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Abstract
Background  Adoptive transfer of in vitro expanded tumor-infiltrating lymphocytes (TILs) has been effective in regressing several 
types of malignant tumors. This study assessed the yield and factors influencing the successful expansion of tumor-infiltrating 
lymphocytes (TILs) from head and neck squamous cell carcinoma (HNSCC), along with their immune phenotypes.
Methods  TILs were expanded from 47 surgically resected HNSCC specimens and their metastasized lymph nodes. The can-
cer tissues were cut into small pieces (1–2 mm) and underwent initial expansion for 2 weeks. Tumor location, smoking history, 
stromal TIL percentage, human papillomavirus infection, and programmed death-ligand 1 score were examined for their impact 
on successful expansion of TILs. Expanded TILs were evaluated by flow cytometry using fluorescence-activated cell sorting. A 
second round of TIL expansion following the rapid expansion protocol was performed on a subset of samples with successful TIL 
expansion.
Results  TILs were successfully expanded from 36.2% samples. Failure was due to contamination (27.6%) or insufficient expan-
sion (36.2%). Only the stromal TIL percentage was significantly associated with successful TIL expansion (p = 0.032). The stromal 
TIL percentage also displayed a correlation with the expanded TILs per fragment (r = 0.341, p = 0.048). On flow cytometry analysis 
using 13 samples with successful TIL expansion, CD4 + T cell dominancy was seen in 69.2% of cases. Effector memory T cells 
were the major phenotype of expanded CD4 + and CD8 + T cells in all cases.
Conclusion  We could expand TILs from approximately one-third of HNSCC samples. TIL expansion could be applicable in 
HNSCC samples with diverse clinicopathological characteristics.
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Abbreviations
ACT	� Adoptive cell therapy
AJCC	� the American Joint Committee on Cancer
CPS	� combined positive score
FACS	� fluorescence-activated cell sorting
FFPE	� formalin-fixed paraffin-embedded
HNSCC	� Head and neck squamous cell carcinoma
HPV	� human papillomavirus
H&E	� hematoxylin and eosin
ICIs	� immune checkpoint inhibitors
LN	� lymph node
PD-L1	� programmed death-ligand 1
REP	� rapid expansion protocol
R/M	� Recurrent and/or metastatic
sTIL	� stromal tumor-infiltrating lymphocytes
TCR	� T-cell receptor
TIL	� tumor-infiltrating lymphocytes
Tcm	� central memory T cells
Teff	� effector T cells
Tem	� effector memory T cells
Tnaive	� naïve T cells

Introduction

Head and neck squamous cell carcinoma (HNSCC) is the 
6th most common cancer worldwide, and its incidence 
continues to rise [1]. Currently, surgery followed by radio-
therapy or concurrent chemoradiotherapy is the treatment of 
choice for HNSCC [1]. However, the prognosis of HNSCC 
is still unsatisfactory because of the high incidence of tumor 
recurrence and/or metastasis [2]. Recurrent and/or meta-
static (R/M) HNSCC generally has a poor clinical outcome 
and has therapeutic challenges [3, 4]. Although immune 
checkpoint inhibitors (ICIs) demonstrated efficacy and 
safety for R/M HNSCC and have recently been approved 
by the FDA, application of ICI therapy remains limited to 
a subset of tumors with programmed death-ligand 1 (PD-
L1) expression [1, 4]. In the era of precision cancer therapy, 
a new therapeutic approach is urgently needed to provide 
additional treatment options and improve the clinical out-
comes of R/M HNSCC patients.

An innovative strategy, known as tumor-infiltrating lym-
phocyte (TIL) therapy, is based on adoptive cell therapy 
(ACT) with the application of TILs for the treatment of 
cancer [5, 6]. For TIL therapy, TILs are isolated from the 
resected tumor specimens, expanded in culture with inter-
leukin-2 to achieve a clinically relevant number of cells, 
and subsequently infused back into the patients. TIL ther-
apy presents several advantages for treating solid tumors: 
(1) TILs possess diverse T-cell receptor (TCR) repertoires 
capable of recognizing variable tumor antigens, effectively 

overcoming the intratumoral heterogeneity that often leads 
to resistance against targeted therapy. (2) TILs, primarily 
composed of effector memory T cells that have been stimu-
lated by tumor antigens in vivo, harbor chemokine receptors 
on their cell surfaces and thereby have better tumor-homing 
ability. (3) To-date, limited reports exist regarding the off-
target toxicity of TIL therapy, and the process of negative 
selection of TCRs within TILs may contribute to the safety 
of this therapeutic approach.

Several trials have demonstrated the clinical benefits of 
TIL therapy, mainly in metastatic melanoma [7, 8], but also 
with other solid tumors, including breast cancer, cervical 
cancer, colorectal cancer, and non-small cell lung cancer 
[9–12]. Also, a recent study reported that TIL therapy in 
combination with pembrolizumab achieved a high over-
all response rate in R/M HNSCC [13]. The application of 
novel TIL therapy can address a clinical unmet need in R/M 
HNSCC patients who are refractory to conventional chemo-
therapy or immunotherapy.

Despite the promising results, the detailed process of 
TIL culture for preparation of the treatment and the clinico-
pathological characteristics associated with successful TIL 
culture of HNSCC specimens have not been documented 
previously. Here in this study, we cultured TILs from 47 
specimens of primary tumors and metastatic lymph nodes 
(LNs) of HNSCC obtained from the oral cavity, oropharynx, 
and larynx of 33 patients. Next, we comprehensively inves-
tigated their clinicopathological characteristics, includ-
ing stromal TIL (sTIL) percentage, human papillomavirus 
(HPV) infection status, and PD-L1 combined positive score 
(CPS), which could affect successful TIL expansion. Addi-
tionally, we analyzed the compositions of the expanded TIL 
using flow cytometry and performed a second round of TIL 
culture using a standard rapid expansion protocol (REP).

Method

Patient selection and data collection

Between 2020 and 2022, 35 patients were selected after 
obtaining their informed written consent for this single-
institution study. Two patients were excluded due to no 
residual tumor on histopathological examination after neo-
adjuvant chemoradiation therapy. A total of 47 specimens 
from 33 patients of surgically resected HNSCC from three 
different anatomical locations, including tumors (n = 30) 
and their metastasized LNs (n = 17) were analyzed in this 
study. Twenty-eight samples were paired tumor and LN 
samples from 14 patients. One tumor sample was obtained 
from patient who received radiation therapy and developed 
local recurrence in the larynx. All remaining patients had 
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no history of pre-operative chemotherapy or radiotherapy. 
We investigated the patients’ clinical information by using 
electronic medical records, including their age at diagnosis, 
sex, surgical treatments, tumor location, and smoking his-
tory. Figure 1 illustrates the flowchart of the patient selec-
tion process.

Initial TILs expansion protocol

Within 2 hours of resection, fresh tumor and LN tissues were 
obtained in the Department of Pathology and brought to the 
laboratory (in RPMI). The presence of tumor in LNs were 
determined through gross examination based on the size and 
cut surface of the LNs. Metastatic LNs were grossly enlarged 
and cut surface showed well-demarcated, white-tan colored, 
firm nodules compared to non-metastatic lymph nodes. The 
cancer tissues were cut into small pieces (1–2  mm each) 
and placed on 24 flat bottom well plates. TIL culture media 
(RPMI 1640 medium; Life Technologies, Carlsbad, CA, 
USA) was supplemented with 10% fetal bovine serum 
(Corning, Corning, NY, USA), 1x ZellShield, 400  µg/ml 
gentamycin, 50 nM 2-mercaptoethanol (Life Technologies), 
and 1,000 IU/mL human recombinant interleukin-2 (Milt-
enyi Biotec, Bergisch Gladbach, Germany). Then, the plate 
was incubated at 37 ℃ in a 5% CO2 incubator for 14 days. 
Half of the medium was replaced every 2 or 3 days. After 2 
weeks, the cultured TILs were counted and cryopreserved 
until further analysis. We set the cutoff value of successful 
expansion as 0.8 × 105 TILs per fragment of specimen tissue 

[14]. Cloudy and turbid culture medium was regarded as 
microbiological contamination and discarded.

Histopathologic evaluation

After tissue sampling for TIL culture, residual specimens for 
pathologic staging were kept for routine histological evalu-
ation, the generation of formalin-fixed paraffin-embedded 
(FFPE) blocks, and hematoxylin and eosin (H&E) staining 
(4 μm thick sections). Pathological information, including 
the American Joint Committee on Cancer (AJCC) stage, 
tumor differentiation, largest tumor size, and the percent-
age of sTILs were determined by slide review. sTILs were 
evaluated in more than two representative H&E-stained 
slides per sample, and the percentage was defined as the 
area occupied by mononuclear inflammatory cells over the 
total stromal area according to the guidelines of the Inter-
national Immuno-Oncology Biomarkers Working Group 
[15]. sTILs were evaluated not only in the tumor but also 
in metastatic LNs. Briefly, we defined the total tumor area 
by connecting the outlines of tumor nests at the periphery 
and assessed sTILs within the peritumoral stroma inside 
this area. In addition, stromal area outside the tumor outline 
was included in the sTIL calculation if a desmoplastic reac-
tion was present. The same method was applied to calcu-
late sTILs in metastatic LNs and we excluded lymphocytes 
belonging to normal LN structures. Representative example 
of H&E images of sTIL calculation in tumor and LNs are 
shown in Fig. 2. The most representative tumor slides were 

Fig. 1  Flowchart of the sample (patient) selection and tumor-infiltrat-
ing lymphocyte expansion process. HNSCC, head and neck squamous 
cell carcinoma; H&E, hematoxylin and eosin; FFPE, formalin-fixed 

paraffin-embedded; CCRT, chemoradiation therapy; TIL, tumor-infil-
trating lymphocyte; FACS, fluorescence-activated cell sorting; REP, 
rapid expansion protocol
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In situ hybridization

HPV infection status was determined using DNA ISH with 
the INFORM HPV III Family 16 Probe (B) from Ventana 
Medical Systems. This probe specifically identifies high-
risk HPV subtypes including 16, 18, 31, 33, 35, 45, 52, 56, 
58, and 66. A positive ISH result was assigned when nuclear 
staining was evident in > 70% of the tumor cells [17].

Rapid expansion protocol

In the REP step, the TILs were cultured with irradiated 
(50  Gy) allogeneic peripheral blood mononuclear cells 
from one healthy donor in REP medium (AIM-V medium; 
Life Technologies) supplemented with 3% Serum, 2,000 
IU/mL human recombinant interleukin-2, and 30 ng/mL 
human anti-CD3 antibody (clone OKT3; Miltenyi Biotec) 
in a T-Flask (Wuxi NEST Biotechnology, Jiangsu, China) 
or G-Rex (Wilson Wolf, Saint Paul, MN, USA) with media 
replacement every 2 or 3 days. After 14 days, the post-
REP TILs were collected and cryopreserved until further 
analysis.

selected from each case for immunohistochemical staining 
of p16, PD-L1, and in situ hybridization (ISH) of HPV.

Immunohistochemical study for p16 and PD-L1

The PD-L1 immunostaining procedure utilized a 22C3 phar-
mDx kit (Agilent Technologies, Carpinteria, CA, USA) with 
a Dako Autostainer Link 48 system (Agilent Technologies). 
To assess PD-L1 expression, the CPS was used. The CPS 
was calculated by the ratio of the number of PD-L1-stained 
cells (encompassing viable tumor cells, lymphocytes, and 
macrophages) to the total number of viable tumor cells, as 
described previously [16].

A primary antibody against p16INK4a (1:6, clone E6H4, 
mouse mAb, Ventana Medical Systems, Oro Valley, AZ, 
USA) was used for immunostaining. The p16 immunostain-
ing results were interpreted as positive when both the tumor 
nucleus and cytoplasm exhibited moderate or strong immu-
noreactivity in > 75% of the tumor cells [17].

Fig. 2  Representative hematoxylin and eosin stained images of (A-B) tumor [(stromal tumor-infiltrating lymphocytes (sTIL): 100%)] and (C-D) 
metastatic lymph nodes (sTIL: 80%). Black and blue dotted lines represent tumor area and desmoplastic stromal area, respectively
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Franklin Lakes, NJ, USA), CD8-Percp-Cy5.5 (BioLegend), 
CD45RA-PE (BioLegend), CCR7-PE-cy7 (BioLegend), 
and CD45-BV510 (BioLegend). Compensation was done 
by using Flowjo_v10.80 software (Tree Star, Ashland, OR, 
USA). The following gating strategy was used: forward 
versus side scatter gating, CD45 + and CD3+, CD4 + and 
CD8+, and CCR7 and CD45RA. CD4 + and CD8 + T cells 
are subclassified as effector memory T cells (Tem, CD45RA-
CCR7-), effector T cells (Teff, CD45RA + CCR7-), central 
memory T cells (Tcm, CD45RA-CCR7+), or naïve T cells 
(Tnaïve, CD45RA + CCR7+) [18].

Statistical analysis

Statistical analyses and visualization were performed using 
GraphPad Prism software version 9.4.1 and R (https://cran.r-
project.org). The correlations between clinicopathological 
parameters and TIL expansion status were analyzed using 
Fisher’s exact test and the chi-square test. TILs per frag-
ments and total cultured TILs after initial expansion were 
compared using Mann Whitney-U tests and Kruskal-Wallis 
tests. P values under 0.05 were considered statistically sig-
nificant. Spearman correlation analysis was performed to 
assess the relationships between sTIL percentage, PD-L1 
CPS, TILs per fragment, and total cultured TILs.

Results

Clinicopathological characteristics of the patients

Table 1 summarizes the baseline clinicopathological char-
acteristics of 33 patients with HNSCC. The mean age of 
the patients was 61 years, and 78.8% were male. Samples 
were obtained from primary tumors (n = 16), metastatic 
LNs (n = 3), and both primary tumor and LNs (n = 14). The 
most common primary tumor location was the oral cavity 
(n = 20), followed by the oropharynx (n = 11) and the larynx 
(n = 2). Eighteen patients (54.5%) had a smoking history. 
The average tumor size was 3.6 ± 1.5 cm (mean ± standard 
deviation [SD]). p16 IHC and HPV ISH were performed 
for 17 and 13 patients, respectively, and 10 (58.8%) and 9 
(69.2%) patients tested positive. PD-L1 IHC was performed 
for 17 patients and all exhibited PD-L1 positivity (CPS ≥ 1) 
with an average CPS of 39.8 ± 35.0 (mean ± SD). The aver-
age sTIL percentage was 48.2 ± 33.0 (mean ± SD).

The yield of TIL culture and associated 
clinicopathological characteristics

The initial expansion of TILs was successful for 17 of 47 
(36.2%) specimens. The average TILs per fragment and 

Immunophenotyping of TILs

The characteristics of the expanded cells were evaluated 
by fluorescence-activated cell sorting (FACS). The assess-
ment was carried out by FACS (BD-Lyric, San Diego, 
CA, USA) using different antibodies including CD3-APC-
Cy7 (Biolegend, San Diego, CA, USA), CD4-FITC (BD, 

Table 1  Baseline characteristics of 33 patients
Total
N = 33

Sex
  Male 26 (78.8)
  Female 7 (21.2)
Age (mean) 61.0 ± 13.8
Samples
  Tumor 16 (48.5)
  Metastatic LN 3 (9.1)
  Both tumor and LN 14 (42.4)
Tumor type
  Primary 32 (97.0%)
  Recurrent 1 (3.0%)
Differentiation
  WD 6 (18.2)
  MD 26 (78.8)
  PD 1 (3.0)
Location
  Oral cavity 20 (60.6)
  Oropharynx 11 (33.3)
  Larynx 2 (6.1)
Smoking history
  (-) 15 (45.5)
  (+) 18 (54.5)
Smoking duration (pack-years)
  0 15 (45.5)
  1–20 9 (27.3)
  21–40 4 (12.1)
  ≥ 41 5 (15.1)
Tumor size (mean, cm) 3.6 ± 1.5
p16 immunoreactivity (n = 17)
  (-) 7 (41.2)
  (+) 10 (58.8)
HPV infection (n = 13)
  (-) 4 (30.8)
  (+) 9 (69.2)
Stromal TIL (%) 48.2 ± 33.0
PD-L1 CPS (22C3) (n = 17) 39.8 ± 35.0
Postoperative therapy
  CCRT 10 (21.3)
  RT 19 (40.4)
  None 4 (8.5)
LN, lymph node; WD, well differentiated; MD, moderately differen-
tiated; PD, poorly differentiated; HPV, human papilloma virus; TIL, 
tumor-infiltrating lymphocyte; PD-L1, programmed death-ligand 1; 
CPS, combined positive score; CCRT, concurrent chemoradiation 
therapy; RT, radiation therapy
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and 36.6 ± 33.6 (x 106, mean ± SD), respectively. A low cell the total cultured TILs were 5.5 ± 4.3 (x 105, mean ± SD) 

Table 2  Clinicopathologic characteristics of 34 samples by successful and unsuccessful tumor-infiltrating lymphocyte (TIL) expansion groups
Insufficient TIL expansion Successful TIL 

expansion
N = 17 N = 17 p value

TILs per fragment 
(x105, mean ± SD)

0.1 ± 0.2 5.5 ± 4.3 < 0.001

Total cultured TILs 
(x106, mean ± SD)

0.4 ± 0.7 36.6 ± 33.6 < 0.001

Age 58.9 ± 16.2 62.9 ± 13.3 0.445
Sex
  Male 4 (23.5) 7 (41.2) 0.463
  Female 13 (76.5) 10 (58.8)
Sample type
  LN 6 (35.3) 9 (52.9) 0.490
  Tumor 11 (64.7) 8 (47.1)
Tumor size 4.1 ± 1.9 3.4 ± 1.1 0.305
AJCC T stage
  1 1 (5.9) 1 (5.9) 0.941
  2 4 (23.5) 6 (35.3)
  3 8 (47.1) 6 (35.3)
  4 4 (23.5) 4 (23.5)
AJCC N stage
  0 2 (11.8) 2 (11.8) 0.433
  1 6 (35.3) 8 (47.1)
  2 8 (47.1) 4 (23.5)
  3 1 (5.9) 3 (17.6)
Histology
  WD 6 (35.3) 0 (0.0) 0.014
  MD 11 (64.7) 16 (94.1)
  PD 0 (0.0) 1 (5.9)
Location group
  Oral cavity 1 (5.9) 1 (5.9) 0.730
  Oropharynx 11 (64.7) 8 (47.1)
  Larynx 5 (29.4) 8 (47.1)
Smoking history
  (-) 6 (35.3) 8 (47.1) 0.727
  (+) 11 (64.7) 9 (52.9)
Smoking duration (pack-years)
  0 6 (35.3) 8 (47.1) 0.633
  1–20 4 (23.5) 5 (29.4)
  21–40 4 (23.5) 1 (5.9)
  ≥ 41 3 (17.6) 3 (17.6)
p16 immunoreactivity
  (-) 3 (42.9) 4 (33.3) 1.000
  (+) 4 (57.1) 8 (66.7)
HPV ISH
  (-) 2 (33.3) 3 (30.0) 1.000
  (+) 4 (66.7) 7 (70.0)
Stromal TIL 
(%, mean ± SD)

40.3 ± 27.8 63.2 ± 30.8 0.032

PD-L1 CPS (22C3) 25.2 ± 25.8 63.0 ± 37.7 0.094
SD, standard deviation; LN, lymph node; AJCC, American Joint Committee on Cancer; WD, well differentiated; MD, moderately differenti-
ated; PD, poorly differentiated; HPV, human papilloma virus; ISH, in-situ hybridization; TIL, tumor-infiltrating lymphocyte; PD-L1, pro-
grammed death-ligand 1; CPS, combined positive score
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TIL expansion ratio based on clinicopathological 
characteristics

Expanded TILs per fragment and cultured total TILs showed 
no statistically significant differences among various clini-
copathological parameters, including sample types, ana-
tomical location of the primary tumors, p16-positivity, HPV 
infection status, and smoking history (Fig. 3). Stromal TILs 
evaluated on H&E slides showed a weak but significant cor-
relation with the expanded TILs per fragment (r = 0.341; 
p = 0.048), but did not show a significant correlation with 
total cultured TILs (r = 0.286; p = 0.101)(Fig. 4A-B). When 
restricted to tumor samples (n = 19), sTILs and TILs per 
fragment showed similar correlation (r = 0.434; p = 0.064) 
but did not achieve statistical significance. sTILs and 
total TILs did not show correlation (r = 0.368; p = 0.121). 
LN samples (n = 15) displayed no significant association 
between sTIL and expanded TIL numbers (Supplementary 
Fig.  2). PD-L1 CPS was not significantly correlated with 
TILs per fragment (r = -0.083; p = 0.701) or total culture 
TILs (r = -0.126; p = 0.558). Representative H&E images 
of HNSCC with high and low sTIL are shown in Fig. 4C-D.

Immunophenotype of expanded TILs

We evaluated the phenotypes of the successfully expanded 
TILs from 13 of 17 samples by FACS and the subsequent 
REP in 3 of 13 samples. The clinicopathological parameters 
and TIL phenotypes after the initial two weeks of expansion 

growth rate (TILs less than the cutoff value (0.8 × 105 per 
fragment) was observed in 17 (36.2%) samples. The remain-
ing 13 (27.6%) specimens were discarded due to contamina-
tion at various stages of the expansion process.

The associations between successful TIL expansion and 
clinicopathological parameters are shown in Table 2. Higher 
sTILs (p = 0.032) and moderate-to-poorly differentiated 
tumors (p = 0.014) were significantly associated with suc-
cessful TIL expansion. However, no significant difference 
was observed between sTIL and tumor differentiation (Sup-
plementary Fig. 1). Also, the successful TIL expanded group 
displayed a tendency for higher PD-L1 CPS, although the 
difference did not reach statistical significance (p = 0.094). 
Sample type, tumor size, AJCC stage, tumor location, 
smoking history or duration, and p16 and HPV status were 
not related to successful TIL expansion.

Clinicopathological characteristics based on HPV 
status and specimen type

In subgroup analysis based on HPV ISH status, early AJCC 
T and N stages, oropharynx origin, and positive p16 expres-
sion were significantly associated with HPV infection (Sup-
plementary Table 1). When analysing subgroups according 
to the type of specimen (tumor and LN), we observed no 
significant difference as shown in Supplementary Table 2.

Fig. 3  The difference of tumor-infiltrating lymphocytes (TILs) per 
fragment (upper panel) and total cultured TILs (lower panel) between 
sample types (tumor and lymph node), location, p16 positivity, human 

papilloma virus infection, and smoking history. Blue dots represent 
paired samples from the same patients. Blue dotted line represents the 
cutoff (0.8 × 105 cells per fragment) of successful TIL expansion
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CD8 + T cell subsets—Tem, Teff, Tcm, & Tnaïve—were 85.7%, 
10.1%, 1.5%, and 0.6%, respectively. A predominance of 
CD4 + T cells along with higher proportion of CD4 + Tem 
and CD8 + Tem were consistently identified when classi-
fied into sample types (tumor and LNs)(Fig. 5.) and HPV 
infection status (HPV-positive and HPV-negative/unknown) 
(Supplementary Fig. 2).

Representative images of the FACS analysis (patient 3) 
are shown in Fig. 6. Among the three cases with REP, the 
TIL composition remained similar to that after the initial 
expansion, predominantly consisting of CD4 + T cells with 

are summarized in Table 3. and the post-REP results of 3 
cases are shown in Table 4.

T cell proportions and subset populations of expanded 
TILs are summarized in Fig. 5. Following the initial expan-
sion, TILs exhibited a predominance of CD4 + T cells in 9 
cases (69.2%) and CD8 + T cells in 4 cases (30.7%). In all 
13 cases, the major subset of T cells was Tem, whereas the 
proportion of Tcm and Tnaïve were notably low. The median 
proportions of CD4 + T cell subsets—Tem, Teff, Tcm, & 
Tnaïve—within the samples were 92.6%, 3.3%, 1.5%, and 
1.0%, respectively. Similarly, the median proportion of 

Fig. 4  Relationship between (A) stromal tumor-infiltrating lympho-
cytes (sTIL) and expanded TILs per fragment; (B) sTIL and total cul-
tured TILs; Representative hematoxylin and eosin stained slides of (C) 

of high sTIL (100%) and (D) low sTIL (5%). Black dotted lines in (C) 
and (D) represent tumor area
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the highest proportion of Tem. In patient 8, the CD8 + T cell 
subset shifted from an initially dominant CD8 + Tem pro-
portion to a higher proportion of the CD8 + Teff subset after 
REP. The mean value of fold change was 1708 (range 960–
2530). Fold change displayed a positive correlation with a 
higher TILs/fragment of the samples.

Discussion

In this study, we demonstrated that TILs can be obtained 
from HNSCC with varying clinicopathological features. 
The sTIL percentage was found to be significantly corre-
lated with successful TIL expansion, and could serve as a 
useful indicator for estimating the yield of initial TIL cul-
ture. Additionally, our findings showed that after initial 
expansion, TILs are mostly composed of CD4 + T cells with 
a predominant effector memory cell subset.

HNSCC is a histologically, molecularly, and immuno-
logically heterogeneous disease [1]. Its pathophysiology 
varies according to its location, and its prognosis differs 
based on HPV infection status, sTIL percentage, and PD-L1 
expression status [19–21]. Furthermore, sTIL and PD-L1 
expression are recognized as predictive factors of immune 
checkpoint inhibitor responses [22]. We analyzed whether 
these prognostic and predictive clinicopathological param-
eters affect TIL expansion, but found that only sTIL per-
centage was a factor associated with successful TIL culture. 
Additionally, HPV infection, tumor location, sample type, 
and smoking history had no significant influence on the 
expanded TIL numbers. These findings suggest that TIL cul-
ture from HNSCC samples is not confined to specific sub-
types and is feasible across a diverse spectrum of HNSCC. 
This also indicates the potential applicability of TIL therapy 
to HNSCCs with different biologic behaviors.

Few studies have described successful TIL expan-
sion with delineation of their proportions from real world 
HNSCC samples. Zenga et al. investigated the functional-
ity and tumor specificity of TILs obtained from surgically 
resected 31 HPV-negative HNSCCs [23]. TIL culture was 
successful in 77% of patients, with the expanded tumor-spe-
cific T cells demonstrating anti-tumor effect in co-cultures 
with patient-matched malignant cells. The density of T cell 
subset revealed a predominance of CD4 + T cells, which 
was in line with our study. Knochelmann et al. conducted 
TIL expansion using 9 oral cavity squamous cell carcino-
mas [24]. The expanded TILs exhibited varying populations 
of CD4 + and CD8 + T cells, depending on the individual 
patient, and demonstrated heterogeneous expression of 
inhibitory receptors.

We set the cutoff of essential TIL number per frag-
ment after initial culture to be 0.8 × 105 cells based on our 
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previous study using breast cancer samples [18]. Excluding 
the contaminated 13 samples, the success rate of sufficient 
TIL expansion was 50% (17/34) of the samples. Although 
the success rate is slightly lower than previous reports of 
60–91% across various cancer types [25–28], our findings 
indicate that an adequate number of TILs can be obtained 
from HNSCC samples.

We found that microbial contamination is a notable issue 
for TIL culture of HNSCC samples. Thirteen of 47 (27.5%) 
samples had to be discarded due to contamination during 
initial TIL culture. It is known that a higher frequency of 
microbiological contamination is present in head and neck 
cancer samples compared to other organs [29]. Antibiot-
ics, such as penicillin, streptomycin, and gentamicin, have 
been utilized to prevent microbe contamination in head and 
neck cancer cell and organoid cultures [29–31]. Similarly, 
TIL culture methods incorporate antimicrobial agents in its 
protocol in order to limit the risk of contamination [32]. In 
our study, we added gentamicin to the media, but failed to 
prevent contamination in about one-fourth of the samples. 
Establishing a prophylactic or timely application of suitable 
antimicrobial agents is essential to enhance the success rate 
of TIL culture of HNSCC samples in future studies.

In our study, we observed that approximately 70% of 
cases had CD4 + T cells as a major lymphocyte subset after 
initial TIL expansions. Predominant CD4 + T cells in the 
TILs was reported for breast cancer (76%), with lower lev-
els in gastrointestinal cancers (54%) and malignant mela-
noma (21%) [33–36]. While CD8 + T cells are traditionally 
recognized as key anti-cancer effectors, the use of ACT of 
CD4 + TILs showed a remarkable regression of tumor bur-
den in patients with metastatic tumors [33, 35–37]. The ele-
vated prevalence of CD4 + TILs in our study suggests that 
MHC-class II restricted neoantigens and reactive T cells 
are frequent in HNSCC. This finding also underscores the 
significant therapeutic potential of CD4 + TILs in ACT for 
HNSCC patients. We also noted that Tem had the highest 
proportion among the T cell subtypes in all cases. Consider-
ing the significance of effector memory cells in enhancing 
the therapeutic impact of ACT [38–40], a high proportion of 
the Tem phenotype from expanded TILs from HNSCC tissue 
indicates its adequacy for successful TIL therapy.

Post-REP TILs were evaluated in 3 available cases, and 
the proportion of T cell subsets were similar after REP. One 
case showed noticeable shift in the CD8 + T cell subset 
from Tem to Teff. The expected fold change following REP 
is over 1,000 since at least 1.0 × 1010 cells per patient are 
known to be essential for use in ACT [41, 42]. Although 
we were able to examine post-REP TILs and fold change in 
only three cases, two cases using G-Rex exceeded the fold 
change of 1,000 and one case using T-flask obtained slightly 
lower (960) results than the cutoff. Our findings suggest that 
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of the tumor reactivity of autologous TILs, and assessments 
of the long-term effects of expanded TILs, including in 
vitro phenotypic changes and in vivo TIL persistence after 
TIL infusion, requires further evaluation in future studies. 
Second, the REP process was available in a subset of cases 
after the initial two weeks of TIL expansion, preventing the 

sufficient number of TILs could be obtained and this indi-
cates the potential viability of TIL therapy applications in 
HNSCC.

Our study has several limitations. First, the efficacy of the 
expanded TILs was not demonstrated through in vitro exper-
iments or in vivo xenograft mouse models. The validation 

Fig. 5  Immunophenotypes of expanded tumor-infiltrating lymphocytes from all samples (n = 13) (upper panel), tumor (n = 4) samples (mid panel), 
and lymph node (n = 9) samples with successful expansion
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observation of adequate fold changes in all cases. Although 
a shift in the CD8 + T cell subset was observed in one case, 
inferring the frequency of T cell subset changes and identi-
fying the factors leading to this shift was difficult, given that 
not all cases underwent REP. Thirdly, p16, PD-L1 IHC and 
HPV ISH studies were only performed in a subset of cases, 
leading to an incomplete correlation analysis between these 
variables and successful TIL expansion. Despite these limi-
tations, our study represents the comprehensive analysis of 
clinicopathological features associated with successful TIL 
expansion, conducted with large numbers of HNSCC tissue 
samples. Furthermore, we presented the detailed TIL phe-
notype following initial expansion and the subsequent REP 
processes, confirming that the expanded TILs are suitable 
for ACT, both quantitatively and qualitatively. We anticipate 
that our comprehensive study will contribute to expanding 
the current knowledge about TIL culture of HNSCC, and 
ultimately provide valuable insights for future research 
regarding TIL therapies.

In summary, we conducted TIL culture using HNSCC 
samples and analyzed their clinicopathological features. 
Despite antibiotic usage, HNSCC has an inherent suscep-
tibility to contamination. Higher sTIL levels correlate with 
increased success rates and quantities of cultured TILs. 
The composition of the expanded TILs is predominantly 
CD4 + T cells with an effector memory phenotype.
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Fig. 6  Representative result of expanded tumor-infiltrating lymphocytes with its T cell phenotype (patient 3)
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