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Abstract Prior residency advantages have been explained
by an asymmetry between the ‘owner’ and the ‘intruder’ in
fighting ability (resource-holding potential) or motivation
(value asymmetry (VA)). Here, we tested for the extent of
prior residence effects in individually tagged Atlantic
salmon juveniles being released in two bouts (4 days apart)
during spring along a natural stream, and recaptured
3 months later. A prior residency advantage was detected
both in terms of body growth, energy density and male
gonad size. As we controlled for effects of initial body size,
which correlates with dominance, these findings are in
accordance with the VA hypothesis. The growth advantage
of first arrivals also increased with local shelter abundance
in the stream, which can be expected if a higher resource
value of the habitat results in a higher defence motivation.
We also found a prior residence effect on spatial distribu-
tion, with the second arrivals within each release site being
recaptured further downstream. No effect on apparent
survival rates was found. The observed reduced growth
and energy density may have fitness consequences for the
second arrivals, both in terms of lower winter survival rates
and later age at maturity. For mature male parr, both
decreased body and gonad growth may give an additional
disadvantage through reduced fertilization rates during
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breeding. These costs may help to explain the tendency
for stationary behaviour of stream salmonids, as the
potential benefits of moving into less crowded areas would
be reduced by the risk of becoming an intruder. Prior
residence effects may therefore have influenced the evolution
of movement behaviour in these organisms.
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Introduction

The prior residence effect, where the first individual to
inhabit a new habitat has an advantage in territory contests,
has been found in a number of empirical studies (Bradbury
and Vehrencamp 1998) and has received focus in theoretical
analysis of asymmetric competition (e.g. Maynard Smith and
Parker 1976; Enquist and Leimar 1987). The competitive
advantage of the first arrivals (‘owners’) compared with later
arriving individuals (‘intruders’) has mainly been explained
by three different hypothesis (Maynard Smith and Parker
1976). Firstly, the uncorrelated asymmetry hypothesis
proposes the existence of arbitrary conventions in settling
contests. However, simple conventions such like ‘owners’
always win, are unlikely to be stable (Grafen 1987), and the
current consensus is that this hypothesis does not perform
well as an explanation of territorial behaviour (Kokko et al.
2006). Secondly, the hypothesis of resource-holding power
(RHP) predicts that the owners win because they possess
superior fighting characteristics through, e.g. larger body size,
larger weapons or being more aggressive, and has received
support in many animal species (review in Kokko et al. 20006).
Finally, the hypothesis of value asymmetry (VA) predicts
that the territory has a higher value for the owners and
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therefore makes them more motivated to defend it (Maynard
Smith and Parker 1976). The higher ownership value might
be due to invested energy in negotiation of territory
boundaries (Eason and Hannon 1994) or the achievement
of local experience of hiding places or food resources
(Davies and Houston 1981). The VA hypothesis has received
support by removal-replacement experiments, mainly in
birds (e.g. Krebs 1982; Tobias 1997), but also in other
animal groups (Englund and Olsson 1990; Johnsson and
Forser 2002).

Stream-living juvenile salmonids are well suited for
performing experiments relating to prior residency, and
have therefore become important model organisms in this
context. They are primarily territorial (although individuals
may move among different patches through time, they
usually defend a single spatial location at any given time
(Steingrimsson and Grant 2008)), and both the RHP and the
VA hypothesis may contribute to asymmetries in competi-
tion for territories. Behavioural observations suggest strong
body size effects on competitive abilities (Abbott et al.
1985; Cutts et al. 1999a), but prior residence effects have
also been reported under artificial and/or enclosed settings
when controlling for differences in body size or dominance
either by the experimental design or statistically (e.g. Cutts
et al. 1999a; O’Connor et al. 2000; Bohlin et al. 2002;
Johnsson and Forser 2002; Harwood et al. 2003; Metcalfe
et al. 2003; Brinnéds et al. 2004). Yet, despite all this
interest, it remains to be shown how prior residency may
contribute to competitive asymmetries in natural streams
under conditions where intruders may disperse to unoccupied
areas. This is crucial to understand the role of competitive
asymmetries for wild populations, and predictions based
solely on artificial settings may also be problematic because
dominance relationships determined under such conditions
may not translate into competitive advantages in nature
(Martin-Smith and Armstrong 2002).

In the present study, we test for prior residence effects on
growth, energy density, incidence of maturation and gonadal
investment, survival and spatial distribution of hatchery
reared Atlantic salmon yearlings released at two different
times (separated by 4 days) in a natural stream. Maturation
and gonadal investment is only relevant for males, as no
maturation occurs in females prior to sea migration. We also
evaluated up to what extent the results were consistent with
the VA or RHP hypotheses. The resources of a territory may
influence the value asymmetry between owners and intruders.
Often a territory owner has more knowledge of the resources,
and if so, sequential assessment games predict that with
increasing territory quality, the owners are more motivated for
fighting and win more contests (Enquist and Leimar 1987;
Englund and Olsson 1990). Thus, we predict the residence
advantage to increase with increasing quality of available
territories under the VA hypothesis. Shelter availability
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(Finstad et al. 2009) is known to influence growth and
emigration rates of stream salmonids, and was therefore used
as a measure of the quality of potential territories. According
to the RHP hypothesis, the ownership of territories will be
set by the individuals fighting capability and not the order of
arrival per se. Hence, this alternative hypothesis predicts no
difference in performance related to the release group but in
performance to depend on initial body size as an indicator of
dominance. Since we do not know the actual residential
status of the juveniles, we use the terms ‘primaries’ and
‘secondaries’ for the individuals in the first- and second-
release group, respectively (O’Connor et al. 2000).

Material and methods

The study was conducted in the Stream Osalandsbekken, a
small tributary to the River Imsa in southwestern Norway.
The stream has a resident brown trout population, but no
naturally occurring Atlantic salmon due to a barrier
preventing upwards migration from the River Imsa. One
thousand one hundred eighty 1 year-old captively bred Imsa
salmon were pit-tagged and length measured during 8-14
June. To create a range of local densities, the fish were
divided into nine groups with 20 to 250 individuals in each
(Table 1). Half of the individuals in each group (denoted
‘primaries’ in the following text) were released in Stream
Osalandsbekken on 10 June, while the remaining fish
(denoted ‘secondaries’) were released 4 days later. We
transported the salmon parr in oxygenated water to nine
release sites situated 150 m apart. Before being released,
the fish were kept in enclosures in the stream for 3—4 h of
habituation.

Recapturing was performed by electrofishing in the
period 5-8 September. The stream was divided into 50-m
sections, the first one starting 200 m below the lowest
release site and the last one at an impassable waterfall 50 m
above the uppermost release site. Depending on fish
abundance and catchability, two to four electrofish passes
were performed in each section. A total of 540 fish (46%)
of the released fish were recaptured (Table 1). Brown trout
captured during electrofishing were length measured before
being released back into the stream. Recaptured salmon
were killed before transportation on ice to the lab for length
and weight measurements. Thereafter, the fish were frozen
for later determination of sex and measurements of gonadal
and somatic dry (48 h, 70°C) tissue weight.

Shelter abundance (number of interstitial spaces, >3 cm
deep) was measured using a 13-mm tube in ten 0.25 m?
squares within each 50-m section according to the method
described in Finstad et al. (2007). The squares were
regularly spaced along each section, and randomly placed
relative to the width of the stream.
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Table 1 Numbers and initial

length (mean + SD) of yearling Station Numbers released Initial length (mm) Numbers recaptured
Atlantic salmon released into (first+second group) . (first+second group)
the Stream Osalandsbekken and First Second
the corresponding recaptured
number of fish, given separately 1 34+35 111.6 (+15.6) 113.4 (+11.1) 21+14
for the first- and second-release 2 20+20 110.5 (£13.5) 118.0 (£13.5) 10+14
group 3 95495 112.3 (£13.0) 118.6 (x11.2) 39436

4 10+10 109.7 (£15.7) 118.8 (£14.8) 4+6

5 125+125 115.8 (£13.5) 115.8 (+11.3) 72+69

6 80+80 112.1 (£14.9) 119.9 (£10.9) 45+48

7 50+50 112.6 (£12.3) 114.1 (£14.6) 19+17

8 65+65 109.0 (£14.9) 119.9 (£12.3) 33+21

9 110+110 115.7 (£11.4) 118.7 (£10.8) 34438

Density estimates

Local population densities were estimated for each section
by the Zippin procedure, based on successive removal of
fish during electrofish passes (Bohlin et al. 1989). In
sections were the total catch was less than 16 individuals
(ten out of 25 sections), densities were estimated from
average catchability (i.e. estimated catchability from the
other sections). Local densities were also estimated for
resident trout (underyearling and overyearling) and salmon
underyearlings released in connection with another study.
However, since competition between cohorts or species was
not the topic of this study, and neither the trout density or
salmon underyearling density had any impact on the
statistical models (see below), only analyses based on
salmon parr densities are included.

Statistical analyses

The effect of prior residency on (1) achieved body size, (2)
energy status and (3) gonad investment were analyzed
using linear mixed-effects models (LMM), with recapture
section as a random factor. A model simplification
approach was followed, starting with a beyond optimal
model, which included fixed effects and interactions
considered to be of potential significance in the optimal
model (Zuur et al. 2009). Non-significant fixed effect
parameters were sequentially removed from the baseline
model based on log-likelihood tests of maximum likelihood
models according to the recommended procedure of Zuur et
al. (2009). Exploration of the residuals given by the starting
models indicated heteroscedastisity; hence, a variance
function for each model was added to stabilize the residuals
(Zuur et al. 2009).

1. For achieved body length (final size), the fixed part of
the starting model was given by final length~initial
length+(initial length)*+group+maturity+salmon parr
density+shelter density+maturity xinitial length+

group*salmon parr density+groupxshelter density.
Maturity (i.e. mature or not) was included to allow for
costs of gonad investment in mature males. The
squared initial length was included due to a curved
relationship between final and initial body length.
Decreasing residuals with increasing initial length was
modelled by including a power of variance function
with initial length as covariate.

Energy density in fish is closely correlated with the
dry to wet body weight ratio (Hartman and Brandt
1995; Wuenschel et al. 2006; Hartman and Margraf
2008). Hence, energy status at recapture was modelled
using total dry body weight as response variable while
controlling for wet final body weight. The fixed part
of the starting model was given by: dry body weight~
maturity X wet body weight+group X salmon parr den-
sity+group % shelter density. Here, the error variance
increased with final body weight; hence, a variance
function with wet body weight as covariate was
included.

To test if fecundity of mature males differed
between residency groups, gonad dry weight was
used as response variable while controlling for
initial body length. The starting model was
expressed as dry gonad weight~initial length+
(initial length)®+group+salmon parr density+shelter
density +group xinitial length+group xsalmon parr
density+group xshelter density. Initial analysis
showed that variance increased with initial length
and decreased with local fish density, thus a variance
function including both these variables as covariates
was included. We also tested whether the release
order affected gonadal investment, by analysing
gonad dry weight relative to total dry body weight
(somatic plus gonad tissue). This starting model was
expressed as dry gonad weight~dry body weight+
group+salmon parr density+shelter density+group x
dry body weight+groupxsalmon parr density+
group x shelter density. Variance increased with body
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size, thus a variance function with dry body weight
as a covariate was included.

The effect of prior residency on (4) dispersal
distance, (5) apparent survival, and (6) probability
of maturation was tested by stepwise simplification
of generalized linear mixed models (GLMM) using
a Poisson distribution for the dispersal model and a
binomial distribution for the survival and matura-
tion probability model. In these three models,
release station was entered as a random factor.
The starting GLMMs included initial body length,
release group and released number of fish as fixed
effects.

4. Dispersal was analyzed using relative recapture
section within each release station as response
variable, i.e. the lowermost recaptured fish from
each release site was given section number one and
the remaining recapture sections were numbered
relative to the lowest one. The fixed part of the
model was given by: relative dispersal ~initial length
+group+number released+group xinitial length. An
interaction between group and released number could
not be included, as this prevented convergence.
However, analysis by generalized linear models
(GLM, i.e. excluding random effects) did not indicate
any significant interactions.

5. We used recapture as a measure of apparent survival,
under the assumption that recapture rate is proportional
to survival rate. We started with a model with the fixed
part given by: apparent survival ~initial length+group+
number released. Interactions could not be included as
the model would not converge. Analysis by GLM gave
no indications of interactions between group and
released number of fish or initial size, though there
might be a possible interaction between initial length
and released number of fish (stepwise deletion test with
binomial distribution, Z=-3.4; P=0.07). This interac-
tion was of no interest in this study, however.

6. Probablility of maturation was analysed based on
data on recaptured male fish. The fixed part of the
starting model was given by maturation~initial
length+group+number released+group x number re-
leased. In this model an interaction between group
and initial length could not be included due to
convergence problems, but again, analysis by GLM
(i.e. excluding random effects) did not indicate any
significant interactions.

All statistical modelling was performed in R (R
Development Core Team, 2009) using the function
Ime in the nlme package (Pinheiro et al. 2009) for the
linear mixed-effects models and /mer in the /me4
package (Bates and Maechler 2009) for the generalized
linear mixed models.
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Results
Body size and energy content

Simplification of the LME model of final body length as
response variable while controlling for initial body length,
revealed a significant negative effect of increased popula-
tion density and maturation (Table 2a). In addition, there
was a significant interaction between group and shelter
density, with a larger positive effect of shelter availability
for the first arrivals (Table 2a). Over the whole range of
observed shelter density, the estimated length increment
was larger for primaries than for secondaries (Fig. 1).
Intracohort competition, in terms of local population
density, had a negative effect on achieved body size
(Table 2a), but did not differ significantly between
primaries and secondaries (likelihood ratio=0.92; P=0.34).

When we modelled energy content by using dry
weight as response variable and final wet weight as a
covariate, group identity had a significant effect
(Table 2b). For a given final body weight, the dry weight
was higher for primaries than for secondaries. There was
also an interaction between maturity status and final body
weight, with mature male parr showing a shallower slope
between final wet and dry weight (Table 2b). There was
however no significant interactions between residence
status and maturity (likelihood ratio=1.8; P=0.18). This,
combined with the finding that the probability of matura-
tion did not differ between the two groups (see below),
indicates that the cost of maturation was not significantly
larger for the secondaries.

Probability of maturation, gonad size and gonadal
investment

Based on 169 recaptured males, only 17 were immature and
13 of these were primaries. However, GLMM simplifica-
tion of the starting model for maturation probability did not
give significant effects of release order (y>=1.1; P=0.3),
but an effect of initial size (x*=30.5; P<0.001) and the
number of fish in the release groups (x*=5.7; P=0.02). The
resulting model for maturity probability, given in logit
units, was —8.56 (+2.45 SE)+0.13 (+0.03 SE)xinitial
length —0.012 (£0.005 SE)xreleased number. When con-
trolling for initial length, the best model for dry gonad
weight, revealed a significant interaction effect of shelter
density and release order (Table 2¢). Except for the lack of
a significant effect of salmon parr density (likelihood ratio=
2.6; P=0.10), the model coincides with the model for final
body length (Table 2a). However, when looking at gonadal
investment relative to achieved size, model simplification
did not reveal any significant effect of parr density
(likelihood ratio=0.4; P=0.53), shelter density (likelihood
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Table 2 The best mixed-effects

models of (a) final body length Parameter Value + SE ! P

(mm), N=534, (b) dry body

weight (g), N=532, and (c) dry Final body length Intercept 101.9+£10.6 9.6 <0.001

gonad weight (g), N=253, Mature -1.4+0.3 4.5 <0.001

following stepwise deletion tests Initial length (mm) ~0.510.19 27 0.007
Initial length? (mm?) 0.006+0.001 7.1 <0.001
Salmon density (ind.mfz) -10.3+3.3 -3.1 0.005
Shelter density (shelters m™2) 0.19+0.06 32 0.004
Group (second) 0.34+0.86 0.4 0.70
Shelter density % group (second) —0.079+0.039 -2.0 0.044

Dry body weight Intercept —0.66+0.03 -20.7 <0.001
Mature 0.15+0.04 39 <0.001
Final wet weight (g) 0.28+0.002 165 <0.001
Group (second) —0.045+0.011 —4.1 <0.001
Mature x final weight —0.019+0.002 -7.9 <0.001
Dry gonad weight Intercept 0.82+0.35 2.32 0.02

Initial length (mm) —0.020+0.007 -3.0 0.003
Initial length? (mm?) 13%x1074+£0.3x107* 43 <0.001
Shelter density (shelters m™2) 0.007+0.002 4.2 <0.001
Group (second) 0.05+0.03 1.6 0.11
Shelter density x group (second) —0.005+0.001 -3.1 0.002

A final length [mm]
4
1

T
5 10 15 20 25 30 35
Shelter density

Fig. 1 Modelled increment in Atlantic salmon parr final body length
given by shelter density (shelters m 2) and prior residency (solid line
primaries and dashed line secondaries) in the Stream Osalandsbekken.
Plotted values show section average values of final length after
removing the estimated effect of initial size, maturity and salmon parr
density for primaries (black) and secondaries (grey). To reduce the
variance due to low sample size, only sections with more than than
two individuals within a residence class are included in the plots (i.e.
two and five sections sections excluded in the plot of primaries and
secondaries, respectively)

ratio=1.6; P=0.21), or release order (likelihood ratio=1.5;
P=0.22). The best LMM for dry gonad weight included dry
body weight only (dry gonad weight=—0.066 (£0.014 SE)
+0.112 (£0.003 SE)*xdry body weight).

Dispersal and survival

Model simplification of the starting GLMM for relative
position of recaptured salmon parr revealed a significant
effect of release group (y>=18.4; P<0.001; Fig. 2), but no
effect of released fish number (x*=0.03; P=0.9) or initial
body size (x*=0.75; P=0.4). The fixed effect part of the best
model was: In relative section=0.93 (£0.05 SE)—0.25 (+0.06
SE)xsecond group, which after back-transformation gave
expected positions of 2.53 and 1.98 sections for first and
second arrivals, respectively (Fig. 2), indicating that the
second arrivals were more likely to be found further
downstream. With regard to survival, only initial length
had an effect (x*=7.7; P=0.006), while there was no effect
of release group (x*>=0.15; P=0.7) or released number of
fish (x*=0.22; P=0.6). The fixed effects part of the resulting
GLMM for apparent survival given in logit units was: 1.31
(£0.55 SE)—0.013 (+0.004 SE)xinitial length; hence, there
was a lower apparent survival for larger individuals.

Discussion

In this study we find evidence for a prior residence
advantage (body growth, male gonad size and energy
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Fig. 2 Spatial distribution of recaptured salmon parr from the first-
and second-release groups in the Stream Osalandsbekken. Recapture
section denotes the number of sections upstream from the lowermost
recapture (section=1) for each release station. Expected position for
each group, given by the best model, is indicated with dashed lines

density) between groups of Atlantic salmon juveniles
arriving in a natural stream four days apart. As we are
controlling for body size, which is closely linked to
dominance (Elliott 1990; Cutts et al. 1999b), these
findings support the VA hypothesis, i.e. that the first
arriving individuals gain a competitive advantage caused
solely by being resident. Furthermore, the advantage of
arriving first appears to be strongly linked to the
abundance of shelters. Actually, according to the statis-
tical model (Table 2a, c), in the absence of shelters no
advantage of arriving first is expected (no main effect of
group). Larger competitive advantage of ownership in
structurally complex territories of fish has previously been
demonstrated in aquarium experiments (Nijman and Heuts
2000). In brown trout juveniles, competition experiments
have shown that the level of aggression toward an intruder
depends on the owner’s territory quality, either in terms of
cover presence (Johnsson et al. 2004) or in terms of
individual preferences (Johnsson et al. 2000). Evidence for
increased fighting effort and more wins among owners
with increasing resource value, has also been reported in
empirical studies of other animals (e.g. Riechert 1984;
Otto 1987; Dearborn 1998; Elwood et al. 1998). Hence,
our findings are in accordance with expected growth
consequences following from the observed behaviour in
competition experiments or field studies with varying
resource values.
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Interestingly, despite the effect of population density on
habitat quality as measured by growth rates, it did not
influence the effect of prior residency. This may appear to
be in conflict with predictions from the VA hypothesis,
since density influences habitat quality and hence presum-
ably territory quality. However, a critical assumption for the
value asymmetry to occur, is that an increase in resource
value increases the motivation of the owner more than the
intruder. This assumption has often been linked to
information asymmetry (Enquist and Leimar 1987; Bradbury
and Vehrencamp 1998), such that the perceived value of a
territory increases more for a certain increase in territory
quality for the owner than for the intruder. Changes in
density may not represent such information asymmetry if
the experienced density (and hence the quality of any
given territory) is independent of whether you are an
owner or intruder. The change in the perceived relative
value of a certain territory with changing density would
then be independent of timing of arrival to an area, and
this may explain the lack of density effects in the present
study.

Higher growth rates of first arrivals are in accordance
with previous findings in juvenile stream salmonids based
on experiments in artificial environments (Huntingford and
Garcia de Leaniz 1997; Cutts et al. 1999a; Deverill et al.
1999; O’Connor et al. 2000; Harwood et al. 2003; Brannas
et al. 2004) and a field experiment with restricted dispersal
during settlement (Bohlin et al. 2002). Increased energy
density due to prior residency has to our knowledge not
previously been reported, neither in fish nor other animals,
but is consistent with higher growth rates. The higher
growth rates and energy densities in residents may be
explained by occupation of better territories, either in terms
of superior feeding sites resulting in higher feeding rates
and/or better shelter availability which reduce energy
expenditure (Finstad et al. 2007). In addition, a lower
proportion of the second arrivals may have been able to
establish territories. In an artificial stream experiment where
groups of juvenile Atlantic salmon were released in four
waves, Huntingford and Garcia de Leaniz (1997) found that
the earlier waves had higher settlement rates. A similar
effect was observed by Cutts et al. (1999a), who reported
that among Atlantic salmon juveniles being released into an
artificial stream, half of the first arriving ones obtained
distinct territories, whereas virtually none in the subsequent
release groups did. However, in both these experiments the
available area of settlement was restricted and the fish that
did not establish a territory were either recaptured in a
downstream trap (Huntingford and Garcia de Leaniz 1997)
or confined to a restricted area (Cutts et al. 1999a). In our
study, on the other hand, the salmon juveniles were able to
disperse. Hence, rather than becoming floaters or migrating
out of the system, the secondaries not able or willing to
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outcompete the first arrivals, could settle outside the
already occupied area. Our findings of a more downstream
positioning of the second group do indicate this.

Even though our results of a prior residence effect on
growth and energy, as well as the increased effect with
increasing shelter availability, are according to predictions
from the VA hypothesis, these results cannot entirely
exclude the RHP hypothesis. This is because ownership
status may not only affect value asymmetries and hence
fighting motivation, but also the RHP (Parker 1974;
Maynard Smith and Parker 1976; Bradbury and Vehrencamp
1998; see Table Al in Kokko et al. 2006). One potential
mechanism for this is that knowledge of the territory
increases fighting abilities. In salmon juveniles, a complex
environment may require more attention towards processing
visual information, and knowing a location well may enable
a resident to focus more of its attention towards a competitor.
However, even if we cannot exclude the possibility of
ownership enhanced RHP based on our data, the findings of
prior residence effects even in experimental environments
with very low complexity (i.e. artificial tanks, (Brénnds et al.
2004) suggest owner benefits at least partly can be attributed
to increased fighting motivation.

We did not find evidence for a prior residence effect
on survival rates. Hence, the advantage of settlement in
more valuable areas, either in terms of shelter or food
availability, did not seem to reduce predation or
starvation risk during these three summer months.
However, higher growth rates and energy densities in
prior residents of Atlantic salmon juveniles may have
indirect consequences for fitness. For example, the
growth rate of Atlantic salmon juveniles in autumn
determines whether they will metamorphose into the
smolt phase and migrate to sea the following spring or
will stay in freshwater for one more year (Thorpe 1977;
Metcalfe and Thorpe 1992; Thorpe et al. 1998). Further-
more, large body size in autumn (e.g. Post and Evans
1989; Johnson and Evans 1991; Miranda and Hubbard
1994; but see Hendry et al. 2003; Carlson et al. 2008), as
well as stored energy levels (Finstad et al. 2004), are
considered advantageous for winter survival in fish.
Hence, being an intruder into an already occupied area
may have negative impact on fitness both through reduced
survival rate in winter and greater absolute mortality for
juveniles due to delayed smolting.

In contrast to the lack of effect of prior residence on
survival, we did find that survival rates decreased with
increasing initial body size. However, since initial body size
was not manipulated, we cannot distinguish between effects
of body size per se and innate variation in growth rate. It
may well be that traits providing rapid growth in the
hatchery, and hence a large initial size among our released
fish, are disadvantageous for survival in the wild. Rapid

growth of salmonid juveniles in hatchery environments is
provided by high metabolic rates and associated dominance
status (Metcalfe et al. 1989, 1995), and a high metabolic
rate may be negatively correlated with survival in the wild
(Alvarez and Nicieza 2005). Furthermore, manipulations of
growth rates in the wild using growth hormone implants
have been shown to cause increased movement activity
(Sundt-Hansen et al. 2009), and this may cause increased
predation mortality due to greater predator exposure
(Lankford et al. 2001; Biro et al. 2004; Stoks et al. 2005).

We did not find a prior residency effect on the
probability of maturation, which is in accordance with
studies suggesting that the decision to mature is made
during the spring (Rowe and Thorpe 1990, Rowe et al.
1991), i.e. prior to our releases. However, we did find that
the prior residence advantage on body growth also
translated into larger gonad size. To our knowledge, this
has not been studied previously. As sperm is considered to
be a limited resource for precocious males during mating
(Thomaz et al. 1997), larger gonad sizes (and thereby more
sperm) for larger individuals may lead to higher fertilization
rates. During spawning the larger male parr may also have
an advantage by the size dependent dominance hierarchy
giving them positions closer to the spawning females
(Myers and Hutchings 1987). Hence among male parr, the
growth advantage given by first arrival may not only affect
survival probabilities, but also increase fertilization rates.

The cost of being a secondary may help to explain
the stationary behaviour of juvenile stream salmonids, as
suggested by Bohlin et al. (2002). Both the present study
and other recent studies show that local population density
affects juvenile salmonid growth rates, and that move-
ments are insufficient to homogenize densities and growth
rates over space (Jenkins et al. 1999; Bohlin et al. 2002;
Einum et al. 2006; Einum et al. 2008). The prior residence
effect may contribute to reducing potential benefits of
moving away from crowded areas due to the competitive
disadvantage of being an intruder, and may therefore have
shaped the evolution of movement behaviour in these
organisms.
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