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Abstract
The majority of the immune cell population in the tumor microenvironment (TME) consists of tumor-associated macrophages 
(TAM), which are the main players in coordinating tumor-associated inflammation. TAM has a high plasticity and is divided 
into two main phenotypes, pro-inflammatory M1 type and anti-inflammatory M2 type, with tumor-suppressive and tumor-
promoting functions, respectively. Considering the beneficial effects of M1 macrophages for anti-tumor and the high plasticity 
of macrophages, the conversion of M2 TAM to M1 TAM is feasible and positive for tumor treatment. This study sought 
to evaluate whether the glycopeptide derived from simulated digested Codonopsis pilosula extracts could regulate the 
polarization of M2-like TAM toward the M1 phenotype and the potential regulatory mechanisms. The results showed that 
after glycopeptide dCP1 treatment, the mRNA relative expression levels of some M2 phenotype marker genes in M2-like 
TAM in simulated TME were reduced, and the relative expression levels of M1 phenotype marker genes and inflammatory 
factor genes were increased. Analysis of RNA-Seq of M2-like TAM after glycopeptide dCP1 intervention showed that the 
gene sets such as glycolysis, which is associated with macrophage polarization in the M1 phenotype, were significantly 
up-regulated, whereas those of gene sets such as IL-6-JAK-STAT3 pathway, which is associated with polarization in the 
M2 phenotype, were significantly down-regulated. Moreover, PCA analysis and Pearson's correlation also indicated that 
M2-like TAM polarized toward the M1 phenotype at the transcriptional level after treatment with the glycopeptide dCP1. 
Lipid metabolomics was used to further explore the efficacy of the glycopeptide dCP1 in regulating the polarization of 
M2-like TAM to the M1 phenotype. It was found that the lipid metabolite profiles in dCP1-treated M2-like TAM showed 
M1 phenotype macrophage lipid metabolism profiles compared with blank M2-like TAM. Analysis of the key differential 
lipid metabolites revealed that the interconversion between phosphatidylcholine (PC) and diacylglycerol (DG) metabolites 
may be the central reaction of the glycopeptide dCP1 in regulating the conversion of M2-like TAM to the M1 phenotype. 
The above results suggest that the glycopeptide dCP1 has the efficacy to regulate the polarization of M2-like TAM to M1 
phenotype in simulated TME.
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Introduction

The doctrine that the immune system is the main defense 
mechanism against tumor due to its ability to recognize and 
destroy tumors has been generated for decades [1]. Although 
the immune system can prevent tumor development, it can 
also support tumor growth and metastasis by being modi-
fied by the tumor. The interaction between immune cells 
and tumor cells is known as cancer immunoediting. Dur-
ing cancer immunoediting, the host immune system shapes 
the tumor fate in three stages (elimination, homeostasis, 
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and escape) by activating intrinsic and acquired immune 
mechanisms. In the elimination phase, transformed cells 
are destroyed by a competent immune system. The sporadic 
tumor cells that escape immune destruction may then enter 
the equilibrium phase, where editing occurs. The escape 
phase represents the final stage of the process, in which the 
immunologically ‘sculpted’ tumor starts to grow gradually 
and establishes an immunosuppressive tumor microenviron-
ment that is conducive to its own growth [2]. Therefore, 
research and development that can effectively modulate the 
immune system and thus enhance its ability to recognize 
and attack tumor cells is a promising research direction for 
cancer therapy.

Studies have shown that natural products, including 
polysaccharides, polypeptides, alkaloids, saponins, and 
flavonoids, have immunomodulatory effects [3]. Among 
them, polysaccharides are one of the most widely studied 
components. Polysaccharides have been shown to 
perform immunomodulation by promoting immune organ 
development, regulating immune cell activity, and secretion 
of immune-related molecules, such as β-glucan, which is 
used in clinical. The regulatory effects of polysaccharides 
on immunity can be divided into direct and indirect effects 
[4]. The direct effect is that the polysaccharide directly 
acts on the immune system and immune cells, while the 
indirect action is the metabolism of polysaccharides 
by intestinal microorganisms to short-chain fatty acids 
and their utilization by immune cells. Considering their 
large molecular weight, most polysaccharides exert their 
immunomodulatory effects indirectly. Another potential 
immunomodulator is polypeptide, and one of the examples 
of successful application in immune regulation is thymosin. 
The immunomodulatory effects of peptides can enter cells 
by directly affecting receptors (e.g., TLRs) or through 
passive diffusion, peptide transporters, and fluid phase 
endocytosis and subsequently interfere with inflammatory 
signaling pathways such as NF-κB, MAPK, and PI3K 
signaling pathway [5].

Glycopeptides are peptides that contain carbohydrate 
moieties (glycans) covalently attached to the side chains 
of the amino acid residues that constitute the peptide. 
Compared to polysaccharides, glycopeptides have a small 
molecular weight; compared to polypeptides, the glycan 
chains contained in them are recognized by cellular 
receptors as antigenic epitopes and the structural changes 
caused by glycosylation modification make them obtain 
higher immunogenicity. These characteristics make it 
a potential candidate for immunomodulatory. Studies 
show natto glycopeptides extracted from natto can better 
elevate IFN-γ expression in splenic lymphocytes [6]; the 
glycoproteins (DOT) in Dioscorea opposita Thunb exert its 
immunomodulatory activity by increasing the production 
of TNF-α, IL-6, and NO in macrophages and enhancing 

pinocytosis through mitogen-activated protein kinase 
and NF-κB signaling pathway [7]. Glycoprotein from 
Oldenlandia diffusa enhances IL-1 and TNF-α production 
by monocytes and enhances their phagocytosis of tumor 
cells [8]. These studies suggest that glycopeptides have 
immunomodulatory functions.

In our previous study, it was found that the Codonopsis 
pilosula extracts have immunomodulatory effects, and the 
polysaccharide obtained from it has the effect of regulating 
TAM phenotype on melanoma-bearing mouse model. 
Also as the components in Codonopsis pilosula extracts, 
we speculated whether glycopeptide also has the effect of 
regulating TAM phenotype. Therefore, we studied the effects 
of Codonopsis pilosula glycopeptide on TAM phenotypic 
polarization in low levels of glucose, acidic, and lipid-
rich simulated tumor microenvironments and explored the 
possible mechanisms by which glycopeptide dCP1 affects 
TAM phenotype polarization through RNA-Seq and lipid 
metabolism, and attempt to explain the relationship between 
its structure and function through molecular dynamics 
simulations.

Methods

Reagents and materials

Mouse melanoma cell line B16 was purchased from 
the Chinese Academy of Sciences (Shanghai, China). 
RAW264.7 cells were gracefully provided by Prof. 
Zhaoyu Liu of Sun Yat-Sen Memorial Hospital (Sun Yat-
sen University, Guangzhou, China). Codonopsis pilosula 
polysaccharide (dCPP) and glycopeptide (dCP1) were 
isolated and purified by our laboratory. PrimeScript™ RT 
Reagent Kit with gDNA Eraser (RR047A) and TB Green™ 
Premix Ex Taq™ II (Tli RNaseH Plus) (RR820A) were 
purchased from TAKARA. Methanol (A454-4), acetonitrile 
(A996-4), Roswell Park Memorial Institute (RPMI) 1640 
Medium (C11875500BT), Dulbecco's Modified Eagle's 
Medium (DMEM) (31600034), and Qubit® ssDNA Assay 
Kit were purchased from Thermo Fisher Scientific, USA. 
BGI Optimal mRNA Library Construction Kit (LR00R96), 
BGI Plug-In Adapter Kit (LA00R04), and DNA sorting 
beads (LB00V60) were purchased from BGI Genomics. 
MGISEQ-2000RS high-throughput sequencing reagent kit 
(FCL PE150) (1000012555) was purchased from MGI Tech 
Co., Ltd, Shenzhen. Lipopolysaccharide LPS (L6529) and 
bovine serum albumin (B2064) were purchased from Sigma-
Aldrich, USA. Fetal bovine serum (04-001-1A-US) was 
purchased from BI, ISR. Stearic acid (S815203) and oleic 
acid (O815203) were purchased from Macklin Biochemical 
Technology Co., Shanghai. Soft fatty acid (P101061) and 
linoleic acid (L100442) were purchased from Shanghai 
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Aladdin Reagent Co. Sephadex G-100 (S14034) was 
purchased from Yuanye Bio., Shanghai. Recombinant mouse 
interleukin 4 (214-14) was purchased from PeproTech, USA. 
Protein sequencing grade trypsin (V5111) was purchased 
from Promega, USA. WGP (tlrl-wgp) was purchased from 
InvivoGen, France. Standard sensitivity RNA analysis 
kit (DNF-47-0500) was purchased from Agilent, USA. 
Formic acid ammonia (17843-250G) was purchased from 
Honeywell Fluka, USA.

Isolation and purification of Codonopsis 
pilosula‑derived glycopeptides dCP1

Codonopsis pilosula extracts were obtained according 
to the previous method [9], and simulated digestion was 
performed to obtain the digested product dCPCP, which was 
further purified by Sephadex G-100 to obtain high purity 
glycopeptides. Elution was performed with deionized water 
at a flow rate of 300 μL/min, and 3.6 mL of eluate was 
collected from each tube. Phenol–sulfuric acid and BCA 
were used to determine the total carbohydrate and protein 
content in each tube. The overlapping symmetric peaks were 
collected and then concentrated and lyophilized to obtain the 
purified glycopeptide dCP1.

UV spectral identification of dCP1

5.0  mg of dCP1 was dissolved in 10  mL of 0.4  mol/L 
NaOH solution in a water bath at 60 °C for 30 min. after 
which it was scanned using a UV spectrophotometer at 
wavelengths between 190 and 350 nm. Under the same 
conditions, dCP1 untreated with 0.4 mol/L NaOH solution 
was used as a control and scanned. Whether dCP1 has an 
O-glycopeptides bond was determined based on whether 
there is an absorbance change at 240 nm [10].

LC–MS/MS detection of dCP1

A capillary high-performance liquid chromatograph 
(Ultimate 3000) coupled with a tandem electrospray-
combined ion trap Orbitrap mass spectrometer was used for 
the separation and detection of glycopeptides. The specific 
conditions are described as follows:

Chromatographic conditions The chromatographic 
column consisted of a pre-column and an analytical 
column. The pre-column was a C18 column (300 μm 
i.d. × 5 mm, packed with Acclaim PepMap RPLC C18, 
3 μm, 100 Å), and the analytical column was a C18 
column (150 μm i.d. × 150 mm, packed with Acclaim 
PepMap RPLC C18, 1.9 μm, 100 Å); mobile phase A was 
0.1% formic acid solution (Liquid A), and mobile phase 
B was 80% ACN + 0.1% formic acid solution.

Gradient elution conditions Each component was 
analyzed for 120 min. 0–5 min, 4–10% mobile phase 
B; 5.1–85 min, 10–22% mobile phase B; 85.1–110 min, 
22–40% mobile phase B; 110.1–115 min, 40–95% mobile 
phase B; 115.1–120 min, 95% mobile phase B. The flow 
rate was 600 nL/min, and the injection volume was 5 μL.
Mass spectrometry conditions EThcD mode was used for 
fragmentation, and the primary mass spectrometry conditions 
were Orbitrap resolution = 60,000, mass-to-nucleus ratio 
range of 375–2000 m/z for mass spectrometry scan, maxi-
mum injection time of 54 ms, and AGC of 800,000; second-
ary mass spectrometry conditions were Resolution = 30,000, 
maximum injection time of 54 ms, AGC of 100,000, NCE of 
32, and Orbitrap detector.

The MS raw files were searched in Swiss-Prot (reviewed) 
database using Byonic (v4.2.4) software.

Preparation of degreasing serum

To prevent fatty acids in the serum from interfering with the 
experiments, the serum was defatted. The method was modified 
slightly according to the literature [11, 12] by adding 360 mg 
of silica powder per milliliter of fetal bovine serum, oscillat-
ing at low temperature for 2 h, followed by centrifugation at 
10,000 rpm/min at 4 °C for 10 min and then collecting the super-
natant, adding 360 mg of silica per mL of serum to the superna-
tant, and incubating at 4 °C for 12 h, then centrifuged under the 
same conditions to obtain the defatted serum.

Preparation of BSA blank carrier

0.02 mmol fatty acid-free BSA was dissolved in 3800 μL 
DMEM basal medium, followed by 200 μL anhydrous 
ethanol and stored at −20 °C. When used, dilute so that the 
final concentration of BSA is 0.4 mmol/L and the volume 
fraction of ethanol is 0.4%.

Preparation of BSA‑FFA complex

FFA cannot be absorbed by cells without binding carrier 
proteins. Numerous studies have found that the most 
abundant FFAs in the TME include stearic, palmitic, oleic, 
and linoleic acids [13–20]. Therefore, the above four FFAs 
were selected to combine with BSA to form a complex to 
simulate the lipid-rich TME environment. The preparation 
method of the BSA-FFA complex was referred to relevant 
literature and slightly modified [21–31]. The specific 
method was as follows: DMEM basic medium was used to 
dissolve non-fatty acid BSA, and anhydrous ethanol was 
used to dissolve fatty acid so that the molar ratio of BSA: 
FFA = 1:5. 0.02 mmol fatty acid-free BSA was dissolved 
in 3800 μL DMEM base medium, and 0.1 mmol each of 
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oleic acid, linoleic acid, stearic acid, and palmitic acid were 
dissolved in 200 μL anhydrous ethanol, respectively. Stearic 
acid and palmitic acid were dissolved in the ultrasonic water 
bath at 50 °C. BSA solution was mixed with FFA solution 
and incubated for 4 h at 37 °C under vigorous shaking to 
promote the coupling of fatty acids and BSA. The reserve 
solution is stored at −20 °C. The above solutions should be 
filtered by a 0.22 μm sterile filter. When diluted, the final 
FFA concentration in the four kinds of BSA-FFA complexes 
was 0.5  mmol/L and the final BSA concentration was 
0.1 mmol/L.

Low‑glucose, low‑serum, lipid‑rich, acidic complete 
medium preparation

DMEM medium (low glucose) was used as the basal 
medium, and 20 mmol sodium bicarbonate was added per 
liter of basal medium. The complete medium was prepared 
by adding BSA-FFA complex and 3% defatted serum. Adjust 
the pH value of the complete medium to 6.7 by 1 mol/L HCl 
and 1 moL/L NaOH.

Cell culture and grouping

B16 cells were cultured with complete medium until the 
confluency reached 90%, then replaced with serum-free 
basal medium, and continued to culture for 24 h, after which 
the supernatant was collected as conditioned medium (CM) 
that simulated the tumor microenvironment. RAW264.7 
cells were cultured in 6-well plates, and the number of cells 
inoculated in each well was 1 ×  104. After the cells were 
cultured in complete medium containing 5% FBS high 
glucose DMEM for a period of time, the cells were cultured 
in the following groups, and three repeated experiments 
were set in each group. The specific experimental grouping 
and processing methods are as follows:

Group A1 RAW264.7 were cultured in complete medium 
with high glucose DMEM containing 10% normal serum for 
8 days, after which cells were collected for further experi-
ments.
Group A2 RAW264.7 were cultured with high-glucose 
DMEM complete culture medium containing 10% normal 
serum for 8 days and cultured with LPS (100 ng/mL) com-
plete culture medium for 24 h after 7 days to polarize them 
into M1 phenotype, after which cells were collected for fur-
ther experiments.
Group A3 RAW264.7 were cultured with high-glucose 
DMEM complete medium containing 10% normal serum for 
8 days. After 7 days, cells were stimulated with IL-4 (100 ng/
mL) complete medium for 24 h to polarize into M2 pheno-
type, after which cells were collected for further experiments.

Group B1-1 RAW264.7 were cultured using low glucose, low 
serum, lipid-rich, and acidic complete medium mixed with 
CM at 1:1, and the final concentration of defatted serum was 
1.5% and the final concentration of FFA was 0.5 mmol/L. 
The medium was changed every 2–3 days, and the cells were 
cultured for a total of 8 days, after which cells were collected 
for further experiments.
Group B1-2 RAW264.7 were cultured using low glucose, low 
serum, lipid-rich and acidic complete medium mixed with 
CM at 1:1, and the final concentration of defatted serum was 
1.5% and the final concentration of FFA was 0.5 mmol/L. 
The cells were cultured for a total of 8 days, and the medium 
was changed every 2–3 days. After 7 days of culture, the 
cells were stimulated with complete medium containing 
LPS (100 ng/mL) for 24 h to polarize into M1-like TAM 
phenotype, after which the cells were collected for further 
experiments.
Group B1-3 RAW264.7 were cultured using low glucose, low 
serum, lipid-rich, and acidic complete medium mixed with 
CM at 1:1, and the final concentration of defatted serum was 
1.5% and the final concentration of FFA was 0.5 mmol/L. 
The cells were cultured for 8 days, and the medium was 
changed every 2–3 days. After 7 days of culture, the cells 
were stimulated with complete medium containing IL-4 
(100 ng/mL) for 24 h to polarize into M2-like TAM pheno-
type, after which the cells were collected for further experi-
ments.
Group C1-1 RAW264.7 were cultured using low glucose, 
low serum, lipid-rich and acidic complete medium mixed 
with CM at 1:1, so that the final concentration of defatted 
serum was 1.5% and the final concentration of FFA was 
0.5 mmol/L. The cells were cultured for 8 days, and the 
medium was changed every 2–3 days. After 7 days of cul-
ture, complete medium containing dCP1 (200 μg/mL) was 
used to stimulate for 24 h, and cells were collected for further 
experiments.
Group C1-2 RAW264.7 were cultured using low glucose, low 
serum, lipid-rich, and acidic complete medium mixed with 
CM at 1:1, and the final concentration of defatted serum was 
1.5% and the final concentration of FFA was 0.5 mmol/L. 
The cells were cultured for 8 days and the medium was 
changed every 2–3 days. After 7 days, the cells were stimu-
lated with complete medium containing LPS (100 ng/mL) 
for 24 h to polarize into M1-like TAM phenotype and then 
stimulated with dCP1 (200 μg/mL) for 24 h, after which cells 
were collected for further experiments.
Group C1-3 RAW264.7 were cultured using low glucose, 
low serum, lipid-rich and acidic complete medium mixed 
with CM at 1:1, and the final concentration of defatted 
serum was 1.5% and the final concentration of FFA was 
0.5 mmol/L. The cells were cultured for 8 days, and the 
medium was changed every 2–3 days. After 7 days, the 
cells were stimulated with complete medium contain-
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ing IL-4 (100 ng/mL) for 24 h to polarize into M2-like 
TAM phenotype and then treated with dCP1 (200 μg/mL) 
for 24 h, after which the cells were collected for further 
experiments.
Group D2 RAW264.7 were mixed with low glucose, low 
serum, lipid-rich, and acidic complete medium at 1:1 with 
CM, and the final concentration of defatted serum was 
1.5% and the final concentration of FFA was 0.5 mmol/L. 
The cells were cultured for 7 days, and the medium was 
changed every 2–3 days. After 7 days of culture, the 
cells were stimulated with complete medium containing 
IL-4 (100 ng/mL) for 24 h to polarize into M2-like TAM 
phenotype and then treated with dCPP (200 μg/mL) for 
24 h, after which the cells were collected for further 
experiments.
Group E (WGP positive drug control) RAW264.7 were 
cultured using low glucose, low serum, lipid-rich, acidic 
complete medium mixed with CM at 1:1, and the final 
concentration of defatted serum was 1.5%, and the final 
concentration of FFA was 0.5 mmol/L. The cells were 
cultured for 7 days, and the medium was changed every 
2–3 days. After 7 days of culture, the cells were stimulated 
with complete medium containing IL-4 (100 ng/mL) for 
24 h to polarize into M2-like TAM phenotype and then 
treated with WGP (100 ng/mL) for 24 h, after which cells 
were collected for further experiments.
Group F (carrier control) RAW264.7 were cultured 
with low glucose, low serum, lipid-rich, and acidic 
complete medium mixed with CM at 1:1, and the final 
concentration of defatted serum was 1.5%, and the final 
concentration of carrier BSA was 0.4 mmol/L. The cells 
were cultured for 8 days, and the medium was changed 
every 2–3 days. After 7 days, the cells were stimulated 
with IL-4 (100 ng/mL) or LPS (100 ng/mL) for 24 h, after 
which the cells were collected for further experiments.

Quantitative real‑time fluorescence PCR

Total RNA was extracted from cultured cells using TRIzol 
reagent and detected by qRT-PCR using the CFX96 real-
time PCR detection system. The primers used in this study 
are shown in Supplementary Table S1. β-actin was used as 
an internal reference, and the relative mRNA expression 
levels were calculated by the  2−ΔΔCt method.

RNA‑Seq and analysis

RNA-Seq analysis was performed on groups A1, A2, A3, 
B1-1, B1-2, B1-3, C1-1, C1-2, C1-3, and D2. RNA was 
extracted using TRIzol followed by mRNA Library Prepara-
tion (DNBSEQ) and sequenced. The raw data obtained from 
sequencing were filtered using SOAPnuke (v1.5.6) [32] to 

obtain clean data. Clean data were matched to the reference 
genome using HISAT2 (v2.1.0) [33] software. The clean 
data were compared to the reference gene set using Bowtie2 
(v2.3.4.3). Gene expression quantification was performed 
using RSEM (v1.3.1) [34] software and heat map of gene 
expression clustering in different samples using pheatmap 
(v1.0.8) [35]. Differential gene detection was performed using 
DESeq2 (v1.4.5) [36] with q value ≤ 0.05 or FDR ≤ 0.001. 
Further in-depth exploration of gene functions associated with 
phenotypic changes was performed. Based on hypergeometric 
tests, KEGG enrichment analysis of differential genes was 
performed using Phyper with q value ≤ 0.05 as the threshold 
[37], and those meeting this condition were defined as signifi-
cantly enriched in candidate genes.

Metabolite extraction and UPLS‑MS/MS analysis

Groups B1-2, B1-3, C1-2, and C1-3 were selected for 
subsequent lipid metabolomics study. The cells were 
removed from the incubator; the medium was decanted and 
washed 3 times with 1 × PBS. Afterward, cells were scraped 
with a cell scraper, carefully transferred to a freezing tube, 
and frozen in liquid nitrogen until use.

For metabolite extraction, cells were transferred from the 
lyophilization tube to a 2-mL thickened centrifuge tube, and 
2 small magnetic beads were added. 800 μL of pre-chilled 
dichloromethane/methanol (3:1, V/V) precipitant was added, 
and 10 μL of internal standard was added to each sample. 
Afterward, the samples were ground using a tissue grinder 
for 5 min and sonicated in an ice bath for 10 min. After rest-
ing overnight in a refrigerator at −20 °C, the samples were 
centrifuged at 25,000 g/min for 15 min using a centrifuge at 
4 °C. 600 μL of supernatant was taken and concentrated and 
lyophilized in a freeze concentrator. After lyophilization, the 
samples were reconstituted with 120 μL of lipid re-soluble 
solution (isopropanol: acetonitrile: water = 2:1:1) and shaken 
for 10 min. After that, the samples were sonicated in an ice 
bath for 10 min and centrifuged at 25,000 g/min for 15 min 
at 4℃ to obtain the samples. 20 μL of each sample was taken 
and prepared for UPLC-MS/MS analysis. A UPLC I-Class 
Plus (Waters, USA) tandem with a Q Exactive high-resolution 
mass spectrometer (Thermo Fisher Scientific, USA) was used 
for the separation and detection of metabolites. The specific 
experimental conditions are described as follows:

A UPLC I-Class Plus (Waters, USA) tandem with a Q 
Exactive high-resolution mass spectrometer (Thermo Fisher 
Scientific, USA) was used for the separation and detection 
of metabolites. The specific experimental conditions were as 
follows:

Chromatographic conditions The chromatographic column 
was a CSH C18 column (1.7 μm 2.1*100 mm, Waters, 
USA). The mobile phase A was 60% acetonitrile + 10 mM 
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ammonium formate + 0.1% formic acid (liquid A) in posi-
tive ionization mode, and the mobile phase B was 90% 
isopropanol + 10% acetonitrile + 10 mM ammonium for-
mate + 0.1% formic acid; the mobile phase A was 60% 
acetonitrile + 10  mM ammonium formate in negative 
ionization mode, and the mobile phase B was 90% iso-
propanol + 10% acetonitrile + 10 mM ammonium formate.
Gradient elution conditions 0–2 min, 40–43% mobile 
phase B; 2–2.1 min, 43%–50% mobile phase B; 2.1–7 min, 
50–54% mobile phase B; 7–7.1 min, 54–70% mobile phase 
B; 7.1–13 min, 70–99% mobile phase B; 13–13.1 min, 
99–40% mobile phase B mobile phase B; 13.1–15 min, 
40% mobile phase B. The flow rate was 0.4 mL/min, the 
column temperature was 55 °C, and the injection volume 
was 5 μL.
Mass spectrometry conditions mass spectrometry scan 
mass-to-nucleus ratio range of 200–2000, primary resolu-
tion of 70,000, AGC of 300,000, and maximum injection 
time of 100 ms. According to the parent ion intensity, Top3 
was selected for fragmentation, and secondary information 
was collected with secondary resolution of 17,500, AGC of 
100,000, and maximum injection time of 50 ms. The frag-
mentation energy (stepped NCE) was set to: 15, 30, 45 eV.
The ion source (ESI) parameters were set sheath gas flow 
rate of 40, auxiliary gas flow rate of 10, spray voltage 
(|KV|) of 3.80 for positive ion mode and 3.20 for nega-
tive ion mode, ion transport tube temperature of 320 °C, 
and auxiliary gas heating temperature of 350 °C. The ion 
source (ESI) parameters were set: sheath gas flow rate of 
40, auxiliary gas flow rate of 10, spray voltage (|KV|) of 
3.80 for positive ion mode and 3.20 for negative ion mode.

The obtained mass spectrometry data were imported into 
LipidSearch v.4.1 (Thermo Fisher Scientific, USA) software 
for mass spectrometry data analysis, and then, a data matrix 
containing information such as lipid molecule identification 
results and quantitative results was obtained and processed for 
information analysis. The specific parameters are as follows:

The search library mass deviation of precursor ions and 
product ions was 5 ppm; the response threshold was the rela-
tive response deviation of product ions of 5.0%; the peak lift 
mass deviation was 5 ppm; the M-score was 5.0; the c-score 
was 2.0; the positive ion mode additive forms were [M +  H]+, 
[M +  NH4]+, [M +  Na]+, and the negative ion mode additive 
forms were [M–H]−, [M–2H]−, [M +  HCOO]−; retention 
time deviation of 0.1 min.

Alkylation, enzymatic hydrolysis, and desalination 
of dCP1

After denaturing the dCP1 sample with urea/ammonium 
bicarbonate buffer, 15 mg of dCP1 was added to a certain 
amount of 1  mol/L dithiothreitol (DTT) solution to a 

final DTT concentration of 10 mmol/L and reduced in a 
water bath at 56 °C for 1 h. Afterward, 10 μL of 0.5 mol/L 
iodoacetamide (IAA) solution was added to a final IAA 
concentration of 55 mmol/L, and the reaction was carried 
out at room temperature and protected from light for 40 min. 
After that, 2 μL of 1 mol/L DTT solution was added to make 
the final concentration of DTT 20 mmol/L to neutralize the 
unreacted IAA.

The alkylated samples were adjusted to pH 8.0 by 
ammonium bicarbonate solution, and trypsin was added 
according to the mass ratio of trypsin to a substrate of 
1:100. The samples were digested using trypsin at 37 °C 
for 4 h, and then, the pancreatin was added according 
to the mass ratio of 1:100, and the enzymolysis reaction 
was conducted at 37℃ overnight (16 h). The sample solu-
tion was adjusted to pH < 2 by trifluoroacetic acid (TFA) 
and then centrifuged at 13,000 rpm for 15 min; super-
natant was taken to prepare for desalting with C18 solid 
phase extraction column. The C18 extraction column was 
activated with ≥ 99.9% acetonitrile, followed by liquid 
replacement with 50% acetonitrile /0.1% TFA, balanced 
with 2% acetonitrile /0.1% TFA solution; then, samples 
were taken and then cleaned with 2% acetonitrile /0.1% 
TFA solution. Finally, 50% acetonitrile /0.1%TFA elu-
ent was used to elute the desalted glycopeptides on the 
chromatographic column, and the solvent was dried in a 
vacuum centrifugal concentrator at 45 °C. The glycopep-
tides were fully dissolved with the sample solution (0.1% 
formic acid, 2% acetonitrile), then whirled, and centri-
fuged at 13,200 rpm for 10 min at 4 °C. The supernatant 
was transferred to sample tubes for LC–MS/MS detection 
and analysis.

Molecular docking and molecular dynamics 
simulations

Amino acid sequences of each glycopeptide were obtained 
from glycopeptides LC–MS/MS data, and the spatial 
structure of the peptide was predicted using ColabFold 
v1.5.2 [38] algorithm based on AlphaFold2, and the 
three-dimensional structure data pdb file with the highest 
prediction score of the corresponding peptide segment was 
obtained. Carbohydrate chain composition and glycosylation 
information were obtained according to the glycopeptides 
LC–MS/MS data. Suitable carbohydrate chain was screened 
from Glyconnect [39]. Carbohydrate Builder was used 
to model the carbohydrate chain, and the lowest energy 
conformation was selected as the predicted carbohydrate 
chain structure. On this basis, Glycoprotein Builder was 
used to model glycopeptides and its structure, and the 
three-dimensional structure data of glycopeptides pdb file 
were obtained, which could be used for the further study of 
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receptor–ligand interaction. The three-dimensional structure 
data pdb files of receptor protein crystal that can recognize 
and bind glycopeptides or glycoproteins expressed in murine 
macrophages were searched from RCSB [40] and AlphaFold 
Protein Structure Database [41].

Chimera 1.1.6 was first used to hydrogenate the receptors 
and glycopeptides [42], followed by a preliminary screening 
of glycopeptides binding to receptors using ZDOCK Server 
3.0.2 [43]. GROMACS 2021.5 software package was used 
to simulate the receptors protein and glycopeptides molecu-
lar dynamics. The Amber14SB force field was used [44]. 
TIP3P-dominant water model was chosen, and periodic 
boundary conditions were set. The workflow of molecular 
dynamics simulation includes four steps: energy minimiza-
tion, NVT equilibrium, NPT equilibrium, and production 
dynamics simulation. Firstly, the protein and ligand heavy 
atoms were constrained to minimize the energy of water 
molecules by 5000 steps via the steepest descent method. 
Then, maintaining the constraints, a 50,000-step NVT 
ensemble simulation was carried out for the whole system. 
The temperature was 298 K, and the time step was 2 fs. 
Finally, the molecular dynamics simulation of the system 
was carried out in the NPT ensemble for 100 ns with a time 
step of 2 fs. The relevant parameters were analyzed by the 
module of the GROMACS software package. The binding 
energy was analyzed via g_mmpbsa.sh [45].

Statistical analysis

All statistical analyses were processed using SPSS 22 (IBM 
Corporation, Armonk, New York, USA). Data are expressed 
as mean ± standard deviation. In the statistical analysis, the 
Student’s t test was used to analyze the significance between 
two groups, and the one-way analysis of variance was used to 
evaluate the differences among multiple groups. The Duncan 
test was used when the variances were homogeneous, and 
the Welch’s Anova test was used when the variances were 
not homogeneous. p < 0.05 was considered significant. The 
results were plotted using GraphPad Prism 8 and Origin 
2022 software.

Results

dCP1 is a mixed glycopeptide containing a large 
number of O‑glycosylated peptides

The digested dCPCP was purified by Sephadex G-100 col-
umn chromatography. It was found that only 21–31 tubes 
in the deionized water eluent had the carbohydrates peak 
coinciding with the protein peak and symmetrical (dCP1), 
indicating that dCP1 is a glycoprotein or glycopeptides 

(Fig. 1A). The carbohydrate content of dCPP was 82.3%, 
and the protein content was 9.5%. Figure 1B shows that com-
pared with the solid line, the dotted line part, that is, the 
absorbance of the dCP1 solution treated with NaOH, has a 
significant change in the absorption peak at 240 nm, indicat-
ing that after NaOH treatment, the β-elimination reactions 
occur. The threonine may be converted into α-aminobutenoic 
acid, and the serine may be converted into α-aminoacrylic 
acid. The unsaturated amino acids formed by the two have 
obvious absorption at 240 nm, so it is preliminary judged 
that dCP1 contains O-glycopeptides bonds [10, 46, 47]. 
Then, the complete glycopeptide was characterized; the 
glycopeptides fractions were firstly separated by capillary 
high-performance liquid chromatography after enzymatic 
digestion and desalting, and then fragmented and detected 
by tandem electrospray ion trap-Orbitrap mass spectrometer, 
followed by the identification of the amino acid composition 
of the peptides, the composition of the carbohydrate chains, 
and the glycosylation sites in the glycopeptides by Byonic 
system software to complete the structural analysis of the 
complete glycopeptides. Analysis revealed that dCP1 is a 
mixture of multiple glycopeptides; 95 kinds of glycosylated 
peptides were detected, including 9 N-glycosylated glyco-
peptides and 86 O-glycosylated glycopeptides, indicating 
that about 9.5% of the glycopeptides have been identified to 
contain N-glycosylation sites and 90.5% of the glycopeptides 
have O-glycosylation sites; the length of the peptide chain 
ranged from 4 to 37 amino acids. Detailed information on 
glycopeptides is shown in Table S2.

dCP1 inhibits TAM activity and promotes 
the polarization of M2‑like TAM to M1 phenotype

The preliminary M1/M2-like TAM model was established 
according to the method in the previous study [9], and 
then, different concentrations of glycopeptides were used 
to intervene in order to preliminarily investigate whether 
glycopeptides affect TAM proliferation and whether they 
have the function of regulating TAM phenotype. In vitro 
experiments showed that dCP1 inhibited the proliferation 
of M1/M2-like TAM in a dose-dependent manner in the 
concentration range of 50–500 μg/mL, taking M1 or M2-like 
TAM without dCP1 treatment as a control (Fig. 1C).

To explore whether dCP1 has the potential to repolar-
ize M2-like TAM to M1 phenotype, the relative expres-
sion levels of mRNAs of M1/M2 phenotype marker genes 
and inflammatory factors genes in TAM were measured 
by qRT-PCR and compared with the effect of 100 μg/mL 
dCPP treatment that has a regulatory effect on TAM phe-
notype (Fig. 1D). Mannose receptor type C 1 (MRC1), a 
membrane-bound protein, is expressed predominantly on 
the surface of macrophages. Mrc1 is one of the most com-
monly used markers to recognize M2 macrophages. It has 
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regulatory endocytosis and phagocytosis functions and 
plays an important role in immune homeostasis by remov-
ing unwanted mannoprotein. Compared with M2-like TAM 
without dCP1 treatment, M2-like TAM cells after dCP1 
treatment showed a significant decrease in Mrc1 mRNA 
relative expression levels with increasing dCP1 concentra-
tions in a dose-dependent manner, with medium to high 
doses (100, 200, and 500 μg/mL) of dCP1 having a stronger 
effect on the reduction in Mrc1 mRNA relative expres-
sion levels than 100 μg/mL dCPP treatment. Arg1 has an 
important role in M2 phenotype macrophages, which can 
inhibit the inflammatory response by regulating the pro-
duction and release of inflammatory mediators. It can also 
convert arginine to ornithine and urea. The relative expres-
sion level of Arg1 mRNA gradually decreased with the 
increase in dCP1 level, but none of them was significantly 
different compared with control. Fizz1 can inhibit inflam-
matory responses, reduce inflammatory injury, and is one 
of the markers of the M2 phenotype of macrophages. The 
relative expression level of Fizz1 mRNA first increased and 
then decreased, and the relative expression level of Fizz1 
mRNA was slightly increased in cells treated with 50 μg/
mL dCP1 only, while the relative expression level of Fizz1 
mRNA significantly decreased after higher dose of dCP1 
treatment. IL-1β is a cytokine secreted by activated M1-type 
macrophages. It plays an important regulatory role in the 
inflammatory response. IL-1β promotes the production and 
release of inflammatory mediators such as pro-inflammatory 
cytokines (e.g., TNF-α, IL-6, etc.) and participates in the 
activation of inflammatory signaling pathways. The relative 
expression levels of IL-1β mRNA were increased after treat-
ment with different doses of dCP1, with the highest increase 

after treatment with 200 μg/mL dCP1, but lower than the 
elevated effect of intervention with 100 μg/mL dCPP on the 
relative expression levels of IL-1β mRNA. iNOS is a key 
enzyme in the macrophage inflammatory response and is a 
source of nitric oxide (NO), which is efficiently induced in 
response to pro-inflammatory stimuli. The relative expres-
sion levels of iNOS mRNA were all significantly increased 
and were all higher than the intervention effect of 100 μg/mL 
dCPP. IL-6 is a pro-inflammatory factor that can be released 
by M1 macrophages, the relative expression levels of IL-6 
mRNA were all increased and significantly different, but all 
were lower than the intervention effect of 100 μg/mL dCPP. 
TNF-α is a cytokine that can be released by M1 phenotype 
macrophages and has the function of promoting inflamma-
tory response and enhancing immune response. The rela-
tive expression level of TNF-α mRNA was also significantly 
increased, but only the relative expression level of TNF-α 
mRNA after 200 μg/mL dCP1 treatment was higher than that 
after 100 μg/mL dCPP intervention.

Codonopsis pilosula‑derived polysaccharide 
dCPP and glycopeptide dCP1 both can affect 
the relative expression level of M1/M2 marker genes 
in the simulated tumor microenvironment TAM 
model

Firstly, the function of Codonopsis pilosula polysaccha-
ride dCPP and glycopeptide dCP1 in repolarization of 
M2-like TAM phenotype in low levels of glucose, low lev-
els of serum, lipid-rich, and acidic environment was pre-
liminarily analyzed. Some M1 phenotypic marker genes 
and inflammatory factor genes, and M2 phenotypic marker 

Fig. 1  Purification of glycopeptide dCP1 and its effect on TAM activ-
ity and phenotypic changes. (A) Purification of dCP1 by Sephadex 
G-100 chromatography; (B) UV spectrum of dCP1; (C) Effects of 
dCP1 on the proliferation of M1/M2-like TAM; different lowercase 

letters indicate significant differences (p < 0.05); (D) Effects of dif-
ferent concentrations of dCP1 on relative mRNA expression levels of 
M1/M2 marker genes in M2-like TAMs. *indicates p < 0.05, **indi-
cates p < 0.01, ***indicates p < 0.001
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genes in each group were analyzed by qRT-PCR. As shown 
in Fig. 2A, compared with macrophages in group A1 without 
any treatment, the mRNA relative expression levels of IL-1β 
and IL-6 in group B1-2 were significantly increased, while 
the mRNA relative expression levels of Mrc1 and Arg1 were 
also slightly increased, but not statistically significant. The 
mRNA relative expression levels of IL-1β and IL-6 in group 
B1-3 were significantly decreased, while the mRNA rela-
tive expression levels of Mrc1 and Arg1 were significantly 
increased (p < 0.01). The results show that M1/M2-like 
TAM modeling is successful in simulated TME.

Compared with untreated M2-like TAM in low glucose, 
low serum, lipid-rich, and acidic environment (hereafter 
referred to as M2-like TAM), the relative mRNA expression 
level of IL-1β in M2-like TAM (group C1-3) was significantly 
increased after dCP1 treatment. The relative expression level 
of IL-1β mRNA was significantly increased in M2-like TAM 
(group E) treated with WGP. WGP is a particulate Saccharo-
myces cerevisiae β-glucan preparation that induces phago-
cytosis and the production of pro-inflammatory cytokines 
and reactive oxygen species (ROS) through the activation 
of Dectin-1 receptors, prompting the conversion of mac-
rophages to the M1 phenotype. In addition, dCP1 can also 
significantly increase the relative expression level of IL-1β 
mRNA in TAM in group B1-1. Compared with untreated 
M1-like TAM (group B1-2), the relative expression level of 
IL-6 mRNA in M1-like TAM (group C1-2) treated with dCP1 
was significantly increased. dCP1, dCPP, and WGP could 
significantly increase the relative expression level of IL-6 
mRNA in M2-like TAM, and compared with M2-like TAM 
(group D2) treated with dCPP, the relative expression level of 
IL-6 mRNA in M2-like TAM treated with dCP1 was signifi-
cantly increased. Compared with M2-like TAM without any 
intervention, the relative expression level of Mrc1 mRNA in 
M2-like TAM was decreased after glycopeptide dCP1 (group 
C1-3), polysaccharide dCPP (group D2), and WGP (group 
E) treatment, and the decrease was highest after glycopeptide 
dCP1 treatment. Compared with M2-like TAM without any 
intervention, the relative expression level of Arg1 mRNA in 
M2-like TAM was decreased only after WGP treatment.

In conclusion, both Codonopsis pilosula polysaccharide 
dCPP and glycopeptide dCP1 can significantly reduce the 
relative expression level of Mrc1 mRNA in M2-like TAM 
in simulated TME, and glycopeptide dCP1 can significantly 
increase the relative expression level of IL-1β and IL-6 
mRNA in M2-like TAM in simulated TME. Moreover, the 
relative expression level of IL-6 mRNA was significantly 
increased compared with the polysaccharide dCPP. How-
ever, polysaccharide dCPP could only significantly increase 
the relative expression level of IL-6 mRNA, and the relative 
expression level was lower than the intervention effect of 
glycopeptide dCP1 at the same dose. Therefore, we suggest 

that dCP1 may be better for polarizing M2-like TAM to 
M1-like TAM compared to dCPP.

RNA‑Seq analysis showed that M2‑like TAM 
was inclined to M1 phenotype after dCP1 treatment

A total of 22,064 effective genes were detected in 
each group. Dr.Tom system of BGI (Beijing Genomics 
institution) was used to analyze the data. As can be seen 
from the results of the principal component analysis 
(Fig.  2B), the principal component of M2-like TAM 
treated with dCP1 is more inclined to M1 phenotype 
macrophages. Further analysis showed that the similarity 
was more directly displayed by Pearson’s correlation 
analysis of gene expression matrix. The similarity between 
C1-3 and A1, A2, and A3 was P = 0.746, P = 0.930 and 
P = 0.802, respectively. That is, the C1-3 group showed 
the highest similarity to M1macrophages. Pearson’s 
correlation analysis was performed on the expression 
matrix of M1/M2 marker gene of macrophage phenotype. 
Compared with other groups, M2-like TAM treated with 
dCP1 showed a higher correlation with M1 macrophages 
(P = 0.973). Compared with C1-3, the principal component 
of B1-3 was far away from A2 in PCA analysis, and in 
the M1/M2 marker gene expression matrix, Pearson’s 
correlation analysis showed that the correlation between 
B1-3 and M1 macrophages was only P = 0.812, far less 
than that of C1-3 (P = 0.973). This indicated that M2-like 
TAM (group C1-3) was inclined to the M1 phenotype 
after dCP1 treatment. M1/M2 marker genes are shown in 
Table S3.

In order to further determine the role of dCP1 in 
regulating TAM polarization, on the basis of RNA-
Seq data, Gene Set Enrichment Analysis (GSEA) was 
performed on the expression profiles of group B1-3 and 
group C1-3 using GSEA4.3.1 software. Both the software 
and gene set were obtained from the MSigDB database 
website [48–50]. We mainly compared the changes 
of representative gene sets related to phenotype and 
function of M2-like TAM before and after glycopeptides 
dCP1 treatment (Fig.  2C). By comparison, it was 
found that after dCP1 treatment, the gene set Hallmark 
Glycolysis (NES = −1.3982755, p < 0.001) related to 
glycolysis was up-regulated, and the energy supply of 
M1 macrophages mainly depended on glycolysis as a fast 
energy source. The energy supply mode of M2-phenotypic 
macrophages is mainly oxidative phosphorylation [51]. 
In addition, the Hallmark MTORC1 Signaling gene set 
(NES = −1.4287497, p < 0.001) was up-regulated, and 
mTORC1 up-regulation was found to promote glycolysis 
[52]. Compared with the glycopeptides-treated groups, 
Hallmark IL-6-KAK-Stat3 Signaling (NES = 1.3829753, 
p < 0.001), Hallmark Wnt Beta Catein Signaling 
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(NES = 1.3512646, p = 0.1870229), Hallmark TGF 
Beta Signaling (NES = 1.2529285, p = 0.08349146), 
and Hallmark Hedgehog Signaling (NES = 1.3689349, 
p < 0.001) and other gene sets were up-regulated in 
control groups. In addition to the above gene set, 
GOBP Interleukin-4 Production (NES = 1.2952715, 
p = 0.10144927) and GOBP Interleukin-10 Production 
(NES = 1.2340547, p = 0.1904762), two kinds of anti-
inflammatory factor production gene sets were also 
up-regulated in control groups.

In general, the gene sets of various signaling pathways 
that promote the polarization of macrophages toward the 
M2 phenotype were up-regulated before glycopeptides 
dCP1 treatment, but these gene sets were not up-regulated 
after dCP1 treatment, indicating that the M2 phenotype of 
TAM was inhibited. In addition, after dCP1 treatment, the 
glycolysis gene set of TAM was up-regulated, indicating 
that its metabolism and energy supply pattern shifted to 
M1 phenotype. According to the above analysis, M2-like 
TAM tended to be M1 phenotype after being treated with 
glycopeptides dCP1.

PI3K‑AKT pathway may have the most important 
effect in dCP1 regulation of M2‑like TAM 
polarization toward M1 phenotype

RNA-Seq data analysis showed that 3366 genes were dif-
ferentially expressed between group B1-3 and group C1-3. 
It can be seen from the volcano map of DEGs (Fig. 3A) that 
there are 1,836 up-regulated genes and 1,530 down-regu-
lated genes, and the distribution of differentially expressed 
genes on the left and right sides of the volcano map is basi-
cally balanced. The top 10 genes with the highest signifi-
cance among the up-regulated and down-regulated genes 
were labeled, and among the 10 genes with the most sig-
nificant up-regulated, the expression products of Siglec-1 
[53], KLK9 [54], CFP [55], PMFI [56], KLk8 [57] and 
TUBA1B [58] have pro-inflammatory effects. Among the 10 
most significantly down-regulated genes, Crispld2 [59–61], 
MAP4K3 [62] and Nfkbiz [63] had anti-inflammatory effects. 
In the heatmap, genes are represented horizontally, with one 
sample in each column (Fig. 3B). Red represents genes with 

high expression and blue represents genes with low expres-
sion. The B1-3 and C1-3 differential genes were classified by 
KEGG Pathway Level 2, and the pathways related to meta-
bolic reprogramming, macrophage polarization, and immune 
system were selected for KEGG Pathway enrichment. The 
pathways related to metabolic reprogramming and polari-
zation of macrophages (q valve < 0.05) were screened for 
further analysis (Fig. 3C). The pathways are biosynthesis 
of amino acids, PI3K-Akt signaling pathway, FoxO signal-
ing pathway, phosphatidylinositol signaling system, sphin-
golipid signaling pathway, HIF-1 signaling pathway, thyroid 
hormone signaling pathway, Ras signaling pathway, mTOR 
signaling pathway, N-Glycan biosynthesis.

The analysis of the pathway network map showed that the 
PI3K-AKT pathway map obtained by KEGG classification 
and KEGG enrichment method had the most linked genes, 
and the number of upstream and downstream signaling 
pathways was the largest, indicating that it was the most 
important pathway (Fig. 3C). After dCP1 treatment, in the 
PI3K-AKT pathway, the gene expression of its core pathway 
changed. As shown in Fig. S1A, the expression of Pik3ca, 
Pik3r1, Pik3r3 and Pik3cb was reduced. Downstream of 
the PI3K-AKT pathway, the expression of Brca1-, Gys1-, 
Pck2-, and Trp53-related macrophage polarization genes 
was up-regulated, while the expression of Myc and Mcl1 
was downregulated.

In addition to the above KEGG pathway enrichment 
analysis, select the top 100 genes with the highest 
significance among the up-/down-regulated DEGs for 
KEGG Module analysis, and it was found the significantly 
up-regulated genes were mainly in glycolysis, C1 unit 
interconversion, and pyrimidine deoxyribonucleotide 
biosynthesis modules (Fig. S1B), while the significantly 
down-regulated genes were mainly in lipid metabolism-
related modules such as sphingolipids (GSLs) biosynthesis 
and phosphatidylethanolamine (PE) biosynthesis (Fig. S1C).

Analysis of the hub genes related to M2‑like TAM 
repolarization found that the significant reaction 
responses or pathways were related to PI3K 
and PI3K‑AKT pathways

To find out the Hub genes about M2-like TAM repolarization 
in the DEGs identified in RNA-Seq, PPI analysis and Hub gene 
screening were performed on the DEGs in the pathways associ-
ated with macrophage metabolic reprogramming and polari-
zation after enrichment by KEGG Pathway using STRING 
[64] and Cytoscape 3.9.1 and analyzed by Degree algorithm, 
and ranked (Fig. 3D). Hub genes are listed in Supplementary 
Table S4. These indicated that the above genes acted as connec-
tion hubs in the process of dCP1-mediated polarization from 
M2-like TAMs to M1-like TAMs. Use ClueGo [65] to per-
form Reaction analysis on Hub genes, set Network specificity 

Fig. 2  RNA-Seq analysis showed that M2-like TAM after dCP1 treat-
ment tended to be M1 phenotype. (A) Effects of polysaccharide dCPP 
and glycopeptide dCP1 on relative mRNA expression levels of M1/
M2 marker genes in M2-like TAMs, *indicates p < 0.05, **indicates 
p < 0.01; (B) PCA analysis and Pearson's correlation analysis. In PCA 
analysis, dots represent samples, the same color represents the same 
sample group, PV represents the Proportion of variance, SD repre-
sents standard deviation color represents correlation; in Pearsons cor-
relation analysis, blue represents positive correlation, P = 1 represents 
maximum correlation; (C) GSEA analysis of M2-like TAM before 
and after glycopeptides treatment. *indicates p < 0.05, **indicates 
p < 0.01

◂
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to medium, the minimum number of genes in Term/Pathway 
selection is 3%, and the proportion is greater than 20%, and 
only significant reactions or pathways with p < 0.05 are dis-
played. Through the analysis, it was found that the significant 
reactions or pathways were all related to the PIK3 and PI3K-
AKT pathways (Fig. 3E), which coincided with the above-men-
tioned KEGG network analysis that found that this pathway was 
the most important.

Global analysis of lipid metabolites revealed 
that the optimal characteristic subnetwork 
of M2‑like TAM before and after dCP1 treatment 
was the conversion between LPC and PC

A total of 523 lipid metabolites meeting the requirements 
were detected in all experimental groups, typical base peak 
chromatograms for each group of samples visually demon-
strate the detection of metabolites in the samples (Fig. S2 
A, B), and the number of metabolites was counted accord-
ing to Sub Class (Fig. S2C). The PCA model between all 
experimental groups was developed in order to analyze 
the distribution and separation trend of each experimental 
group (Fig. S2D). The analysis shows that in this model, 
the first principal component accounts for 62.07% of the 
total variance and the second principal component accounts 
for 17.42% of the total variance. The differences between 

groups in each experimental group were large and could 
be completely separated. Among them, the differences 
between B1-3 (control group, M2-like TAM without dCP1 
treatment) and C1-3 (M2-like TAM with dCP1 treatment) 
groups were larger before and after glycopeptide treatment, 
while the differences between B1-2 and C1-2 groups were 
smaller. Therefore, the subsequent study only analyzed B1-3 
and C1-3. In addition to this, the degree of aggregation of 
samples within each experimental group was high, the intra-
group differences were small, and there were no abnormal 
samples.

The LINEX2 online tool [66] was used to conduct a 
global analysis of lipid metabolites in the control group 
and glycopeptides dCP1-treated group. Figure 4A shows 
the lipid reaction supernetwork involving enzymes in 
M2-like TAMs before and after treatment with glycopep-
tides dCP1, important characteristic subnetworks, and 
score changes during algorithm optimization. The cir-
cular nodes in the supernetwork represent various lipids, 
the red of the lipid node represents the lipid with higher 
content in the control group, and the blue represents the 
lipid with higher content after dCP1 treatment. Node size 
is proportional to the −log10(FDR) value. The color of the 
connecting line indicates the type of reaction connecting 
two nodes, where blue indicates the addition or removal of 
fatty acids, orange indicates the modification of fatty acids, 

Fig. 3  Differential gene analysis and screening and analysis with 
Hub genes. (A) Volcano plot of differential genes; red represents 
up-regulated genes and green represents down-regulated genes; 
(B) Heat map of differential gene clustering. Genes are represented 
horizontally, one sample per column; red indicates highly expressed 
genes and blue indicates low expressed genes; (C) Enrichment of 
the KEGG pathways associated with macrophage polarization and 
its relational network. Different node shapes in the network diagram 
indicate different contents, squares indicate KEGG Pathway, and cir-
cles indicate mRNA. Both the color and size indicate the number of 
genes or transcripts connected to the node. The darker the color and 

larger the square, the more genes or transcripts are connected to the 
node. The line indicates the relationship between two signaling path-
ways, and the more the number of upstream and downstream signal-
ing pathways, the more important they are in the network. Different 
color lines indicate different classifications of pathway, red indicates 
cellular processes, blue indicates environmental information process-
ing, green indicates genetic information processing, purple indicates 
human diseases (animals only), orange indicates metabolism, yellow 
indicates organic systems, and brown indicates drug development; 
(D) PPI analysis and Hub gene screening; (E) reactome reaction anal-
ysis of Hub genes
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green indicates the addition or removal of headgroups, and 
red indicates the modification of headgroups. Figure 4A 
shows that in the red lipid accumulation area, that is, in the 
control group, the head group modification reaction and a 
part of the fatty acid modification reaction are mainly car-
ried out. In the treatment group, lipids mainly underwent 
fatty acid and head group addition or removal reactions. 
Afterward, the lipid network is enriched, and the important 
characteristic subnetworks of M2-like TAM after glyco-
peptides dCP1 treatment are found by using a local search 
supported by simulated annealing. The principle is that 
local search optimization is performed by applying local 
changes to candidate solutions. Study the search space so 
that the objective function value increases. These changes 
will be applied until no more local improvements can be 
made. To avoid getting stuck at local maxima, the simu-
lated annealing process [67] allows non-optimal solutions, 
thereby increasing the exploration space. The best sub-
network is returned when no further improvement is pos-
sible or the condition is no longer satisfied with simulated 
annealing or when the maximum number of iterations is 
reached. The figure shows that the optimal subnetwork 
is composed of PC, LPC lipids, and corresponding reac-
tions, which represent the conversion between LPC and 
PC, and the detailed reactions are shown in Supplementary 
Table S5.

Analysis of the relative content of lipid metabolites 
showed that the lipid metabolites profile of M2‑like 
TAM after dCP1 treatment was similar to M1 
macrophages

After analyzing the lipid metabolites of the dCP1 
glycopeptide treatment group and the control group, it 
was found that after dCP1 treatment, the sphingolipids 
(Sphingolipids, SP) and glycolipids (Saccharolipids, 
SL), the total relative content of fatty acyls (Fatty Acyls, 
FA) and glycerolipids (Glycerolipids, GL) metabolites 
increased significantly, the total relative content of 
glycerophospholipids (GP) metabolites decreased 
significantly, and although the total relative content of Prenol 
Lipids (PR) metabolites increased, there was no significant 
change (Fig. 4B).

Compared with the control group, after dCP1 
glycopeptide treatment, the total relative content of 
sphingolipid metabolites in M2-like TAM was significantly 
increased, including the total relative content of 
sphingolipids, ceramide (Cer), and ganglioside GM2. The 
total relative content of neutral glycerides in glyceride 
metabolites increased significantly, among which the total 
relative contents of monoglyceride (MG), diglyceride 
(DG), and triglyceride (TG) all increased significantly. 
The total relative content of saccharolipids metabolites 
increased, among which the total relative expression of 

Fig. 4  Global analysis and total relative content analysis of lipid 
metabolites in the control and dCP1-treated groups. (A) Super-net-
work of lipid reactions with enzyme involvement, optimal sub-net-
works, and score changes during algorithm optimization. The circu-
lar nodes in the figure represent various lipids, and the red color of 
the lipid nodes represents the lipids with higher content in the control 
group compared to those with higher content after dCP1 treatment 
in blue. Node size is proportional to the -log10(FDR) value. The 

color of the connecting line indicates the type of reaction connecting 
the two nodes, where blue indicates fatty acid addition or removal, 
orange identifies fatty acid modification, green indicates head group 
addition or removal, and red indicates head group modification; (B) 
Relative content analysis of main classes and subclasses of lipid 
metabolites. *indicates p < 0.05, **indicates p < 0.01, ***indicates 
p < 0.001
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monogalactosyldiglyceride (MGDG) increased significantly, 
while the total relative expression of digalactosyldiglyc-
eride (DGDG) decreased significantly. The total relative 
content of fatty acid metabolites increased significantly, 
among which the total relative content of fatty acid (FA) 
and (O-acyl)-1-hydroxy fatty acid (OAHFA) all increased 
significantly. There is an increase in the total relative con-
tent of coenzyme (Co) class of prenol lipids metabolites, in 
which the relative content of CoQ8 and CoQ10 decreased 
and the relative content of CoQ9 increased, but none of the 
changes were significant. The relative content of P-Etha-
nol Amine (P-Eth) metabolites in the GP class of metab-
olites decreased, with a significant increase in the total 
relative content of lyso-dimethylphosphatidylethanolamine 
(LdMePE) and a significant decrease in the total relative 
content of both dimethylphosphatidylethanolamine (dMePE) 
and phosphatidylethanolamine (PE). There is a significant 
decrease in the total relative content of phosphatidylser-
ine (P-Serine) metabolites, with a significant increase in 
the total relative content of lyso-phosphatidylserine (LPS) 
and a significant decrease in the total relative content of 
phosphatidylserine (PS). There is a significant decrease in 
the total relative content of phosphatidylmethanol (P-Meth-
anol) metabolites, with a significant increase in the total 
relative content of lyso-phosphatidylmethanol (LPMe) and 
a significant decrease in the total relative content of phos-
phatidylmethanol (PMe). There are a significant increase 
in the relative content of cyclophosphatidic acid (cPA) 
and a significant decrease in the total relative content of 
phosphatidylethanol (PEt). Total relative content of phos-
phatidylglycerol (P-Glycerol) metabolites decreased, with 
a significant increase in total relative content of lyso-phos-
phatidylglycerol (LPG) and a significant decrease in total 
relative content of phosphatidylglycerol (PG). There is an 
increase in the total relative content of phosphatidylinosi-
tol (P-Inositol) metabolites, with a significant increase in 
the total relative content of phosphatidylinositol (PI) and a 
significant decrease in the total relative content of lyso-phos-
phatidylinositol (LPI). There is a decrease in the total rela-
tive content of phosphatidylcholine (P-Choline) metabolites, 
with an increase in the total relative content of lysophos-
phatidylcholine (LPC) and a decrease in the total relative 
content of phosphatidylcholine (PC). According to the data 
above, there was an increase in the relative contents of lipid 
metabolites like SM, Cer, GM2, TG, DG, MG, LPS, LPI, 
and LPC, while a decrease was seen in the relative contents 
of lipid metabolites like PS, PEt, PC, and PG. There was 
still a minor amount of lipid metabolism with M2 phenotype 
characteristics after horizontal comparison, but the majority 
of the expression characteristics of the lipid profile of TAM 
treated with dCP1 glycopeptide were comparable with the 
M1 phenotype lipid metabolism profile [68–70]. Figure S3 
displays more specific modifications in lipid metabolism.

The interconversion between PE and PC, as well 
as PC and DG are core reactions of key differential 
metabolic

The analysis of Fold Change values and q value values of 
various lipid metabolites in the dCP1-treated group com-
pared to the control group revealed that M2-like TAM had 
a total of 310 differential metabolites after dCP1 treatment, 
including 141 up-regulated metabolites and 169 down-
regulated metabolites (Fig. 5A). The differential metabolite 
volcano plot is shown in Fig. 5B.

After univariate analysis, a total of 310 lipid metabolites 
were obtained, which is a large number and not conducive 
to the screening of key lipid metabolism changes. Therefore, 
based on this, the OPLS-DA model was used for further 
screening of 310 lipid metabolites to obtain key differential 
lipid metabolites. The OPLS-DA model was built and 
analyzed by SIMCA software. From Figure S4A, it can 
be seen that there is a clear difference between the two 
groups. The fit index of the independent variable (R2x) in 
this analysis is 0.995, the fit index of the dependent variable 
(R2y) is 1.000, the model prediction index (Q2) is 1.000, 
and R2 and Q2 over 0.5 indicate acceptable model fit results. 
After 200 permutation tests, as shown in Figure S4B, the 
regression lines show that the Q values in the stochastic 
model are smaller than those in the original model, and 
the intersection point of the Q2 regression line with the 
vertical axis is less than zero, indicating that the model 
is not over-fitted and the model validation is effective. In 
summary, all results indicate high model reliability. The 
relative expression of key differential lipids in the control 
and dCP1-treated groups is shown in the heatmap in Fig. 5C. 
(The data were normalized by min–max and analyzed using 
Heml 2.0.), the types and percentages of key differential 
metabolites are shown in Fig. 5D. The analysis found that, 
compared with the control group, after dCP1 treatment, 
among the 62 key differential lipid metabolites with VIP > 1 
in M2-like TAMs, 26 were up-regulated and 36 were down-
regulated. The specific information on the 62 key differential 
lipid metabolites is shown in Table S6.

BioPAN (Bioinformatics Methodology for Pathway 
Analysis) [71, 72] was used to analyze the screened key 
differential metabolites. BioPAN can explore systematic 
changes in lipid reaction pathways at the level of lipid 
subclasses and lipid molecule species in different 
experimental groups, and changes in gene activity can 
also be predicted. BioPAN calculates a Z-score for each 
weighted pathway or reaction to determine its status. A 
t-test between treatment and control groups is used to 
generate p values, which can be converted to Z-scores 
by Z = CDF−1(1−p), where CDF is the cumulative 
distribution function. Z values > 1.645 are considered 
active (suppressed) responses, and Z values < 1.645 are 
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considered inactive (non-suppressed) responses. Compared 
with the control group, in the reactions carried out at the 
lipid subclass level in the M2-like TAM treated with dCP1 
(Fig.  5E), the PE → PC → DG, PS → PE → PC → DG, 
P-PE → P-PC, and PC → DG reaction chains were in the 
active state (Table 1); the reaction chains consisting of 
DG → PE → PS, DG → PC, PE → PS, and PC → PS → PE 
reaction chains are in the inhibited state (Table 2), and the 
reactions at the level of specific lipid molecules are shown 
in Tables S7 and S8, and the interconversion between 
phosphatidyl ethanolamine (PE) and phosphatidyl cholines 
(PC) metabolites, as well as between PC and diacyl 
glycerol (DG) metabolites, may be the core reactions 
of glycopeptide dCP1 regulating the transformation of 
M2-like TAM to M1 phenotype. 

Molecular docking and molecular dynamics 
simulations reveal that the glycopeptide in dCP1 
may exert phenotypic regulation by binding to TLR2 
on TAM

The above studies revealed that the glycopeptide dCP1 
has the ability to regulate the polarization of M2-like 
TAM to M1 phenotype, and the function of many 
active substances such as glycoproteins/glycopeptides 
is determined by their structure, so their structure was 
characterized and the relationship between structure and 
function was explored. The scores were ranked, and the 
top 9 glycopeptides with highest confidence were selected, 
namely NLGS*VAGPR (Score = 259.09), QHYRS*R 
(Score = 251.13), AVGRGLVS*SCICVGR (Score = 239.75), 
GYGASAQAALVT*R (Score = 212.52), ELGFIS*KAPR 
(Score = 206.54), IVALT*NAK (Score = 173.94), 
GT*QDLFLAR (Score = 172.59), VQGLLPS*MVK 
(Score = 172.55) and ITN*K (Score = 170.36), a total of 
eight O-glycosylated peptides and one N-glycosylated 
peptides. The above glycopeptides all contained basic amino 
acids or hydrophobic amino acids, indicating that these 
glycopeptides have the structural basis to become functional 
peptides. Therefore, the above glycopeptides were selected 
for the next step of analysis. The extracted ion flow diagram, 
MS spectrum, and MS/MS spectrum of the glycopeptides 
are shown in Figure S5. Based on the glycopeptides LC–MS/
MS data to obtain the amino acid sequence, carbohydrate 
chain composition, and glycosylation information of each 
glycopeptide, the glycopeptides’ structures were modeled to 
obtain the 3D structural data pdb files of the glycopeptides 
for further study of glycopeptides–receptor interactions. The 
conformations of the nine glycopeptides are shown in Figure 
S6. Molecular docking is used to determine which receptors 
the glycopeptides interact with and thus attempt to elucidate 
the mechanism by which it regulates TAM polarization.

The receptors expressed in macrophages that recog-
nize and bind to glycoproteins or glycopeptides are mainly 
Toll-like receptor 2, NOD1, and part of the C-type lectin 
superfamily, such as Complement component C1q recep-
tor, C-type lectin domain family 4 member A, C-type lectin 
domain family 4 member D, C-type lectin domain family 4 
member E, C-type lectin domain family 5 member A, C-type 
lectin domain family 7member A, C-type lectin domain fam-
ily 10 member A, C-type lectin domain family 12 member 
A, CD209 antigen-like protein A, CD209 antigen-like pro-
tein B, CD209 antigen-like protein D, and mannose-binding 
protein A, macropage mannose receptor 1, oxidized low-
density lipoprotein receptor 1, tetranectin, etc. Therefore, 
the above receptors were selected as potential receptors for 
glycopeptides dCP1, and their pdb files containing 3D struc-
tures were obtained from the RCSB database and AlphaFold 
Protein Structure Database. The pdb code numbers and con-
formations of the receptors are shown in Figure S7.

Molecular docking of 9 glycopeptides with various 
selected receptors was performed using ZDOCK 3.0.2. The 
ZDOCK program evaluates each binding model mainly 
by searching all possible binding modes in the space 
obtained by translation and rotation between receptor and 
ligand, using a comprehensive scoring function based on 
IFACE statistical potentials, structural complementarity, 
and electrostatic composition. The docking scores of each 
glycopeptide with the receptor are shown in Figure S8. After 
docking, it was found that all 9 glycopeptides had the highest 
docking scores with TLR2 receptor molecules and were 
much higher than other receptors, with GT(DGalpNAcα1-
3DGalpNAcα1-OH)QDLFLAR having the highest score of 
2013.616; QHYRS(DGalpα1- 3DGalpNAcα1-OH)R had the 
lowest score of 1378.462. It is inferred that the glycopeptides 
dCP1 may be recognized and bound mainly by TLR2.

T h e  g l y c o p e p t i d e s  G T ( D G a l p N A c α 1 -
3DGalpNAcα1-OH)QDLFLAR with the highest docking 
score to TLR2 and the glycopeptides QHYRS(DGalpα1-
3DGalpNAcα1-OH)R with the lowest score were selected 
for molecular dynamics simulations. The TLR2 agonist lipo-
peptide Pam2CSK4 was selected as a control [73]. Three 
complex GT(DGalpNAcα1-3DGalpNAcα1-OH)QDLFLAR-
TLR2, QHYRS(DGalpα1-3DGalpNAcα1-OH)R-TLR2 and 
Pam2CSK4-TLR2 were obtained after docking as the ini-
tial conformation, and 100 ns molecular using AMBER 14 
force field dynamics simulations were performed to obtain 
conformations and trajectories, and data were compiled 
and analyzed for the conformations and trajectories. The 
conformation was analyzed at the lowest free energy state, 
GT(DGalpNAcα1-3DGalpNAcα1-OH)QDLFLAR inter-
acts with ASP327 (distance 3.2 Å) and GLN357 (distance 
2.1 Å) in TLR2 receptor protein through hydrogen bonding, 
and with ASP294, GLN321, PHE322, TYR323, PHE349, 
LEU350, and PRO352 through hydrophobic interactions 
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(Fig. 6A); QHYRS(DGalpα1-3DGalpNAcα1-OH)R inter-
acts with TLR2 receptor proteins in GLY258 (distance 
2.5 Å), ASP286 (distance 2.1 Å), CYS287 (distance 2.2 Å), 
and THR288 (distance 2.5 Å) through hydrogen bonding 
and interacts with ASP231 and VAL260 through hydro-
phobic interactions (Fig. 6A); Pam2CSK4 interacts with 
GLU299 (distance 2.3 Å) and SER300 (distance 2.2 Å) in 
TLR2 receptor protein through hydrogen bonding and inter-
acts with SER298, PHE322, TYR323, LEU324, PHE325, 
ASN290, LEU289, VAL348, PHE349, LEU350, VAL351, 
and PRO352 through hydrophobic interactions (Fig. 6A). 
The hydrophobic interaction of Pam2CSK4 was significantly 
enhanced compared to the other glycopeptides, attributed to 
the hydrophobic lipid chains of the lipopeptides.

From the specific amino acid sites of action, it can be 
seen that GT(DGalpNAcα1-3DGalpNAcα1-OH)QDLFLAR 
can form hydrophobic pockets with both Pam2CSK4, which 
can better stabilize the protein, that means better bind to 
TLR2; QHYRS(DGalpα1-3DGalpNAcα1-OH)R cannot 
form hydrophobic pockets with the protein hydrophobic 
pocket and therefore has a weaker effect. The number of 
hydrogen bonds between TLR2 and GT(DGalpNAcα1-
3DGalpNAcα1-OH)QDLFLAR was continuously sta-
bilized with the spatial configuration throughout the 
simulation, during which the number of hydrogen bonds 

increased from 0 and finally stabilized at a mean value of 
all around 2; the number of hydrogen bonds between TLR2 
and QHYRS(DGalpα1-3DGalpNAcα1-OH)R is continu-
ously stabilized with the spatial configuration throughout 
the simulation, and finally stabilized at the mean value of 
about 4; the number of hydrogen bonds between TLR2 and 
Pam2CSK4 was continuously stabilized with the spatial 
configuration throughout the simulation, during which the 
number of hydrogen bonds increased from 0 and finally sta-
bilized at the mean value of both around 2 (Fig. 6A).

Afterward, the root mean square deviation (RMSD) 
values were calculated from the trajectory analy-
sis to obtain images of the variation in the RMSD 
values with time (Fig.  6B). The GT(DGalpNAcα1-
3DGalpNAcα1-OH)QDLFLAR-TLR2 complex reached 
equilibrium after about 60 ns, and the Pam2CSK4-TLR2 
complex reached equilibrium after about 40 ns. The aver-
age RMSD values of both were stable at around 20 Å, 
which was within the acceptable range, indicating that 
both ligands could bind tightly to the TLR2 receptor. In 
contrast, QHYRS(DGalpα1-3DGalpNAcα1-OH)R did not 
reach equilibrium within the simulated time, and the over-
all fluctuations during the simulation were large, indicat-
ing that the compound was relatively unstable in bind-
ing to the receptor. The root means square perturbation 

Fig. 5  Screening and analysis of key differential lipid metabolites. 
(A) Differential metabolite statistics; (B) Differential metabolite vol-
cano map; (C) Relative expression of key differential lipid metabo-
lites with VIP value > 1; (D) Classification of key differential lipid 

metabolites with VIP value > 1; (E) Key differential lipid metabolites 
reaction analysis of subclasses and specific lipid molecules
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(RMSF) measures the fluctuating distance of each amino 
acid residue relative to the equilibrium position during 
the simulation, and the height of the peak describes the 
fluctuation of the corresponding amino acid residue. 
From Fig. 6C, it can be seen that in the GT(DGalpNAcα1-
3DGalpNAcα1-OH)QDLFLAR interaction with TLR2, 
the protein fluctuates more around the head, amino acid 
600; in the Pam2CSK4 interaction with TLR2, the overall 
fluctuation of the protein is smaller, which also indicates 
that the binding of Pam2CSK4 to TLR2 protein stable, 
while QHYRS(DGalpα1-3DGalpNAcα1-OH)R fluctu-
ated more with TLR2 protein binding. The above results 
suggest that both GT(DGalpNAcα1-3DGalpNAcα1-OH)
QDLFLAR and Pam2CSK4 can stabilize this region pro-
tein well. In addition to this, it can also be seen that the 
RMSF values of the key residues of GT(DGalpNAcα1-
3DGalpNAcα1-OH)QDLFLAR and Pam2CSK4 interact-
ing with TLR2 are at a relatively low level with an average 
value of about 10 Å, indicating that the key residues are 
inflexible due to the binding of the TLR2 receptor to the 
two glycopeptides ligands and the binding is very stable. 
The above results indicate that both GT(DGalpNAcα1-
3DGalpNAcα1-OH)QDLFLAR and Pam2CSK4 can bind 
well to TLR2 protein.

The binding free energy between ligand and receptor 
was calculated by the Molecular Mechanics/Poisson 
Boltzmann Surface Area (MM/PBSA) method. The 
equation to calculate the binding free energy as follow:

The binding stability of the TLR2 receptor complexes 
after docking with glycopeptides was assessed by calcu-
lating the binding free energy of the complexes. Molecu-
lar dynamics simulations were calculated for the three 

ΔE
bind

= ΔE
vdw

+ Δ
Eele

+ ΔE
solv

+ ΔE
SASA

complexes and the lower the binding free energy, the 
higher the binding stability was indicated. The contribu-
tion of each energy to the binding free energy is shown 
in Table 3, and the results show that the main sources of 
both ligand and substrate ΔEbind are ΔEvdw and ΔEele. 
ΔEsolv, as the only source of resistance for ΔEbind, can 
be offset by ΔEvdw and ΔEele. For the GT(DGalpNAcα1-
3DGalpNAcα1-OH)QDLFLAR-TLR2 complex, the bind-
ing free energy was −199.712 ± 34.569 kJ/mol; for the 
QHYRS(DGalpα1-3DGalpNAcα1-OH)R-TLR2 complex, 
the binding free energy was −44.419 ± 27.775 kJ/mol; for 
the Pam2CSK4-TLR2 complex, the binding free energy 
was −363.335 ± 37.058 kJ/mol.

By  compar i son ,  t he  b ind ing  capac i ty  o f 
GT(DGalpNAcα1-3DGalpNAcα1-OH)QDLFLAR 
to TLR2 was found to be higher than that of 
QHYRS(DGalpα1-3DGalpNAcα1-OH)R to TLR2, 
which is consistent with the results obtained by 
molecular docking. Although weaker than the binding 
ability of Pam2CSK4 to TLR2, GT(DGalpNAcα1-
3DGalpNAcα1-OH)QDLFLAR is also susceptible to 
TLR2 binding, considering the immunomodulatory 
function of dCP1 we found, it may act as a TLR2 agonist 
to promote the polarization of M2-like TAM to M1 
phenotype.

Discussion

To examine whether the glycopeptide in the Codonopsis 
pilosula extracts has the ability to polarize M2-like TAM 
to M1 phenotype, we first purified the glycopeptide dCP1 
from dCPCP and found that both dCP1 and dCPP could 
regulate M2-like TAM to M1 phenotype polarization in the 
preliminary TAM model. To make the study close to the 
real physiological environment, we designed a TAM model 
in the simulated tumor microenvironment. Nutritional 
deficiency is one of the hallmark conditions of the tumor 
microenvironment. Due to the abnormal angiogenesis and 
insufficient blood supply in tumor tissues, the rapid growth 
of tumors leads to the formation of a hypoxic and nutrient-
deficient microenvironment within the core of tumors. In 
TME, tumor cells use aerobic glycolysis for energy supply, 
which results in large amounts of  CO2 and lactate ions being 
produced in the tumor and excreted to the extracellular 

Table 1  Lipid subclass active 
reaction (dCP1 treatment vs 
control)

Reaction chain Z-score Predicted genes

PE → PC → DG 6.615 PEMT
PS → PE → PC → DG 6.517 PISD, PEMT
P-PE → P-PC 3.871 CEPT1, PLD1, PLPP1, PLPP2, CHPT1
PC → DG 3.856 –

Table 2  Lipid subclass suppressed reaction (dCP1 treatment vs 
control)

Reaction chain Z-score Predicted genes

DG → PE → PS 4.209 CEPT1, PTDSS2
DG → PC 3.326 CHPT1
PE → PS 2.38 PTDSS2
PC → PS → PE 1.799 PTDSS1, PISD
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compartment, resulting in an acidic tumor microenvironment 
[74–77]. In addition to this, TME is also rich in fatty acids, 
and various solid tumors have been reported to secrete and 
accumulate more fatty acids, resulting in a fatty acid-rich 
tumor microenvironment. This imbalance of fatty acids and 
lipids accumulated within TME also leads to metabolic 
changes in tumor-infiltrating immune cells [78–83]. So, 
all cells in a tumor, including immune cells, are in the low 
levels of glucose, low levels of oxygen, acidic, lipid-rich 
tumor microenvironment.

The TAM model  in  the  s imula ted  tumor 
microenvironment was treated with dCP1 and dCPP, 
respectively, and it was found that glycopeptide can better 
reduce Mrc1 in M2-like TAM and increase the relative 
expression levels of IL-1β and IL-6 mRNA. Therefore, it is 
believed that glycopeptide dCP1 has a better effect. In order 
to fully explore the effect of dCP1 on TAM polarization, 
RNA-Seq was used to study the effect of dCP1 on TAM 
polarization at the transcriptional level. The results showed 
that the principal components of M2-like TAMs treated 
with dCP1 were more inclined to M1-type macrophages, 
and the Pearson’s correlation analysis and GSEA analysis 
of the gene expression matrix showed this similarity more 
intuitively, that is, M2-like TAM treated with dCP1 tended 
to M1 phenotype at the transcriptional level.

GSEA revealed that the gene set Hallmark Glycolysis 
as well as Hallmark mTORC1 Signaling, which are related 
to glycolysis, was upregulated after treatment with the gly-
copeptides dCP1 compared to controls. M1 macrophages 
are able to sustain inflammatory responses and kill patho-
gens, relying mainly on aerobic glycolysis and fatty acid 

biosynthesis, and mTORC1 upregulation promotes glyco-
lysis to proceed [52]. This metabolic adaptation facilitates 
the rapid production of ATP to maintain its phagocytic 
function [84] and provides metabolic precursors to feed the 
pentose phosphate (PPP) pathway. And its tricarboxylic acid 
cycle (TCA) is divided into two parts to provide precur-
sors required for the synthesis of several lipids as well as to 
stabilize transcription factors [85], such as HIF1α, which 
have a key role in activating glycolysis, while fatty acids 
are precursors for the synthesis of inflammatory mediators 
[86]. Compared to the glycopeptide dCP1 treated group, 
Fatty acid beta oxidation, WP fatty acid oxidation, Hall-
mark IL-6-JAK-STAT3 signal transduction, Hallmark Wnt 
β serial signal transduction, Hallmark TGF β signal trans-
duction, and Hallmark Hedgehog Signal transduction were 
upregulated in the control. Fatty acid beta-oxidation is one 
of the metabolic features of the M2 phenotype, and M2 mac-
rophages are involved in the resolution of inflammation and 
therefore do not need to produce energy in a rapid manner 
but need continuously; therefore, M2 macrophages whose 
metabolism is mainly enhanced fatty acid oxidation (FAO) 
as well as oxidative phosphorylation (OXPHOS) [51, 87] 
have an intact TCA cycle. IL-6/JAK/STAT3 has an impor-
tant role in the M2 phenotypic polarization of macrophages, 
and M2 polarization can be mediated by IL-6/JAK2/STAT3 
pathway activation [88, 89]. Wnt β-catenin Signaling has 
an important role in the regulation of macrophage polariza-
tion, and it was found that activating Wnt2b/β-catenin/c-
Myc signaling promotes the polarization of TAM to M2-like 
macrophages. In addition, activation of the Wnt/β-catenin 
signaling pathway inhibits macrophage M1 polarization 

Fig. 6  Molecular dynamics analysis of glycopeptide and TLR2 docking complexes. (A) RMSD analysis of the complex; (B) RMSF analysis of 
the complex; (C) Conformation and number of hydrogen bonds of the complex



Cancer Immunology, Immunotherapy          (2024) 73:128  Page 19 of 24   128 

and promotes the polarization of RAW264.7 cells to the 
M2 phenotype [90, 91]. Many studies have shown that the 
TGF-β signaling pathway has an immunosuppressive effect 
on macrophage polarization. Hh decreases the flux through 
the UDP-GlcNAc biosynthetic pathway. Thus, reduced 
O-GlcNAc modification of STAT6 attenuated the immuno-
suppressive program of M2 macrophages [92]. Since STAT6 
plays a dual role in regulating the M2 phenotype and fatty 
acid oxidation, this ultimately leads M2 macrophages to shift 
their metabolism and bioenergetics from fatty acid oxidation 
to glycolysis, metabolically altering the M2 phenotype to 
resemble M1.

Significant responses or pathways by which glycopeptides 
dCP1 regulate the polarization of M2-like TAM to M1 
phenotype were found to be associated with PIK3 and 
PI3K-AKT pathways by KEGG analysis and Hub gene 
analysis. PI3K is a key molecule in the signal transduction 
pathway initiated by extracellular signal binding to cell 
surface receptors with serine/threonine kinase activity 
and phosphatidylinositol kinase activity. In macrophages, 
the PI3K/Akt pathway transduces signals from a variety 
of receptors, including insulin receptors (IRs), cytokine 
and adipokine receptors, and receptors necessary for 
the induction of activation of innate immunity. Thus, 
activation of the PI3K/Akt pathway coordinates the 
response to different metabolic and inflammatory signals 
in macrophages [93], and the PI3K/Akt pathway and its 
downstream targets have become central regulators of the 
macrophage activation phenotype in different signaling 
cascades. In addition to this, the PI3K-AKT pathway is 
also an important regulatory pathway for lipid metabolism, 
such as the synthesis and secretion of triglycerides. For 
instance, tetramethylpyrazine can inhibit lipid accumulation 
in macrophages by downregulating scavenger receptors and 
upregulating ATP-binding cassette transport proteins via 
PI3K/Akt and p38/MAPK signaling [94].

Metabolites are key biological communication channels 
of the organism. Physiological conditions are defined by 
complex metabolic pathways and metabolites, and the 
metabolic adaptation of macrophages is closely related 
to their primary function. Lipids are key metabolites 
in the process of macrophage polarization, and lipid 
metabolism has important influences on the polarization 
of macrophages. Analysis of lipid metabolite content in 
M2-like TAM before and after dCP1 intervention revealed 
M2-like TAM after treatment with glycopeptides, the 
lipid metabolites like SM, Cer [69, 95–98], TG, DG, 
MG [99–101], LPS [102], etc., which were at higher 
content levels in M1 phenotype than in M2 phenotype 
or pro-inflammatory lipid metabolites were increased; 
and lipid metabolites like PS [103, 104], Pet, PI, PC 
[68–70], etc., which were at higher content levels in M2 
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phenotype than in M1 phenotype were decreased. The 
M2-like TAM polarized toward the M1 phenotype after 
treatment with the glycopeptide dCP1 when compared 
with the lipid metabolic profile of M1 phenotype 
macrophages. The interconversion between PE and PC, 
and PC and DG is core reactions of key differential 
metabolic. Phosphatidylcholine can be synthesized from 
phosphatidylethanolamine through the Kennedy pathway, 
which is also known as the CDP-choline pathway. It 
involves a series of enzymatic reactions that transfer 
three methyl groups to phosphatidylethanolamine, 
leading to the formation of phosphatidylcholine [105]. 
Phosphatidylcholine (PC) can be converted to diglyceride 
(DG) through the activity of the enzyme phospholipase C 
(PLC), like PC-PLC [106]. PLC cleaves the phosphodiester 
bond of PC to produce DG [107]. PC-PLC can be involved 
in macrophage activation reactions [106], and the second 
messengers DG and  Ca2+ initiate membrane translocation 
and activation of PKC. PKC has an important role for 
macrophage activation and immune response.

The glycopeptides in dCP1 have a low molecular weight 
(1.2–5  K), which makes them possible to be directly 
absorbed, then identified, and bound by receptors on TAM 
that can recognize glycoproteins. The receptors expressed by 
macrophages that can recognize and bind to glycoproteins or 
glycopeptides are mainly Toll-like receptor 2, NOD1/2, and 
part of the C-type lectin superfamily. Molecular docking of 
glycopeptides to these receptors revealed that glycopeptides 
had the highest binding score to TLR2 receptors. It was 
shown that multiple TLR stimulators were able to activate 
the PI3K-Akt signaling pathway along with the activation 
of the TLR pathway. It has been reported that the cascade 
signaling response consisting of TLR2-Rac1-PI3K-Akt can 
promote the trans-activation of p65 in a manner independent 
of IκB degradation and promote the transcription of p65-
regulated inflammatory factors thereby promoting the 
inflammatory response; in 293-TLR2 and THP1 cells, S. 
aureus induced the activation of TLR2 and Rac1 and the 
TLR2- Rac1-P85 complex formation, which was recruited 
to PI3K activation of the TLR2 complex, further promoting 
Akt activation [108]. The molecular dynamics simulations 
of the glycopeptides with the highest and lowest docking 
scores were consistent with the molecular docking results. 
Regrettably, we did not synthesize the highest scoring 
glycopeptides to verify whether it binds to TLR2 to play 
a role in regulating the M2-like TAM phenotype, but only 
verified the results obtained by molecular docking through 
molecular dynamics simulations. The reason is that due 
to the limitations of current technology, there are still 
many challenges in synthesizing glycopeptides that fully 
conform to the specified structure [109]. The structure 
of glycopeptides is more complex than that of ordinary 
polypeptides, because glycans have more abundant and 

diverse chemical properties than amino acid side chains, 
and there are specific stereo-conformational effects between 
glycans and amino acids. These specific properties make 
it extremely difficult to synthesize glycopeptides that fully 
conform to the specified structure. Although the linear 
structure and sequence in glycopeptides synthesis can be 
controlled, unavoidable errors may occur during synthesis, 
inactivation, separation, and side reactions may occur during 
steps such as substitution reactions, deprotection reactions, 
or polymerization reactions, or its spatial structure changes 
due to conformational switching or corner effects, so the 
glycopeptides obtained after synthesis cannot be guaranteed 
to be completely consistent with its original spatial structure, 
which may cause the synthesized glycopeptides to behave 
differently from the original glycopeptides activity and 
efficacy [110, 111]. When the technology develops more 
maturely, we will get glycopeptides with exactly the same 
structure and conduct experimental verification.

In the tumor microenvironment, most TAM are M2 
phenotype macrophages that promote tumor growth and 
metastasis, and only a few TAM are M1 phenotypes that 
inhibit tumor cell growth. M2-like TAM is the traitor of 
the immune system of tumor patients and is one of the 
accomplices that promote the growth and metastasis of 
tumor cells. If these "accomplices" and "traitors" can 
be transformed into "defenders" of the body's health by 
regulating immunity, the tumor treatment and prognosis 
are a positive sign. Overall, our study demonstrated that 
glycopeptide dCP1 can polarize M2-like TAMs toward 
the M1 phenotype at the level of transcription and lipid 
metabolism and may regulate the PI3K-AKT signaling 
pathway through the binding of glycopeptides to TLR2.
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