispersed. Mother identity was included as a
random effect in all models to not only account for
overdispersion, but also to account for individual variabil-
ity in behaviour (Bolker et al. 2009). Behavioural data
were modelled as the proportion of time spent in the be-
haviour of interest, weighted appropriately for the total
number of seconds in each day and night period from
the accelerometer data, as each day of the study lost about
5 min of daylight. As this was the first opportunity to
access the full suite of night behaviour, the proportion
of time spent in each behaviour was parameterized for
each consecutive day and night (dn) for the length of each
deployment with dn included as a factor in all models.
Intrinsic and extrinsic models were designed a priori and
are listed in Table 2 (a and b). Pup sex was included in all
models as it has already been shown to influence how a
grey seal mother partitions her time (Anderson and Fedak
1987; Kovacs 1987). As a result, our null models present-
ed here include pup sex and dn to capture what is already
known to influence activity budgets in grey seal mothers.

Candidate models were ranked based on Akaike infor-
mation criterion, corrected for small sample size (AICc;
Anderson et al. 1998) and model deviance. Models were
initially designed in two different groups including intrin-
sic factors and extrinsic factors separately. This was done
in order to tease apart the potential trade-offs associated
with separate influences of potential intrinsic or extrinsic
drivers of behaviour, without masking any important fac-
tors that may be lost within model selection methods. Top
models were selected using AICc model selection
methods (Burnham and Anderson 2002). Those factors
included within 2 delta AICc were considered to have
extensive support in modelling, while those with ≤ 5 delta
AICc were considered to have minor support. Models
with more than 7 delta AICc were not considered further
(Burnham and Anderson 2002; Burnham et al. 2011).
Model covariates with extensive or minor support from
each of the two model groups (intrinsic, extrinsic) were
combined into a reduced model list with the heart rate

variability metric, rMSSD, and competed against the null
for each of the three behavioural states to identify poten-
tial trade-offs in time allocation and the respective drivers
of those trade-offs (Burnham et al. 2011). Selected models
were described by their deviance and Akaike weight and
relative evidence ratios, calculated as the ratio of model
weight between two models of interest (Burnham and
Anderson 2002; Burnham et al. 2011). All models were
built using the ‘glmmTMB’ package, ranked using the
‘bbmle’ package, and covariates model averaged with
the ‘MuMIn’ package in R (version 3.5.0; Bolker and
Team 2017; Magnusson et al. 2017; Barton 2018).

Table 2 Initial predictors for generalized linear mixed effects models
(GLMM) including (a) intrinsic variables and (b) extrinsic variables used
to assess time spent Resting, Alert, and Presenting/Nursing with female
ID included as a random factor. Intrinsic predictors include the phase of
lactation (Lphase), date (modelled as a second-order polynomial), and
pup stage. Maternal size was characterized by estimated maternal post-
partum mass (MPPM). Extrinsic predictors include daily maximum
temperature (DMT), mean wind speed (Mwind), total daily
precipitation (Precip), date, and colony location. All models included
pup sex and day/night (dn), including the null. Following initial
reduction, rMSSDwas added to models with extensive andminor support

No. Binomial GLMM predictors

(a) Intrinsic models 1 Lphase + Date* + PupStage
+ PupSex + MPPM + dn

2 Date* + PupStage + PupSex
+ MPPM + dn

3 Lphase + PupStage + PupSex
+ MPPM + dn

4 Date* + PupSex + MPPM + dn

5 Lphase + PupSex + MPPM + dn

6 PupStage + PupSex + MPPM + dn

7 PupStage + PupSex + dn

8 PupSex + dn (null)

(b) Extrinsic models 1 DMT + Mwind + Precip + Date*

+ ColLoc + PupSex + dn

2 DMT + Precip + Date* + ColLoc
+ PupSex + dn

3 DMT + Mwind + Date* + ColLoc
+ PupSex + dn

4 DMT + ColLoc + PupSex + dn

5 Precip + ColLoc + PupSex + dn

6 Mwind + ColLoc + PupSex + dn

7 ColLoc + PupSex +dn

8 DMT + PupSex + dn

9 Mwind + PupSex + dn

10 Precip + PupSex + dn

11 PupSex + dn (null)

All continuous variables were scaled and centred to meet model
assumptions
*Date modelled as a second-order polynomial
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Results

Resting

A post hoc analysis of intrinsic and extrinsic models found
that grey seal mother size and all weather variables were likely
‘pretending variables’, as they failed to reducemodel deviance
compared to those models that did not include each of these
factors (Anderson 2008; Burnham et al. 2011). As a result,
models including these factors were removed from model
competition for time spent Resting (see Supplementary
Table 1). Model weights were recomputed after the removal
of pretending and unsupported variables. Minor support (≤ 5
delta AICc) was found for the inclusion of pup stage as a
predictor of time spent Resting in addition to the inclusion
of pup sex and the effects of day and night (dn; Table 3(A)).
Compared to the average across all pup stages, mothers with
stage II pups rested significantly longer (Wilcoxon rank sum;
W = 15,146, p < 0.001), while mothers with pups at stage IV
rested significantly less (W = 35,062, p = 0.006; Fig. 2).
Mothers also spent significantly less time resting with female

pups (W = 57,330, p = 0.006) and rested significantly more at
night (W = 28,550, p < 0.001; Table 4). Little to no support
was found for more complicated models including colony
location or other intrinsic variables, with the exception of date.
Time spent Resting was highest at the start and end of the
season, as indicated by positive relationship for the parabolic
effect of our date variable (Table 4).

Extensive support was found for the effect of resting HRV
(rMSSD; ≤ 2 delta AICc, Table 3(A), Supplementary Table 1)
compared to models without this variable, yielding a com-
bined evidence ratio of 5.6 above the models that omitted
rMSSD, and holding 69% of the model weight (Table 3(A)).
Grey seal mothers with higher rMSSD tended to rest for lon-
ger than those with lower HRV, with an apparent inflexion
point in the sigmoid-like relationship at around 55 ms
(Fig. 3a, Table 4). The combined evidence ratio for the inclu-
sion of rMSSD along with pup stage and date was 11.7 above
the null model (pup sex and dn only; Table 3A). Final models,
rankings, and recomputed Akaike weights are included in
Table 3A. Variable estimates were model-averaged across
these final top models (Table 4).

Table 3 Final models for predicting time spent (A) Resting, (B) Alert,
and (C) Presenting/Nursing in lactating female grey seals with extensive
and minor support, following the removal of several pretending variables
as determined by a post hoc analysis. Models were ranked based on
Akaike information criterion, corrected for small sample size (AICc).

Time spent Resting and Alert were best described by pup stage, date (*
modeled as a second order polynomial), and the heart rate variability
metric rMSSD. Time spent Presenting/Nursing was best described by
location on the colony and rMSSD. Pup sex and differences in day and
night activity (dn) were included in every model

Model formula k Delta AICc Weight Deviance

(A) Resting

Date* + PupStage + rMSSD + PupSex + dn 8 0.0 0.410 1367.099

PupStage + rMSSD + PupSex + dn 6 2.0 0.149 1373.224

rMSSD + PupSex + dn 5 2.3 0.131 1375.521

Date* + PupStage + PupSex + dn 7 2.4 0.123 1371.555

Date* + PupSex + dn 6 2.6 0.111 1373.815

PupStage + PupSex + dn 5 4.6 0.042 1377.810

PupSex + dn (null) 4 4.9 0.035 1380.179

(B) Alert

Date* + rMSSD + PupSex + dn 7 0.0 0.401 1304.548

Date* + PupStage + rMSSD + PupSex + dn 8 0.3 0.344 1302.803

rMSSD + PupSex + dn 5 3.3 0.079 1311.888

Date* + PupSex + dn 6 3.5 0.069 1310.115

PupStage + rMSSD + PupSex + dn 6 4.3 0.046 1310.908

Date* + PupStage + PupSex + dn 7 4.5 0.043 1309.020

PupSex + dn (null) 4 7.1 0.012 1317.758

PupStage + PupSex + dn 5 8.1 0.007 1316.715

(C) Presenting/Nursing

PupSex + dn (null) 4 0.0 0.440 587.326

ColLoc + rMSSD + PupSex + dn 11 1.4 0.220 574.359

rMSSD + PupSex + dn 5 1.6 0.190 586.933

MPPM + ColLoc + rMSSD + PupSex + dn 12 7.1 0.150 573.090
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Alert

As with models predicting time spent Resting, time spent
Alert was best explained by a model including date, pup stage,
and rMSSD following the elimination of variables in the post
hoc reduction from the larger pool of models (Supplementary
Table 2), carrying 34.4% of the total model weight. Minor
support (≤ 5 delta AICc) was identified for less complicated
models including these variables, but the full model still had
an evidence ratio of 4.354 above the next best model and
28.667 above the null (Table 3(B)).

Grey seal mothers with a lower resting HRV (lower
rMSSD) spent a greater portion of their time Alert than those
with a more variable heart rate (Fig. 3b), with an apparent
inflection point of the sigmoid-like relationship again at
around 55 ms. Mothers spent significantly more time alert
with female pups than male pups (Wilcoxon rank sum; W =
43,820, p = 0.002; Table 5). Grey seal mothers also spent sig-
nificantly less time Alert at night (W = 74,664, p < 0.001;
Table 5). Mothers spent significantly less time Alert during
stage II of pup development than the overall mean (W =
49,104, p = 0.001) and a significantly longer time alert in stage
IV (W = 8946.5, p = 0.006; Fig. 4). As with Resting, time
spent Alert was found to be influenced by the effect of date,
where Alert was found to be highest at the mid-point of the
season as indicated by the negative beta parameter for both
terms of the polynomial relationship (Table 5). Beta estimates
for top models predicting time spent Alert were model aver-
aged across all top models and can be found in Table 5.

Presenting/Nursing

Extensive support was found for the inclusion of colony loca-
tion and rMSSD, in addition to the mandatory inclusion of

pup sex and dn, in our models of time spent Presenting/
Nursing (Supplementary Table 3). However, these models
were equivalent in predictive power to that of the null model
(Table 3(C)), and therefore must be regarded with caution. No
support was found for any other intrinsic or extrinsic model
variables, with the exception of maternal post-partum mass
(MPPM), in predicting time spent Presenting/Nursing, though
MPPM did not have any support in the final model table (> 7
delta AICc; Table 3(C)). All models equivalent to those listed
in Table 3(C) but without rMSSD were found to have no
support in final models and were ultimately removed (>> 7
delta AICc).

There was no significant difference between time spent
Presenting/Nursing male and female pups (Wilcoxon rank

Fig. 2 Boxplot of time spent resting as a function of pup stage in grey
seals. The boxes show the median, interquartile range, whiskers
(indicating the 90th and 10th percentiles), and individual data points.
Grey seal mothers spent significantly longer Resting when pups were

stage II than average (dashed line), and significantly less in stage IV, as
indicated by the (*) above each boxplot. Stage I and III were not
significantly different than average (ns). Significance was determined
using Wilcoxon rank sum tests

Table 4 Model-averaged variable estimates of top binomial GLMMs
describing time spent Resting in lactating grey seals. Top model
predictors included date (modelled as a second-order polynomial), pup
stage (against stage II), and rMSSD with pup sex (positive condition is
female) and day vs. night (dn; positive condition is night) included in all
models. In order to meet model assumptions, rMSSD was scaled and
centred

Variable Estimate Std. error 95% confidence

Upper Lower

(Intercept) 0.513 0.196 0.897 0.128

Date—poly 1 0.045 0.049 0.141 − 0.051
Date—poly 2 0.046 0.049 0.142 − 0.050
PupStage − 0.070 0.067 0.061 − 0.201
rMSSD* 0.059 0.051 0.158 − 0.040
PupSex (F) − 0.138 0.084 0.026 − 0.302
dn (night) 0.371 0.078 0.523 0.218

*Scaled and centred
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sum; W = 53,655, p = 0.252), but mothers tended to spend
significantly more time Presenting/Nursing at night (W =
46,121, p = 0.019; Table 6). While there was variability in
the response of time spent Presenting/Nursing in relation to
rMSSD, the relationship appears mostly flat (Fig. 3c).
Presenting/Nursing time varied significantly across the seven
colony locations (Kruskal-Wallis rank sum = 92.634,

p < 0.001; Fig. 5). Grey seal mothers in Karen’s Gully (KG)
and the Loan Road (LR), areas with access to freshwater
pools, had the highest average time Presenting/Nursing, while
those in Cross Park (XP), an area with no freshwater access,
had the lowest average time Presenting/Nursing (Fig. 5). Beta
parameter estimates were model averaged for top model var-
iables of time spent Presenting/Nursing and can be found in
Table 6.

Discussion

Grey seal maternal behaviour over a continuous multi-day
period during lactation was analysed using accelerometry da-
ta, focusing on three core behaviours that constitute over 90%
of a typical activity budget. Overall, it was found that time
spent both Resting and Alert by grey seal mothers were best
explained by complimentary models including the effect of a
pup’s developmental stage, the influence of time as expressed
through the polynomial variable of date, and the mother’s
resting HRV (rMSSD). Significant differences were also
found between pup sexes as well as difference between day
and night periods with respect to these two behaviours. Time
spent Presenting/Nursing, on the other hand, was found to be
relatively constant across coping styles over lactation, though
all final models were equal in predictive power to that of the
null model. Mothers of male or female pups did not differ in
time spent Presenting/Nursing, though they did allocate more
time to this activity overnight. Colony location also influenced
time spent Presenting/Nursing, indicating that topographical
features, such as access to freshwater pools, may drive
behaviour.

Fig. 3 Scatter plot of time spent (a) Resting, (b) Alert, and (c) Presenting/
Nursing as a function of the root mean square of successive differences
(rMSSD;ms) describing resting heart rate variability in grey seal mothers.
Point values represent the mean time spent in each behaviour by each
female, with standard error represented by the black bars around each
point. The solid line represents a loess-smoothed trend line with 95%
confidence intervals around the line in grey

Table 5 Model averaged variable estimates of top binomial GLMMs
describing time spent Alert in lactating grey seals. Top model predictors
included date (modelled as a second-order polynomial), pup stage
(against stage II), and rMSSD with pup sex (positive condition is
female) and day vs. night (dn; positive condition is night) included in
all models. In order to meet model assumptions, rMSSD was scaled and
centered

Variable Estimate Std. error 95% confidence

Upper Lower

(Intercept) − 0.816 0.175 − 0.473 − 1.159
Date—poly 1 − 2.060 1.439 0.760 − 4.880
Date—poly 2 − 1.932 1.390 0.792 − 4.656
PupStage 0.035 0.058 0.148 − 0.078
rMSSD* − 0.090 0.052 0.011 − 0.191
PupSex (F) 0.190 0.089 0.365 0.015

dn (night) − 0.427 0.083 − 0.264 − 0.589

*Scaled and centred
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Trade-offs between conserving energy and vigilance

While time allocation does not represent an exact measure of
energy expenditure, it does provide a useful proxy for how
individuals balance conserving energy through inactive be-
haviours against those active behaviours that may lead on
from remaining vigilant, such as aggression or fleeing. Time
spent Resting and Alert appear to represent a key trade-off in
grey seal mothers; both behaviours were best predicted by
identical model variables with opposing effects. The resulting
relationships indicate that these two behaviours are compli-
mentary with regard to the sex of a pup, its developmental
stage, time, and the mother’s resting HRV. Given the evidence
presented here, we argue that a trade-off in the conservation of
internal resources through Resting and appropriately
expending energy while Alert represents a key trade-off in
time allocation over the course of lactation for grey seals.

Interestingly, these two behaviours appeared to be subject
to the changing density across the colony, as indicated by the
opposing relationships between date for Resting and Alert.
The Isle of May birth curve, and therefore number of seals
ashore, like many other breeding rookeries follows a normal
distribution with a peak in density towards the middle of the
season around mid-November (Pomeroy et al. 2000a, b; Hall
et al. 2001). While we do not have daily estimates of colony
density across the study period, the results with respect to
trading off time spent Resting and Alert respond as one might
expect. Grey seal mothers spent more time Alert and less time
Resting mid-season when colony density is highest. Grey
seals mothers, at higher densities, must remain vigilant to keep
track of and protect their pups from conspecifics and other

threats (Pomeroy et al. 2000a; Twiss et al. 2003). Mothers
were found to spend significantly more time Resting and less
time Alert with pups in developmental stage II, while the
opposite was found for pups in developmental stage IVas they
approached weaning. During the early stages of development,
pups are generally fairly immobile and do not tend to stray far
from their mothers (Kovacs 1987). Milk fat content peaks

Fig. 4 Boxplot of time spent Alert as a function of pup developmental
stage. The boxes show the median, interquartile range, whiskers
(indicating the 90th and 10th percentiles), and individual data points.
The dashed horizontal line represents the grand mean of time spent
Alert. Grey seal mothers spent significantly less than average time Alert

when pups were in stage II, while spending more time Alert late in
lactation when pups were at stage IV, as indicated by the (*) above each
boxplot. Stages I and III were not significantly different than average (ns).
Significance was determined using Wilcoxon rank sum tests

Table 6 Model-averaged variable estimates of top binomial GLMMs
describing time spent Presenting/Nursing in lactating grey seals. Top
models included the effect of colony location (ColLoc against KG,
sublocation codes can be found in Fig. 5 and Supplemental Fig. 1) and
rMSSD as well as pup sex (positive condition is female) and day vs. night
(dn, positive condition is night) included in all models. In order to meet
model assumptions, rMSSD was scaled and centred

Variable Estimate Std. error 95% confidence

Upper Lower

(Intercept) − 2.832 0.416 − 2.016 − 3.647
ColLoc: LR 0.155 0.392 0.923 − 0.613
ColLoc: RT − 0.261 0.460 0.640 − 1.162
ColLoc: TC − 0.299 0.524 0.728 − 1.326
ColLoc: TH − 0.104 0.298 0.480 − 0.688
ColLoc: XP − 0.346 0.530 0.692 − 1.384
ColLoc: CH − 0.371 0.646 0.895 − 1.637
rMSSD* 0.079 0.113 0.300 − 0.181
PupSex (F) − 0.030 0.212 0.385 − 0.445
dn (night) 0.099 0.173 0.438 − 0.240

*Scaled and centred
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during early development (Mellish et al. 1999) and pups have
the highest ratio of milk intake to mass gained during the early
days of lactation (Iverson et al. 1993). Stage II of pup devel-
opment (median days 5–9 of lactation; Woldstad and Jenssen
1999) may therefore be an important developmental milestone
whereby pups must lay down their initial fat stores while both
mothers and pups remain relatively inactive, maximizing
mass-transfer. As pups approach stage IV near the end of
lactation, mothers are approaching estrus and likely remain
more vigilant due to more frequent interactions with males
(Anderson and Fedak 1985; Tinker et al. 1995; Lidgard
et al. 2001; Bean et al. 2004; Twiss et al. 2006; Bishop et al.
2017).

Previous work on grey seals in the UK indicate that
mothers expend up to 10% more energy over gestation and
lactation for male pups than female pups and spend signifi-
cantly more time defending and nursing male pups than fe-
male pups (Anderson and Fedak 1987; Kovacs 1987). While
it was found that grey seal mothers spent significantly more
time Alert and significantly less time Resting with female
pups than with male pups, it is unclear how much regional
differences influence patterns of maternal investment, but the
results presented here indicate that populations may experi-
ence different pressures on time allocation with regard to pup
sex.

Trade-offs between the acquisition of resources and vigi-
lance behaviours have been examined in a variety of predator
and prey contexts in terrestrial mammals, with varying de-
grees of density-dependence identified (Caro 1987; Burger
and Gochfeld 1994; Hunter and Skinner 1998; Pangle and

Holekamp 2010). In herding prey species, higher conspecific
density can mean that certain individuals are able to spend less
time Alert for predators, devoting a greater proportion of their
time activity towards foraging or maternal care (Burger and
Gochfeld 1994; Hunter and Skinner 1998). These trade-offs
are also applicable where individuals must strike a balance
between the energetic cost of foraging as a function of dis-
tance and search time and the acquisition of energy upon
locating sufficient resources in the environment (Hill et al.
2003; Lagarde et al. 2008; Therrien et al. 2008; Watanabe
et al. 2012; Patrick et al. 2014; Battaile et al. 2015; Flack
et al. 2016; Costelloe and Rubenstein 2018). These examples
principally illustrate the relationships between conserving or
acquiring energy and expending energy to ensure survival.

Grey seal mothers have been shown to have poor pupping
success following a year with exceptional resource output into
a larger pup (Pomeroy et al. 1999). Preliminary analyses indi-
cate that Resting and Alert have very different energetic costs
across individuals, as indicated by significantly different mean
heart rate (HR) associated with these behaviours. For the same
seals studied in this paper, mean HR (± SE) across n = 6,099
100-beat traces where the seal was Resting for > 50% of those
beats was 84.4 ± 0.18 bpm. By contrast, mean HR across n =
2,504 100-beat traces where the seal was Alert for > 50%
Alert 92.6 ± 0.28 bpm (SDT, unpublished data). Mean heart
rate has been shown to be a reliable proxy of total energy
expenditure across a wide range of taxa and behaviours, where
higher mean heart rate indicates more energy spent on an
activity (Signer et al. 2011; Turbill et al. 2011; Hawkes et al.
2014; Portugal et al. 2016, 2018). Balancing time spent

Fig. 5 Boxplot of time spent Presenting/Nursing within each colony
location (see Supplemental Fig. 1 for location boundaries and water
source locations). The boxes show the median, interquartile range,
whiskers (indicating the 90th and 10th percentiles), and individual data
points. The dashed horizontal line represents the overall mean time spent
Presenting/Nursing. Locations with access to several freshwater sources
include Karren’s Gully (KG), Loan Road (LR), and Tarbet Hole (TH),

while the remaining sites had no or extremely limited access to freshwater
pools (Rona Top (RT); Tennis Court (TC); Cross Park (XP); Chapel
(CH)). Grey seal mothers at KG and LR spent the longest average time
Presenting/Nursing, while those in XP and TC had the least. Significance
of deviation from the mean (as determined from a Wilxoxon rank sum)
indicated by ‘****’ (p < 0.0001), ‘***’ (p < 0.001), ‘**’ (p < 0.01), ‘*’
(p = 0.05) or ‘ns’ across the top

8 Page 10 of 17 Behav Ecol Sociobiol (2020) 74: 8



Resting and Alert may be key to lactating grey seals as they
attempt to optimize resource availability for their current off-
spring while minimizing the impact of the associated longer-
term costs on the next breeding cycle, though the actual ener-
getic costs of engaging in these two behaviours is currently
unknown. These differences in energy costs for Resting and
Alert behaviours certainly indicate that there may be tangible
energetic consequences that may result from individual differ-
ences in time-activity trade-offs, but these costs need to be
investigated further. Tracking these behaviours across years
may reveal consistent mothering strategies that may relate to
different ways of managing these trade-offs with respect to
ultimate fitness outcomes.

Measures of heart rate variability, such as rMSSD, have
been linked to a continuum of stress-coping styles in labora-
tory experiments, also known as the pro-reactive spectrum
(Koolhaas et al. 1999). Individuals that display low HRV tend
to be those classed as proactive and exhibit stereotypical, rou-
tine action patterns in a variety of contexts (Coppens et al.
2010). Those individuals that tend towards higher HRV show
a more reactive coping style, where the inputs of the surround-
ing environment tend to elicit responses and dictate the degree
of responsiveness to a greater extent than internally regulated
control (Coppens et al. 2010). Our study shows that differ-
ences in stress-coping styles appear to be important in deter-
mining the balance point of trade-offs in whole activity bud-
gets. Grey seal mothers at the proactive end of the spectrum
(lower values of rMSSD) spent generally more time Alert and
less time Resting than those with a more reactive stress-coping
style (Fig. 3a, b). While we did not investigate the frequency
of these behaviours in time, proactive individuals may be reg-
ularly engaging in Alert vigilance behaviour interspersed with
Resting and other behaviours to maintain constant and consis-
tent vigilance effort over time as a mechanism for mitigating
overall stress responses, rather than reacting to stressors as
they occur (Twiss et al. 2012). These results here may explain
in part the observed differences in fitness outcomes for the
same population of grey seals (Twiss et al. 2012), but needs
to be investigated further.

Few efforts to date have focused on differences be-
tween day and night behaviour in grey seals. An early
study by Anderson (1978) concluded that behaviour did
not differ between day and night other than a higher fre-
quency of ‘looks’ during day and twilight hours
(Anderson 1978). More recently, two studies have found
that grey seal mothers Rested significantly more and were
Alert significantly less during nighttime hours, though
these studies did not monitor behaviour throughout the
entire night (Culloch et al. 2016; Fraser et al. 2019).
The current study used accelerometers to measure behav-
iour through the day and night hours, and has confirmed
unequivocally that Resting occurs at night along with a
marked reduction in vigilance. Alert and other vigilance-

type behaviours likely decrease at night due to a decrease
in visual acuity, relying more on other sensory inputs to
maintain contact with their pup and to intercept incoming
threats (Schusterman and Balliet 1971; Schusterman
1974; Culloch et al. 2016). Given the evidence for signif-
icant differences between night and day for all behaviour-
al categories examined here, previous studies that (explic-
itly or implicitly) used time-activity data gathered only
during daylight hours as a proxy for behavioural energy
usage or behavioural maternal investment (e.g. Kovacs
and Lavigne 1986; Twiss et al. 2000) may be misleading.
Artificial light pollution has already been shown to sig-
nificantly alter behaviour for many coastal species and is
identified as an ever increasing problem (Davies et al.
2013, 2014; Kamrowski et al. 2013; Yorzinski et al.
2015). If seals are exploiting night as a means of energy
conservation and rebalancing time-activity trade-offs be-
cause of decreased visual acuity among conspecifics, ar-
tificial light pollution may impact this. While the Isle of
May is largely undisturbed by human impact, encroaching
human settlements towards mainland breeding sites may
alter the nighttime activity in grey seals and other land-
breeding phocid species, especially for areas of newly
formed breeding colonies and more ephemerally populat-
ed haul-out sites along the coasts of the UK.

Patterns in Presenting/Nursing

The results presented here show that Presenting/Nursing
behaviour remains constant across lactation, but differs
across some colony locations, between day and night,
and with respect to rMSSD. These modelled effects, how-
ever, were equal in predictive power to our null model
and therefore must be regarded as tentative patterns.
Intuitively, consistency in Presenting/Nursing effort
across lactation should be highly selected for in order to
maximize the likelihood that energy can be transferred to
the pup. While the number of nursing attempts, or time
spent Presenting/Nursing here, is not an accurate measure
for amount of energy transferred (Cameron 1998), a the-
oretical minimum in Presenting/Nursing effort must exist
and is likely strongly selected for in these seals. Given
that we are also unable to follow the behaviour of the
pup through accelerometry, Presenting/Nursing effort re-
mains a loose approximation of maternal investment and
can also be heavily influenced by proximity to the pup,
the pup’s effort to nurse, milk production capacity, and
hormone levels (Robinson et al. 2015, 2016). Likewise,
seals should not overexert their energy output during lac-
tation, or they risk jeopardizing subsequent breeding at-
tempts (Pomeroy et al. 1999; McMahon et al. 2016;
Bubac et al. 2018). Pup survival is highly dependent on
the mass at which it is weaned (Hall et al. 2001), a
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common feature across a wide range of taxa (Pilastro
et al. 1994; Festa-Bianchet et al. 2000; Hall et al. 2001;
Harding et al. 2005; Ozgul et al. 2010; Bowen et al. 2015;
Weitzman et al. 2017). As a result, mothers are likely less
able to be flexible in trading-off time spent Presenting/
Nursing with other behaviours over lactation in order to
maximize energy transfer to her pup.

Bowen et al. (1992) found no pup sex dependent dif-
ferences in grey seal mother energy expenditures on Sable
Island (Canada), while studies in the UK indicated differ-
ences in investment between pup sexes (Anderson and
Fedak 1987). Here, we found no detectable difference in
time spent Presenting/Nursing across pup sexes. These
conflicting results may indicate that some regional or
colony-specific differences may be at play. Resting HRV
had some support in models of time spent Presenting/
Nursing, but did not show any clear patterns (Fig. 3c).
This lack of distinct pattern further supports our conclu-
sion that consistency in Presenting/Nursing effort is high-
ly selected for, irrespective of individual coping style. By
using accelerometers, we also found that grey seal
mothers are often engaging in Presenting/Nursing effort
significantly more overnight. Presenting/Nursing more
overnight likely help to stabilize maternal effort over
time, especially when social and aggressive interactions
may limit the amount of time during the day that mothers
can nurse.

The greatest source of apparent variability in time
spent Presenting/Nursing was found in the different sub-
regions of the island. The study colony (Isle of May) is
topographically heterogeneous (see Supplemental Fig. 1;
Twiss et al. 2000). In particular, access to water varies
considerably, and previous work has demonstrated that
lactating females prefer access to fresh water (Twiss
et al. 2000, 2002; Redman et al. 2001; Stewart et al.
2014). The thick blubber layer of all phocids provides
insulation and grey seals will often use freshwater pools
to achieve the benefits of evaporative cooling (Rommel
et al. 1995; Boily and Lavigne 1996; Twiss et al. 2002;
Khamas et al. 2012; Paterson et al. 2012). With the in-
creased metabolic demands of lactating while fasting,
grey seal mothers may also prefer access to freshwater
as a means to drink to meet water demands (Stewart
et al. 2014). Areas with the poorest access to temporary
freshwater pools (Cross Park – XP, Tennis Court – TC,
and Rona Top – RT; Fig. 5) tended to have mothers that
spent significantly less time Presenting/Nursing on aver-
age than those containing permanent and stable freshwater
sources. Therefore, time spent travelling to and from
pools to drink or cool off may potentially impact time
spent Presenting/Nursing day to day. Alternatively, some
grey seal mothers may simply go without drinking, min-
imizing geographic movement and energy used for

activity as a means of compensating for increased expense
of burning more internal resources to free up body water
(Reilly and Fedak 1990). It remains to be seen whether
either strategy may impact energy leftover for lactation
and how this may affect pup development. Locomotory
behaviours were poorly identified in the current study
design (see Shuert et al. 2018) which prevents an accurate
assessment of movement across the colony to and from
freshwater sources, without the aid of additional sensors
like GPS or magnetometers for dead-reckoning.

No support was identified for extrinsic environmental
variables influencing behaviour in the current investiga-
tion. Weather variables were measured as summaries over
an hour at a single location on the island, therefore it is
likely that the spatial and temporal resolution of the envi-
ronmental data was too coarse to link to individual behav-
ioural decisions with respect to thermoregulatory or water
balance needs. Spatial differences in local weather vari-
ables across the island may have also contributed to dif-
ferences in Presenting/Nursing behaviour, but it was not
possible to assess environmental variables at such a fine
spatial resolution in the current study. A fine-scale analy-
sis of environmental conditions associated with time and
energy management in grey seals may reveal more about
behavioural responses to extrinsic drivers, especially giv-
en the projected changes in climate variability for the
autumnal breeding season in the UK (Jenkins et al. 2008).

Conclusions

Using the high-resolution data from accelerometers, we
were able to identify behavioural trade-offs between rest
(Resting) and vigilance (Alert) in a capital breeding pin-
niped. Stress-coping styles, measured through the metric
rMSSD, have an important influence on how individuals
resolve this trade-off throughout the duration of lactation.
Time devoted to Presenting/Nursing as a behavioural state
is more fixed within an individual, but potentially varies
across individuals depending upon local topography.
Therefore, only certain aspects of time-activity budgets
are labile and available for modification of allocated time
as individuals attempt to balance current breeding activity
while maintaining enough resources to successfully com-
plete lactation the next season. Incorporating the dynam-
ics of these trade-offs on whole activity budgets as well as
the modulating effect of stress-coping styles on behaviour
will enhance our understanding of how individuals opti-
mize energy usage trajectories over time.
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