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Abstract
Purpose Despite advances of three-dimensional imaging pelvic radiographs remain the cornerstone in the evaluation of the 
hip joint. However, large inter- and intra-rater variabilities were reported due to subjective landmark setting. Artificial intel-
ligence (AI)–powered software applications could improve the reproducibility of pelvic radiograph evaluation by providing 
standardized measurements. The aim of this study was to evaluate the reliability and agreement of a newly developed AI 
algorithm for the evaluation of pelvic radiographs.
Methods Three-hundred pelvic radiographs from 280 patients with different degrees of acetabular coverage and osteoarthritis 
(Tönnis Grade 0 to 3) were evaluated. Reliability and agreement between manual measurements and the outputs of the AI 
software were assessed for the lateral-center-edge (LCE) angle, neck-shaft angle, sharp angle, acetabular index, as well as 
the femoral head extrusion index.
Results The AI software provided reliable results in 94.3% (283/300). The ICC values ranged between 0.73 for the Acetabular 
Index to 0.80 for the LCE Angle. Agreement between readers and AI outputs, given by the standard error of measurement 
(SEM), was good for hips with normal coverage (LCE-SEM: 3.4°) and no osteoarthritis (LCE-SEM: 3.3°) and worse for 
hips with undercoverage (LCE-SEM: 5.2°) or severe osteoarthritis (LCE-SEM: 5.1°).
Conclusion AI-powered applications are a reliable alternative to manual evaluation of pelvic radiographs. While being accu-
rate for patients with normal acetabular coverage and mild signs of osteoarthritis, it needs improvement in the evaluation of 
patients with hip dysplasia and severe osteoarthritis.
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Introduction

The human pelvis is a complex three-dimensional structure, and 
anatomical alterations of either the acetabulum and/or the prox-
imal femur can lead to micro-instability or femoroacetabular 
impingement (FAI) [1]. Hip dysplasia and FAI lead to premature 
osteoarthritis [2]. Despite advances in magnetic resonance imag-
ing such as biochemical cartilage mapping or traction devices 
[3], anteroposterior pelvic radiographs remain the cornerstone 
for the evaluation of the hip joint [4]. Obtaining reliable high-
quality radiographic images is essential for an accurate diagno-
sis, disease classification, and surgical decision-making. Vari-
ous different radiographic parameters have been proposed to 
describe the complex relationship between the acetabular cover-
age and geometry of the proximal femur [1, 5]. Pelvic tilt and 
rotation have been shown to significantly influence these hip 
parameters to varying degrees [6, 7]. In addition to technical 
difficulties of obtaining reliable radiographs, correct landmark 
setting is dependent upon the experience of the reader and often 
highly subjective, which is reflected by high inter- and intra-rater 
variabilities throughout the literature [6, 8–10].

Machine learning, a branch of artificial intelligence (AI), 
has shown promising results in musculoskeletal radiology 
for the detection of vertebral body compression, develop-
mental dysplasia of the hip, identification of osteoarthritis, 
and evaluation of lower limb alignment [11–15]. In prior 
studies, we showed excellent reliability for the automated 
lower limb alignment analysis on full leg radiographs with 
native knees as well as total knee arthroplasties [15, 16]. 
These AI-powered applications could fill the gap of high 
inter- and intra-rater variability by providing reproduc-
ible measurements. However, no data exists on automated 
evaluation of pelvic radiographs, and it is further unknown 
if severe osteoarthritis or the degree of acetabular coverage 
affects the performance of such software. This is the first 
study to assess the applicability of an AI algorithm as an 
aid for the evaluation of the hip joint.

The aim of this study was to assess the reliability and 
agreement of a newly developed AI software for pelvic 
radiographs. Our hypothesis was that AI algorithms pro-
vide reliable measurements for the lateral-centre-edge 
(LCE) angle, neck-shaft angle, sharp angle, acetabular 
index, and the femoral head extrusion index.

Materials and methods

AI software

The applied AI software HIPPO (Hip Positioning Assis-
tant 1.03, ImageBiopsy Lab, Vienna, Austria) was built to 
automate angle measurements on pelvic radiographs. The 

algorithm was trained on over 10,000 radiographs from 
the OAI (Osteoarthritis Initiative study; US six-site multi-
centre), MOST (Multicenter Osteoarthritis Study, US two-
site multi-center), CHECK (Cohort Hip and Cohort Knee 
study; Netherland single center) studies, as well as five 
sites in Austria (Fig. 1). A multiple U-Net-based convolu-
tional neural network was engineered, trained, optimized, 
and validated. The data set was randomly split into 80% 
training, 10% tuning, and 10% internal test sets. The AI 
software generates a graphical DICOM output with meas-
ured values in tabular form and as an overlay (Fig. 2). In 
case of failed landmark setting outputs are suppressed. The 
measurements in this study were performed on a laptop 
running Ubuntu Linux 18.04 LTS with a 4-core Intel i7 
(4600U 2.1 GHz) and 12 GB of RAM, with images stored 
on an external HDD connected with USB 3.0.

Correlations between readers and AI software

This study was approved by the local ethics committee 
(EK: 47/2020). Three hundred pelvic radiographs of 280 
patients (191 female, 89 male) with a mean age of 51.9 
years (range 16–89) from the institutional image data-
base were included in this study. All images were taken 
either with the Philips DigitalDiagnost (Philips GmBh, 
Hamburg, Germany) or Siemens Luminos (Siemens 
Healthcare GmbH, Erlangen, Germany) f luoroscopy 
system. All patients were positioned anteroposterior in 
a standing position with the legs 15° internally rotated 
and the detector in direct contact to the patient’s body. 
The central beam was directed to the midpoint of the 
symphysis, and the film focus distance was 150 cm. For 
correct length-measurements, a 25-mm calibration ball 
was added to each radiograph. Cut-off values for pelvic 
tilt and rotation were applied according to the threshold 
values of Tannast et al. [6]. Radiographs were repeated 
if these values were exceeded.

To test the AI algorithm’s ability of detecting structural 
diseases, a wide range of hips with under- (LCE < 21°), 
over- (LCE > 33°), and normal (LCE 21–33°) coverage 
were chosen (Fig. 1). Different degrees of osteoarthritis 
(Tönnis grades 0 to 3) were also included as suspected AI 
performance would depend upon the quality of the image. 
Three orthopaedic surgeons, who routinely perform hip 
annotations, measured each radiograph using mediCAD® 
v6.0 (Hectec GmbH, Landshut, Germany). They were 
blinded to the others and the results from the AI software. 
The following parameters were measured: LCE angle, 
neck-shaft angle, sharp angle, acetabular index, and the 
femoral head extrusion index. We calculated the intraclass-
correlation (ICC) between the readers and compared the 
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mean results to the output of the AI software. Based on 
the minimal detectable change results from Mast et  al. 
[10], the following reference values were chosen: For the 
LCE angle, sharp angle, and acetabular index, mean abso-
lute differences of 3° between the readers were accepted. 
For the neck-shaft angle, absolute difference of 5°, and for 
the femoral head extrusion index, differences of 5% were 
accepted [10]. In case of wider variances, the correct values 
were chosen on consensus between all three readers and 
in consultation with the senior author, who was blinded to 
the initial measurements of the three readers. Furthermore, 
two different timings were measured for each radiograph 
evaluation: (1) the time needed for manual evaluation of 
each radiograph and (2) the time needed for checking the 
AI software outputs. (1) The time needed for manual evalu-
ation with mediCAD® was defined as the period between 
opening the DICOM image, manually setting each landmark 
and saving it. (2) The time needed for checking the AI soft-
ware output was defined as the period between opening the 
DICOM output and record the findings as well as erroneous 
landmarks.

Statistics

We employed descriptive statistics, including mean (M), 
standard deviation (SD), and percentage. We allocated the 
measured results into reader 1, reader 2, and reader 3, 
mean of all three readers and their consensus (= ground 
truth) as well as AI software measurements. Statistical 
significance was considered for p values ≤ 0.05, and Bon-
ferroni correction was applied in multiple testing. The 
ICC was calculated to assess conformity between the AI 
software and our manual reads, as well as between the 
three readers (two-way mixed, single measure model, 
absolute agreement: ICC3.1). ICC agreement rates were 
defined as follows: ≥ 0.9 excellent; ≥ 0.75–0.89 good; ≥ 
0.5–0.74 moderate; and < 0.49 poor-reliability. The stand-
ard error of measurement (SEM) was calculated as 
SEM(agrement) =

√

(

�
2

pt + �
2

residual

)

 as previously reported 
[10, 17]. We tested the interchangeability index of the AI 
software compared to the manual reads, where γ repre-
sents the equivalence index, an estimate of the difference 

Fig. 1  Flowchart of develop-
ment, training, and validation
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in measurement variability between a reference standard 
(R), and a new method (T) [18]. The statistical analyses 
were performed with SPSS 25® (IBM Corp. Released 
2018. IBM SPSS Statistics for Windows, Version 25.0. 
Armonk, NY, USA) and an Excel spreadsheet (Excel 365; 
Microsoft Inc, Redmond, WA, USA).

Results

The AI Software provided reliable results in 94.3% 
(283/300). Examples of reliable outputs are presented in 
Fig 3. In six cases (2%), no output was provided, and eleven 

cases (3.6%) had to be excluded due to failed landmark set-
ting based on visual inspection. The neck-shaft angle was 
affected in eight, the lateral sourcil in three cases, and the 
center of rotation in one case. Overall, 283 pelvic radio-
graphs were included in the final statistical analysis. Check-
ing the AI output alone (15.8 ± 4.9 s) was ten times faster 
than manual measurements (171.0 ± 48.5 s, p < 0.001).

Correlations between readers and AI software

Correlation between the AI software and manual 
measurements revealed moderate to good results for all 
values (ICC = 0.73–0.80). ICC values for inter-rater reliability 

Fig. 2  Example output of the AI 
software for the evaluation of 
pelvic radiographs
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were similar (0.69–0.86) to the results between the AI 
software and the manual reads. The interchangeability (γ) 
values ranged from 0.3° for the neck-shaft angle to 3.3° 
for the LCE angle. Detailed results for the mean values, 
the interchangeability (γ), and the ICC are presented 
in Table  1. Linear regression graphs can be found in 
Fig. 4A–E.

Overall SEM values ranged from 2.2° for the sharp 
angle to 3.9° for the LCE angle (Table 2). Hips with 
acetabular undercoverage had higher SEM values for the 
LCE angle (5.2° vs. 3.4°), sharp angle (4.2° vs. 2.3°), and 
extrusion index (4.2% vs. 3.5%). Hips with acetabular 
overcoverage showed similar SEM values compared to 
hips with normal coverage. All SEM values became worse 
with increasing Tönnis grades. The SEM value for the 
LCE angle changed from 3.3° (Tönnis 0) to 5.1° (Tön-
nis 3), the neck-shaft angle from 2.2° (Tönnis 0) to 4.7° 
(Tönnis 3), the acetabular index from 2.6° (Tönnis 0) to 

4.3° (Tönnis 1 and 3), and the femoral head extrusion 
index from 3.3% (Tönnis 0) to 5.3% (Tönnis 3). Only the 
sharp angle showed consistent results for all degrees of 
osteoarthritis.

AI performance for the LCE Angle was best for over-
covered and normal covered acetabula with Tönnis grade 
0 (SEM = 3.1°). Worst results were seen for undercovered 
and severe arthritic hips (SEM = 7.4°). Similarly, AI per-
formance for the neck-shaft angle and acetabular index 
was best for hips with normal coverage and osteoarthritis. 
The sharp angle showed consistent results for all combina-
tions, and the femoral head extrusion index had particu-
larly bad results for hips with severe osteoarthritis and 
under- or overcoverage. Contrary to that, hips with normal 
acetabular coverage had consistent results for the femo-
ral head extrusion index for all degrees of osteoarthritis. 
Detailed results can be found in Table 3 and examples of 
erroneous landmark setting in Fig 5.

Fig. 3  Examples of correct 
landmark setting for normal 
acetabular coverage, acetabular 
undercoverage and acetabular 
overcoverage

Table 1  Mean values for the AI software and the consensus reads as well as their interchangeability index (γ) and ICC

*Inter-rater reliability of the original annotations prior to the consensus reads

Parameter Radiographic measurements Present study Literature [8-10, 18]

AI software Mean consensus 
reads

γ (95%-CI) ICC 
AI vs. 
reader

ICC* Inter-rater ICC Inter-rater ICC Intra-rater

Total (n = 283) LCE angle 29.1 ± 8.0 25.7 ± 8.7 3.3 (2.7–4.0) 0.80 0.86 0.73–0.92 0.86–0.97
Neck-shaft 

angle
130.1 ± 7.0 130.5 ± 6.4 0.3 (– 1.4–2.6) 0.78 0.71 0.58–0.80 0.76–0.95

Sharp angle 38.4 ± 4.2 40.2 ± 4.2 – 0.7 (-2.4–0.1) 0.75 0.69 0.63–0.82 0.55–0.84
Acetabular 

index
8.9 ± 6.2 12.4 ± 6.4 2.6 (2.0–3.5) 0.73 0.76 0.45–0.82 0.73–0.95

Femoral head 
extrusion 
index

19.9 ± 8.2 22.0 ± 8.3 2.9 (2.3–3.7) 0.80 0.86 0.83–0.91 0.73–0.96
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Discussion

This is the first study to evaluate the applicability of a newly 
developed AI algorithm for the assessment of pelvic radio-
graphs. We showed that automated analysis using an AI-pow-
ered software is a reliable alternative to manual measurements 
and provided reliable results in 94.3% of all cases. In terms of 
reliability, presented ICCs were comparable to the results of the 
literature. All ICC results were within the published literature 
or slightly better. Only the ICC for the femoral head extrusion 
index was worse than previously reported. The ICC of the LCE 
angle (ICC = 0.80) was in-between the values of Mast et al. 

[10] (ICC = 0.73) and Tannast et al. [9] (ICC = 0.92). The 
ICC of the neck-shaft angle (ICC = 0.78) was better than the 
values presented by Nelitz et al. [8] (ICC = 0.72) and Mast et al. 
[10] (ICC = 0.58). The sharp angle and acetabular index were 
also both within the presented values of the literature. Only 
the femoral head extrusion index showed slightly worse results 
compared to the literature (ICC = 0.80 vs. 0.83–0.91) [8, 9].

Agreement rates are defined as the degree of which 
repeated measurements vary for individuals [19]. Hips 
with normal acetabular coverage showed good agree-
ment values for all investigated parameters. For example, 
the SEM value for the LCE Angle was 3.4° and for the 

Fig. 4  Linear regression graph for the LCE angle (A), neck-shaft angle (B), sharp angle (C), acetabular index (D), and femoral head extrusion 
index (E)

Table 2  Standard error of measurement (SEM) overall and for hips with different degrees of acetabular coverage (left) and osteoarthritis (right)

Normal coverage = LCE 21–33°, undercoverage = LCE < 21°, overcoverage = LCE > 33°

Overall Acetabular coverage Tönnis grade

Normal coverage Under coverage Over coverage 0 1 2 3

n = 283 n = 180 n = 66 n = 37 n = 116 n = 67 n = 69 n = 31

LCE angle (°) 3.9 3.4 5.2 3.5 3.3 3.9 4.3 5.1
Neck-shaft angle (°) 3.1 3.0 3.2 3.7 2.2 3.4 3.3 4.7
Sharp angle (°) 2.2 2.3 4.2 1.9 2.1 2.3 2.2 2.1
Acetabular index (°) 3.5 3.4 3.7 3.9 2.6 4.3 3.7 4.3
Femoral head extrusion 

index (%)
3.7 3.5 4.2 3.6 3.3 3.1 4.2 5.3

950 International Orthopaedics (2023) 47:945–953
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neck-shaft angle 3.1°. These values were comparable to 
results from the literature [10]. Only the neck-shaft angle 
in hips with a Tönnis grade 3 showed worse SEM values. 
However, in the study from Mast et al. [10], only hips from 
relatively healthy patients with Tönnis grades 0 to 1 were 
investigated. Cut-off values for reliable software results 
for each parameter can be found in Tables 2 and 3. We 
observed that hips with acetabular overcoverage (LCE > 
33°) generally had slightly worse agreement values com-
pared to hips with normal coverage (LCE 21° to 33°). With 

increasing degrees of osteoarthritis, SEM values for these 
hips became even larger with the worst SEM values seen 
for Tönnis grade 3 with 6.2% for the femoral head extru-
sion index or 5.0° for the LCE angle. Agreement for hips 
with acetabular undercoverage was good for the neck-shaft 
angle and the sharp angle. However, the SEM value for 
the LCE angle ranged between 3.9° for hips with Tönnis 
Grade 0 and 7.4° for severe osteoarthritic hips (Tönnis 
3), which lessens the applicability of the AI software in 
patients with hip dysplasia and severe osteoarthritis.

Table 3  Standard error of 
measurement (SEM) of different 
combinations of acetabular 
coverage and degrees of 
osteoarthritis

Best results for each parameter are marked in bright grey and worst values in dark grey. *SEM value might 
be too low due to the small number of radiographs in this subgroup

Normal 21–33° Undercoverage < 21° Overcoverage 
> 33°

Tönnis n SEM n SEM n SEM

LCE angle (°) 0 80 3.1 31 3.9 5 1.9*
1 46 3.8 12 4.7 9 3.8
2 40 3.7 12 6.7 17 3.6
3 14 3.0 11 7.4 6 5.0

Neck-shaft angle (°) 0 80 2.1 31 2.7 5 2.2
1 46 3.3 12 3.7 9 4.1
2 40 3.5 12 2.6 17 3.8
3 14 5.0 11 4.9 6 5.0

Sharp angle (°) 0 80 2.2 31 2.1 5 2.2
1 46 2.6 12 1.5 9 2.1
2 40 2.6 12 1.9 17 1.4
3 14 1.5 11 2.4 6 3.2

Acetabular index (°) 0 80 2.4 31 2.8 5 3.8
1 46 4.4 12 4.6 9 3.7
2 40 3.6 12 4.1 17 3.7
3 14 3.9 11 4.7 6 5.4

Femoral head extrusion 
index (%)

0 80 3.4 31 2.7 5 4.5
1 46 3.0 12 3.2 9 3.7
2 40 4.3 12 5.9 17 2.1
3 14 3.8 11 6.5 6 6.2

Fig. 5  Example radiographs 
of erroneous landmark setting. 
Left, failed femoral shaft axis 
detection; middle, the lateral 
sourcil was erroneously set at an 
osteophyte; right, failed detec-
tion of the center of rotation and 
the femoral neck
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A common issue in AI algorithms is the black box phe-
nomenon, which refers to a system in which only the input 
and outputs are visible, but not the internal mechanics [7]. 
Although, as a consequence, no adequate failure modes were 
presented, we could identify two major issues when visually 
comparing the manual reads with the AI outputs. The AI 
algorithm set the lateral acetabular sourcil in general more 
lateral and the centre of rotation often too medial. Although 
differences were small, these differences obviously had a 
significant impact on parameters like the LCE angle or ace-
tabular index. This is further supported by the high inter- and 
intra-rater variabilities of these values in the literature [10].

From our perspective, there are a few limitations to the 
applicability of such software. First, the overestimation of the 
LCE angle might lead to undiagnosed cases of hip dysplasia. 
However, as previously described, definitive diagnosis should 
be based on careful synthesis of physical examination and 
detailed history and not solely lean on one parameter [5, 10]. 
Second, while correcting for pelvic obliquity, the AI software 
does not take pelvic tilt and rotation into account. Previously 
published programs like  Hip2Norm aimed to correct for that 
by taking the individual apparent rotation and tilt into account 
[20]. As shown by Tannast et al. [7], almost all angles are 
affected by the pelvic position, and severely rotated radio-
graphs might show wrong values. These two major limitations 
must be addressed in future software updates to show reliable 
results for all degrees of acetabular coverage.

The primary limitation to the generalization of our 
results is our chosen study population. Although we 
included significantly more radiographs than in previ-
ous studies on inter- and intra-rater reliability, our sub-
groups became relatively small [8, 10, 21]. Furthermore, 
all included images were sourced from a single site and 
two radiography devices with fixed distances between film 
and focus. We excluded severe deformities of the femoral 
head, because suspected intra-rater variability would be 
too high in these cases. All three readers had the same 
level of experience for annotating pelvic radiographs. 
The bias was mitigated by consulting the senior author 
for our consensus reads in case of contradicting measure-
ments. We believe that there was no bias in our study, as 
presented inter-rater values were similar to the published 
literature [9, 10]. Other limitations concerned the AI soft-
ware itself, which only presented the described parameters 
and corrected for pelvic obliquity but not for tilt and rota-
tion. Furthermore, the AI software requires no input from 
the clinician and therefore must always be reviewed for 
safety and accuracy.

AI has enormous potential in the field of orthopedics 
[22]. The ability to evaluate large datasets in a standard-
ized way offers entirely new possibilities by increasing the 
power of previously undersized studies. However, assess-
ment of pelvic radiographs, as presented here, is only the 

first step in the broad applicability of machine learning. 
Future AI algorithms might help developing new param-
eters and improve the understanding of the natural course 
of hip dysplasia, FAI, and osteoarthritis of the hip.

Conclusion

Presented AI algorithm is a reproducible alternative to manual 
evaluation of pelvic radiographs. While performance needs to 
be improved for hips with acetabular undercoverage and severe 
osteoarthritis, it provides reliable outputs for patients with nor-
mal acetabular coverage and/or only mild signs of osteoarthritis.
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