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Abstract It has long been suggested that habitat structure
affects how colonial birds are distributed within their nesting
aggregations, but this hypothesis has never been formally
tested. The aim of this study was to test for a correlated
evolution between habitat heterogeneity and within-colony
distributions of Ciconiiformes by using Pagel’s general meth-
od of comparative analysis for discrete variables. The analysis
indicated that central-periphery gradients of distribution
(high-quality individuals occupying central nesting
locations) prevail in species breeding in homogeneous habi-
tats. These were mainly ground-nesting larids and
spheniscids, where clear central-periphery patterns were re-
corded in ca. 80 % of the taxa. Since homogeneous habitats
provide little variation in the physical quality of nest sites,
central nesting locations should be largely preferred because
they give better protection against predators bymeans of more
efficient predator detection and deterrence. By contrast,
central-periphery gradients tended to be disrupted in hetero-
geneous habitats, where 75 % of colonial Ciconiiform species
showed uniform patterns of distribution. Under this model of
distribution, edge nest sites of high physical quality confer
higher fitness benefits in comparison to low-quality central
sites, and thus, high-quality pairs are likely to choose nest sites
irrespectively of their within-colony location. Breeding in
homogeneous habitats and uniform distribution patterns were
identified as probable ancestral states in Ciconiiformes, but
there was a significant transition rate from uniform to central-
periphery distributions in species occupying homogeneous
habitats.

Keywords Birds . Ciconiiformes . Coloniality . Comparative
analysis . Distribution . Habitat structure

Introduction

According to classic theoretical predictions on resource ac-
quisition in animals, individuals should be distributed in en-
vironments so as to maximise their fitness. If there are no
competitive asymmetries between conspecifics, the habitat
should be occupied proportionally to the available resources
under the assumptions of the ideal free distribution model of
Fretwell and Lucas (1970), which implies that the density of
individuals should increase along with the increasing quality
of the habitat patch. However, in natural populations of ani-
mals, individuals only rarely gain equal access to resources, as
they notably differ in their competitive abilities. Conforming
to the empirical evidence on competitive asymmetries within
populations, a model of ideal despotic distribution was pro-
posed, assuming that dominant individuals have capacities to
secure the best available territories and to relegate conspecifics
of lower phenotypic quality to less attractive habitats (Fretwell
1972).

Although there is abundant empirical evidence for ideal
despotic distributions in territorial birds (Andrén 1990; Ens
et al. 1995; Møller 1995; Petit and Petit 1996), information on
the patterns of distribution in colonial species are much more
scarce. Distribution patterns of colonial birds are typically
considered on at least three different levels: (1) distribution
of colonies in the available environment; (2) distribution of
individuals among colonies; and (3) distribution of individuals
within colonies. Large-scale patterns of colony distribution as
well as distribution of individuals among the colonies located
in the habitat patches of different quality have both recently
received increasing attention (Brown and Rannala 1995). It
has been demonstrated that the foundation of new colonies in
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several avian species follows a despotic model (Serrano and
Tella 2007; Oro 2008) and that individuals of low phenotypic
quality (expressed by young age or poor physical quality) may
be excluded from colonies that are located in the best habitat
patches (Rendón et al. 2001).

By contrast, much less empirical data has been collected on
the distribution of individuals within their breeding colonies.
Despite this relative scarcity of information, it seems safe to
distinguish two major components of nesting site attractive-
ness that may have important fitness consequences for colo-
nially breeding species and that, consequently, are likely to
determine within-colony distribution patterns. The first of the
components is associated with the within-colony location of
nest sites, as it is generally accepted that the centres of colo-
nies offer the highest benefits in terms of fitness (Coulson
1968; Aebischer and Coulson 1990). It has been commonly
reported that pairs nesting in the centres are likely to achieve
higher breeding success due to decreased predation-related
losses of eggs and chicks (Götmark and Andersson 1984;
Yorio and Quintana 1997; Minias and Kaczmarek 2013), thus
indicating that colonies may act as selfish herds against pre-
dation (Brown and Brown 2001). The mechanisms explaining
lower susceptibility of central pairs to predation may include
more efficient detection and deterrence of predators in the
central parts of colonies. Central nests are also likely to be
less accessible to predators, although this may largely depend
on the type of predator (Brunton 1997). However, in general,
there is large empirical support that colonial birds dilute the
risk of predation (Brown and Brown 2001) and that central
nesting sites are by far the most efficiently protected sites
against predators. Although the breeding success of centrally
nesting pairs may be decreased due to density-dependent
intraspecific interactions (Jovani and Grimm 2008;
Ashbrook et al. 2010) and parasitic rates (Tella 2002), many
studies have demonstrated higher reproductive output in col-
ony centres in comparison to the edges (Patterson 1965;
Gochfeld 1980; Becker 1995; Vergara and Aguirre 2006).
For this reason individuals of higher quality are likely to
occupy the best central sites and to relegate individuals of
lower quality to less attractive edge sites. Assuming such a
despotic mechanism of colony formation, one would expect a
central-periphery pattern of distribution where the phenotypic
quality of breeding birds declines from the centre towards the
edges of a colony (Coulson 1968).

The physical quality of nesting sites may be considered as
the second major component of their attractiveness for colo-
nial birds. If the habitat is heterogeneous on a small spatial
scale, considerable variation in the physical quality of nesting
sites within colonies is expected. Under this assumption, nest
sites of high quality would be likely to provide much more
effective protection against predators or adverse weather con-
ditions and thus would promote higher reproductive success.
It has been suggested that if the fitness benefits of nesting in

sites of good physical quality considerably exceeds benefits
associated with the central nesting position, then high-quality
pairs may choose the best available nesting sites independent-
ly of their location in a colony (Velando and Freire 2001).
Under such circumstances, the central-periphery patterns
could be disrupted and pairs of varying quality could be
distributed more or less uniformly among the central and
peripheral zones of colonies.

Although the effects of habitat heterogeneity on the within-
colony patterns of distribution in birds have long been
hypothesised, most of the empirical evidence has only been
circumstantial and the suggested relationship has never been
supported by a formal analysis. The aim of this study was to
test for evolutionary correlations between the structure of
breeding habitat and within-colony distributions in
Ciconiiformes (sensu Sibley and Ahlquist 1990), a phyloge-
netic group with the highest prevalence of coloniality among
birds (Siegel-Causey and Kharitonov 1990). According to the
theoretical predictions, I expected that birds nesting in homo-
geneous habitats should form colonies according to the
central-periphery model of distribution, whereas in heteroge-
neous habitats, the central-periphery gradients should be
disrupted (uniform model of distribution).

Methods

For the purpose of the analysis, I collected data from the
literature for 34 colonial species of Ciconiiformes grouped
into nine families (Table 1). Each species was assigned a
prevailing model of within-colony distribution: central-
periphery or uniform. The central-periphery model was
assigned when all studied reproductive parameters or parental
quality traits declined from the centre of the colony towards
the peripheries. In contrast, the uniform model corresponded
to a situation in which the central-periphery gradients were
disrupted, at least with respect to some of the studied traits or
in some of the studied colonies. With such an approach, the
distribution patterns could be coded binarily, with central-
periphery distributions denoted as 0 and distributions in which
central-periphery gradients were disrupted (uniform models)
denoted as 1. Heterogeneity of the breeding habitat was also
treated as a categorical variable with two states. Bare ground
and mats of floating vegetation were identified as homoge-
neous habitats, as these provide none or negligible variation in
the physical quality of nesting sites and all nests are more or
less equally vulnerable to predators or adverse weather con-
ditions (denoted as 0). All of the other habitats that may
provide moderate or considerable variation in the physical
quality of nesting sites were considered to be heterogeneous
habitats (denoted as 1). This category mostly included rocky
habitats (cliff ledges, rocky slopes and islets, rock crevices,
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Table 1 Patterns of within-colony distribution and nesting habitat of colonial Ciconiiform species

Species Distribution Habitat Parameters Authors

Spheniscidae

Aptenodytes patagonicus U Ground BD (C-P) Côté 2000

BD, RS (C-P) Bried and Jouventin 2001

AS, RS (U) Decamps et al. 2009

Eudyptes chrysocome C-P Ground RS Hull et al. 2004

Spheniscus magellanicus C-P Ground CS, S, RS Gochfeld 1980

S, RS Frere et al. 1992

Pygoscelis antarcticus C-P Ground AM Mínguez et al. 2001

BD Barbosa et al. 1997

Pygoscelis adeliae C-P Ground RS Taylor 1962

CS, RS Tenaza 1971

BD, CS Spurr 1975

CS, S Davis and McCaffrey 1986

Procellaridae

Thalassarche melanophris C-P Ground RS Forster and Phillips 2009

Pelecanidae

Pelecanus occidentalis C-P Ground AA, CS, RS Blus and Keahey 1978

Ciconiidae

Ciconia ciconia C-P Trees AA, RS Vergara and Aguirre 2006

Ardeidae

Nycticorax nycticorax U Trees CS (U); RS (C-P) Uzun 2009

Bubulcus ibis U Trees S (C-P) Siegfried 1972

HS (U) Ranglack et al. 1991

CS (U) Samraoui et al. 2007

Ardea cinerea U Trees RS Van Vessem and Draulans 1986

Egretta garzetta U Trees CS (U); RS (C-P) Uzun and Kopij 2010

Phalacrocoracidae

Phalacrocorax atriceps U Rocks AA Shaw 1985

RS Svagelj and Quintana 2011

Phalacrocorax aristotelis U Rocks RS Velando and Freire 2001

Phalacrocorax pelagicus U Cliff BD, AA Siegel-Causey and Hunt 1986

Phalacrocorax carbo U Trees RS (U) Grieco 1994

BD (C-P) Andrews and Day 1999

BD, RS (C-P);
CS (U)

Minias et al. 2012a

BD, CC, RS, S (C-P); CS (U) Minias and Kaczmarek 2013

Phalacrocorax auritus C-P Trees BD Léger and McNeil 1987

Sulidae

Morus capensis C-P Ground AA, RS Staverees et al. 2008

Morus serrator U Ground BD, AA (C-P) Gibbs et al. 2000

AA (U) Pyk et al. 2008

Sula variegata U Rocks BD Duffy 1983

Sula leucogaster U Rocks RS Ospina-Alvarez 2008

Accipitridae

Pandion haliaetus C-P Trees RS Hagan and Walters 1990

Laridae

Hydroprogne caspia C-P Ground BD, RS Antolos et al. 2006

Sternula antillarum U Ground HS, S, RS Brunton 1997

Thalasseus maximus C-P Ground BD, S Buckley and Buckley 1977
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hollows and burrows) and vegetated habitats (woodlands and
shrubs).

Since data from different species are not independent due
to their shared ancestral states, it is widely acknowledged that
comparative analyses must control for the phylogeny. I based
my phylogenetic tree on the classification of Sibley and
Ahlquist (1990). This phylogeny is uniquely available for
the entire order of Ciconiiformes, and for this reason, it was
used to branch the families of my tree (Fig. 1). Although the
phylogeny of Sibley and Ahlquist (1990) was once considered
controversial (Sheldon and Gill 1996), it is now assumed as
quite robust for phylogenetic analyses in birds (reviewed in
Mooers and Cotgreave 1994), and hence, it has been broadly
used in comparative studies (Cézilly et al. 2000; Dubois and
Cézilly 2002; Garamszegi et al. 2005; Olson et al. 2008),
including those on avian coloniality (Rolland et al. 1998;
Varela et al. 2007). In order to branch the genera and species,
I used five phylogenies based on both molecular and morpho-
logical data (Sheldon 1987; Kennedy et al. 2000; Thomas
et al. 2004; Bertelli and Giannini 2005; Smith 2010). Since
different approaches were used to construct the above phy-
logenies, I decided not to control for branch lengths, which
followed from other comparative studies (Dubois et al. 1998;
Rolland et al. 1998; Cézilly et al. 2000; Varela et al. 2007).
Setting equal branch lengths is considered conservative (Pagel

1994), and it has been demonstrated that it does not bias the
results qualitatively (Møller et al. 1998; Nunn 1999).

To test for a correlated evolution between breeding habitat
structure and within-colony distribution patterns, I used
Pagel’s discrete variable method (1994) which uses the
continuous-time Markov model in order to characterise evo-
lutionary changes in selected pairs of variables along each
branch of the phylogenetic tree. The method compares the fit
of two different models assuming an either independent or
dependent (the rate of change of one trait depends on the
background state of the other) evolution of traits. The models
were fitted using maximum likelihood and compared using
the likelihood ratio (LR) statistic, which is expressed as LR=2
(logL(D)−logL(I)), where L(D) is the likelihood of the model
that allows the traits to evolve in a correlated fashion and L(I) is
the likelihood of the independent model. The LR statistic is
asymptotically distributed as χ2 with four degrees of freedom
for this test (Pagel 1997).

The discrete variables method was also used to estimate the
ordering and direction of the evolutionary changes of the two
analysed variables (so-called temporal order tests). For this
purpose, one needs to fit reduced models in which a certain
rate of evolutionary transition qij is excluded a priori (set to 0).
The constrained seven-parameter models are then compared
to the full eight-parameter model which tests the hypotheses

Table 1 (continued)

Species Distribution Habitat Parameters Authors

Chlidonias hybridus C-P Floating vegetation CS Minias et al. 2011

CGR Minias et al. 2012b

S Minias et al. 2013

Sterna dougallii C-P Ground BD Ramos 2002

Sterna hirundo C-P Ground BD, S, RS Becker 1995

Chroicocephalus ridibundus C-P Ground RS Patterson 1965

Rissa tridactyla U Cliff AS (C-P) Coulson and Wooller 1976

RS (U) Wooller and Coulson 1977

S (C-P); RS (U) Regehr et al. 1998

AS (C-P) Aebischer and Coulson 1990

Larus atricilla C-P Ground BD, CS, S, RS Montevecchi 1978

Larus delawarensis U Ground AA (C-P) Ludwig 1974

HS, S, RS (C-P) Dexheimer and Southern 1974

AA (C-P) Ryder 1975

BD, CS, HS, RS (U) Ryder and Ryder 1981

BD, AA (C-P) Haymes and Blokpoel 1980

Larus californicus C-P Ground RS, AA Pugasek and Diem 1983

Larus argentatus C-P Ground BD Burger and Shisler 1980

Central-periphery (C-P) and uniform (U) patterns were assigned to within-colony distributions of the following traits: BD breeding date, CS clutch size,
HS hatching success, RS reproductive success, S brood survival,CGR chick growth rates,CC chick condition, AS adult survival, AA adult age, AM adult
morphology. If different, the patterns of distribution were indicated in parentheses separately for each reported reproductive/quality trait or for each
studied colony
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whether the specified transition rates differ significantly from
zero. The tests are asymptotically distributed as χ2 with one
degree of freedom (Pagel 1994). In this manner, the evolution
between the ancestral states and the derived states of both
selected variables may be traced. For root reconstruction of
ancestral states, I used the maximum-likelihood reconstruc-
tion method of Pagel (1999). All analyses were performed
with BayesTraits (Pagel and Meade 2008).

Results

Among the 34 taxa used for the analysis, there were 20 species
that nested in homogeneous habitats (59 %) and 14 that chose
heterogeneous habitats for breeding (41 %). A similar

proportion was found between the number of species that
exhibited central-periphery distribution within colonies and
those in which central-periphery gradients were disrupted (56
vs. 44 %, Table 1). There was a clear tendency for species
breeding in homogeneous habitats to be distributed central-
peripherally within the colonies (Fig. 2). The log-likelihood of
the model of independent evolution was estimated at L0=
−36.10 and was significantly lower in comparison to the
likelihood of the dependent model L1=−30.18 (χ2=11.83,
df=4, P=0.019). Such results support the hypothesis of a
correlated evolution between preferences for heterogeneous
breeding habitats and uniform patterns of within-colony
distribution.

Breeding in homogeneous habitats and uniform distribu-
tion of pairs within colonies were identified as ancestral states

Fig. 1 Phylogenetic tree of 34
colonial species from nine
Ciconiiformes families involved
in the study
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with a probability of 94.8 %. I found a significant rate of
transition from uniform to central-periphery distribution in
species that bred in homogeneous habitats (χ2=4.54, df=1,
P=0.033). I also found a significant rate of reversed transi-
tions, i.e. from central-periphery to uniform patterns of distri-
bution (χ2=7.50, df=1, P=0.006). The rate of evolution from
breeding in homogeneous to heterogeneous habitats with no
change in the background state of uniform distribution pattern
was not significant (χ2=1.14, df=1, P=0.29), but it cannot be
excluded that this could have resulted from the low power of
the test. All the other transition rates were also non-significant
(all P>0.05).

Discussion

This study was the first to formally demonstrate a link be-
tween within-colony distribution patterns in birds and the
structure of preferred nesting habitat by using comparative
analysis. It was shown that as much as 85 % of colonial
Ciconiiformes species which breed in homogeneous habitats
tend to show clear central-periphery patterns of distribution
within their colonies and that these are mostly ground-nesting
species from the Spheniscidae and Laridae families. In gener-
al, bare-ground habitats, such as sandy islands or dunes,
provide no apparent variation in the physical quality of the
nesting sites. Under such conditions, each nest site is likely to
be equally exposed to predation and inclement weather.
Consequently, nest-site selection patterns should evolve to-
wards choosing an appropriate location within the colony,
where pressure coming from predators will be minimised.
Assuming that all nest sites are physically similar, the highest
fitness benefits are expected to be acquired via nesting in the
central parts of colonies (Coulson 1968). As colony centres
are usually associated with higher nesting densities, the

mechanisms which may explain lower predation rates at these
locations include: (1) restricted accessibility for predators
(Siegel-Causey and Hunt 1981); (2) more efficient communal
defence (Elliot 1985); (3) more efficient detection of predators
(Roberts 1996); and (4) lower probability of being depredated
due to the dilution effect (Murphy and Schauer 1996).

By contrast, heterogeneous habitats were found to disrupt
the central-periphery patterns of distribution within colonies.
In habitats of moderate or high heterogeneity, edge nest sites
of high physical quality are likely to confer higher fitness
benefits in comparison to low-quality central sites. Thus,
high-quality pairs are expected to choose nest sites
irrespectively of their within-colony location, and thus, they
are expected to be uniformly distributed among the central and
peripheral zones of colonies. Central-periphery distributions
were found to be disrupted in nearly 75 % of colonial
Ciconiiformes species that nested in heterogeneous habitats.
It seems that uniform patterns of distribution are especially
common in birds that establish colonies on cliffs or in other
rocky habitats, including various Phalacrocoracidae and
Sulidae species. Nesting sites such as crevices under fallen
rocks, open ground caves and open ledges on cliffs usually
show great variation in their physical quality and attractive-
ness for birds; for example, a clear preference for sites with
more lateral and overhead cover, with better drainage and with
better visibility has been demonstrated for the European Shag
Phalacrocorax aristotelis (Velando and Freire 2003). Such
physical characteristics of nesting sites have been shown to
provide more effective protection against predators and to
prevent broods from flooding, unfavourable atmospheric con-
ditions and intra-specific inference, which greatly affected the
hatching success of Shags (Velando and Freire 2003). The
distribution of birds within the same colony of Shags did not
conform to the assumptions of the central-periphery model, as
individuals of different quality were distributed despotically
among the sites of varying physical quality (Velando and
Freire 2001, 2003).

Disruptions in the central-periphery patterns of distribution
were also recorded in several waterbird species associated
with woodland habitats; although, this kind of environment
is expected to provide only moderate variation in the physical
quality of nesting sites, most commonly expressed by varia-
tion in tree height and canopy structure. In several tree-nesting
colonial avian species, tree height was identified as an impor-
tant predictor of reproductive success and was suggested to
determine accessibility of nests to ground and tree-dwelling
predators (Post 1990; Childress and Bennun 2000). The
breeding success of the Scarlet Ibis Eudocimus ruber corre-
lated positively with nest cover by overhanging branches
(Olmos 2003), and the study on Cattle Egrets Bubulcus ibis
indicated higher fledging success in pairs nesting close to the
trunks of trees (Si Bachir et al. 2008). However, in some cases,
the fitness benefits that were associated with nesting in the
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uniform (white area) patterns of within-colony distributionwith respect to
the heterogeneity of breeding habitat
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sites of high physical quality could be acquired via mecha-
nisms not related to anti-predatory protection; for example, in
the tree-nest ing subspecies of Great Cormorant
Phalacrocorax carbo sinensis, the physical quality of nesting
sites (tree height) determined the probability of nest collapse
before the conclusion of breeding activities (Minias and
Kaczmarek 2013).
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