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Abstract
Objective  The high mortality rate of gastric cancer, traditionally managed through surgery, underscores the urgent need for 
advanced therapeutic strategies. Despite advancements in treatment modalities, outcomes remain suboptimal, necessitating 
the identification of novel biomarkers to predict sensitivity to immunotherapy. This study focuses on utilizing single-cell 
sequencing for gene identification and developing a random forest model to predict immunotherapy sensitivity in gastric 
cancer patients.
Methods  Differentially expressed genes were identified using single-cell RNA sequencing (scRNA-seq) and gene set enrich-
ment analysis (GESA). A random forest model was constructed based on these genes, and its effectiveness was validated 
through prognostic analysis. Further, analyses of immune cell infiltration, immune checkpoints, and the random forest model 
provided deeper insights.
Results  High METTL1 expression was found to correlate with improved survival rates in gastric cancer patients (P = 0.042), 
and the random forest model, based on METTL1 and associated prognostic genes, achieved a significant predictive perfor-
mance (AUC = 0.863). It showed associations with various immune cell types and negative correlations with CTLA4 and 
PDCD1 immune checkpoints. Experiments in vitro and in vivo demonstrated that METTL1 enhances gastric cancer cell 
activity by suppressing T cell proliferation and upregulating CTLA4 and PDCD1.
Conclusion  The random forest model, based on scRNA-seq, shows high predictive value for survival and immunotherapy 
sensitivity in gastric cancer patients. This study underscores the potential of METTL1 as a biomarker in enhancing the 
efficacy of gastric cancer immunotherapy.
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Introduction

Gastric cancer is universally recognized as a highly fatal 
malignancy, contributing significantly to global cancer mor-
tality rates [1–3]. Annually, it is responsible for the diagnosis 

of hundreds of thousands of individuals, frequently at 
advanced stages of the disease [4, 5]. Despite strides in the 
early detection and therapeutic approaches for gastric cancer 
in recent years, substantial obstacles remain [6, 7]. Surgi-
cal interventions may offer a measure of success in select 
instances, yet their effectiveness is limited for patients pre-
senting with advanced or metastatic gastric cancer. Conse-
quently, researchers are dedicated to exploring cutting-edge 
technologies, novel drug compounds, and advanced genetic 
and molecular techniques with the potential to revolutionize 
the way we understand, diagnose, and treat gastric cancer 
[8].

The advent of immunotherapy marks a pivotal develop-
ment in the landscape of cancer treatment [9–11], introduc-
ing a paradigm that leverages the inherent capacity of a 
patient's immune system to identify and eradicate cancer-
ous cells. This approach, offering a favorable profile of side 
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effects and the promise of enduring efficacy compared to 
conventional therapies such as chemotherapy and radiother-
apy, represents a significant advancement [12, 13]. However, 
the variability in immune response and tumor biology across 
individuals means that immunotherapy does not uniformly 
benefit all patients with gastric cancer. Thus, there exists a 
pressing need to devise methods capable of predicting the 
likelihood of a positive response to immunotherapy among 
these patients.

Biological markers have been extensively utilized in 
cancer research to enhance comprehension and forecast the 
treatment response of patients [14–16]. These markers can 
provide critical insights into the tumor's biological attributes 
and the patient's potential reaction to specific treatments. 
Although several biomarkers have been associated with 
prognosis and therapeutic response in gastric cancer, the 
quest for more predictive tools and methodologies continues 
unabated.

The emergence of single-cell RNA sequencing 
(scRNA-seq) and random forest modeling as cutting-edge 
technologies holds the promise of transforming cancer 
research [17–19]. scRNA-seq offers a granular view of gene 
expression at the individual cell level, thereby illuminating 
the heterogeneity present within tumors [20]. Meanwhile, 
random forest models offer a powerful statistical framework 
for analyzing vast datasets and producing accurate predictive 
models [21, 22].

With this context, our study aims to harness the 
capabilities of scRNA-seq and random forest modeling 
to unearth novel biomarkers for gastric cancer and to 
develop a predictive framework capable of forecasting 
immunotherapeutic responses in gastric cancer patients. 
We anticipate that such a model will empower clinicians 
to tailor treatment approaches to individual patient profiles, 
thereby elevating the likelihood of therapeutic success and 
enhancing the quality of life for those affected.

Materials and methods

Acquisition and preprocessing of scRNA‑seq data

ScRNA-seq data were procured, encompassing 42,968 
cells derived from 10 samples across 6 patients with gastric 
cancer diagnoses. This dataset was sourced from the Gene 
Expression Omnibus (GEO) database (accessible via http://​
www.​ncbi.​nlm.​nih.​gov/​geo/) and produced on the Illumina 
NovaSeq 6000 platform, adhering to a tenfold read depth 
relative to the genome [23]. For reference, the dataset is 
cataloged under accession number GSE163558. The R 
package Seurat, version 4.1.1, was employed for quality 
assurance, statistical evaluation, and exploratory analysis 
of the scRNA-seq data.

Quality control measures led to the exclusion of cells 
not meeting predefined criteria: Cells manifesting fewer 
than three detected genes, those with under 200 detected 
genes, and cells exhibiting mitochondrial gene expression 
below 10% were systematically removed. Subsequently, 
gene expression data from the filtered cell population 
were normalized employing a linear regression model. 
Dimensionality reduction was facilitated through principal 
component analysis, followed by clustering analysis via the 
uniform manifold approximation and projection (UMAP) 
technique, employing the first 15 principal components 
(PCs). This process set the stage for conducting gene set 
enrichment analysis (GESA) on differentially expressed 
genes (DEGs) identified across clusters [24].

Identification of METTL1‑associated diagnostic 
and prognostic genes

Bulk RNA-seq data for gastric cancer samples (n = 433) 
were retrieved from the GEO database (GSE84437). 
METTL1-associated genes were pinpointed using the 
Ingenuity Pathway Analysis (IPA) software, version v01-
21-03. Prognostic genes were discerned with the aid of the 
survival package in R.

Development of a random forest prognostic model

The prognostic significance of genes with prognosis-
related attributes was evaluated by applying the random 
forest methodology for survival analysis [25]. This machine 
learning framework is tailored for identifying genes with 
notable prognostic merit, achieved by constructing many 
decision trees for classification purposes. These trees 
were then applied to categorize given input data vectors. 
The random forest model incorporates bootstrapping 
and random sample splitting from the original dataset to 
fabricate each decision tree, setting aside approximately 
one-third of the samples to form a cross-validation set. The 
out-of-bag (OOB) samples, serving as a distinct bootstrap 
testing set, were utilized in the tree construction phase, 
known as the OOB sample set. Survival analysis employing 
the random forest approach was instrumental in discerning 
the prognostic significance of genes, thus facilitating the 
identification of genes pivotal to the study context. This 
method acknowledges the influence of any variable on the 
OOB prediction error.

Evaluation of predictive accuracy in random forest 
models

To ascertain whether the risk score could act as an 
independent prognostic indicator for overall survival (OS) 
within the context of the GSE84437 study, both univariate 
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and multivariate Cox regression analyses were performed, 
examining its efficacy singly and in conjunction with 
other clinical parameters. The “timeROC” package was 
employed to construct time-dependent receiver operating 
characteristic (ROC) curves, facilitating the evaluation of 
the model's predictive performance. The objective behind 
deploying multi-indicator ROC curves was to determine 
the specificity associated with the random forest model's 
forecasts.

Quantitative examination of tumor 
microenvironment

Estimation techniques were applied to produce matrices 
and immune scores to quantify the infiltration of stromal 
and immune cells within gastric cancer tissues, thus 
reflecting the tumor's intrinsic condition through expression 
profiling. Differences in tumor purity, stromal scores, and 
immune scores between identified high-risk and low-risk 
cohorts were analyzed using the Wilcoxon rank-sum test. 
The deconvolution of immune components within tumor 
infiltrates, leveraging data from the TCGA database, was 
conducted using the Xibo classification method, yielding 
significant insights.

Prediction of immunotherapy response using 
functional enrichment analysis

In the Tumor Immune Dysfunction and Exclusion 
(TIDE) project (available at http://​tide.​dfci.​harva​rd.​
edu/), a computational model focusing on tumor immune 
evasion mechanisms is under development, incorporating 
T cell expression profiles among its variables. The TIDE 
methodology was utilized to assess the potential efficacy 
of immune checkpoint blockade therapy in gastric cancer 
patients.

Tissue collection

The study enrolled 69 patients who were diagnosed with 
gastric cancer and were undergoing surgical resection 
treatment at the First Affiliated Hospital of Bengbu 
Medical University in 2021. Freshly excised tissues were 
immediately frozen at − 80 °C for later total RNA extraction. 
All clinical samples were obtained with informed consent 
from patients, and collecting and handling samples adhered 
strictly to ethical guidelines. The study received approval 
from the Ethics Committee of the First Affiliated Hospital of 
Bengbu Medical College and was in strict accordance with 
the Helsinki Declaration.

RNA extraction and qRT‑PCR analysis

Total RNA extraction from cultured cell lines was conducted 
utilizing TRIzol reagent (15596018CN, Thermo Fisher 
Scientific, Inc, USA), adhering to the guidelines provided 
by the manufacturer. This process was followed by the 
conversion of total RNA into complementary DNA (cDNA) 
via the PrimeScript™ RT reagent Kit with gDNA Eraser 
(RR047A, BaoRui Medical Biotechnology (Beijing) Co., 
Ltd, Beijing, China). Quantitative real-time PCR analyses 
were executed using TB Green® Premix Ex Taq™ (Tli 
RNaseH Plus) (Cat. No. RR420A, Takara Bio (Beijing) Co. 
Ltd.) alongside gene-specific primers at a concentration of 
0.3 nM, as detailed in Table S1. The quantification of gene 
expression was relative to the GAPDH gene, serving as an 
internal control, utilizing the 2−ΔΔCt method for relative 
quantification [26].

Cell line culture

The human gastric cancer cell lines employed including 
AGS (CL-0022; Procell, Wuhan, China), MKN45 (CRL-
1739; ATCC, USA), and SNU-216 (CRL-5974; ATCC, 
USA) were used for this study. Additionally, human 
gastric mucosal epithelial cells, GES-1, were sourced from 
BoHui Biotechnology (Guangzhou) Co., Ltd (BH-C051, 
Guangzhou, China), and mouse gastric cancer cells, MFC 
(CL-0156; Procell, Wuhan, China), were also included 
in the study. These cell lines were cultured in Dulbecco's 
Modified Eagle Medium (11,965,092, Thermo Fisher, 
USA) supplemented with 100 U/mL penicillin, 100 μg/mL 
streptomycin (Cat#10,378,016, Gibco, USA), and 10% FBS 
(10099141C, Gibco, USA). The culture was maintained in a 
constant temperature incubator at 37 °C with 5% CO2 [27].

Lentivirus transduction

Gene silencing or overexpression in cell lines, alongside 
the establishment of corresponding control lines, was 
achieved by applying lentiviral transduction techniques. 
The sequence for the silent lentivirus is delineated in 
Table S2. For the generation of the requisite lentivirus, the 
Phage-puro series plasmid, along with auxiliary plasmids 
Pspax2 and Pmd2.G, in addition to the pSuper-retro-puro 
series plasmid and auxiliary plasmids gag/pol and VSVG, 
was co-transfected into HEK293T cells (CL-0005, Wuhan 
Puno Sai Life Science Co., Ltd., Hubei, China). This process 
involved verification, amplification, and purification stages, 
followed by the production of packaged lentivirus. Plasmid 
and lentivirus packaging services were furnished by Sangon 
Biotech, Shanghai, China.

Lentiviral infection was initiated by seeding 1 × 105 
AGS or MCF cells into each well of a 6-well plate. Upon 
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achieving 60–70% confluency, the cell medium was enriched 
with a designated quantity of packaged lentivirus (MOI = 10, 
effective titer approximating 1 × 106 TU/mL) and 5 μg/mL 
polybrene (TR-1003, Merck, USA) to facilitate transfection. 
Four hours post-transfection, the medium containing 
polybrene was diluted by adding an equivalent volume 
of medium. The medium was refreshed 24 h following 
transfection. Selection of resistant cells using 1 μg/mL 
puromycin (A1113803, Thermo Fisher, USA) commenced 
48 h post-transfection, culminating in the establishment of 
stable AGS or MCF cell lines [28].

CCK‑8 assay

Cell viability was quantified in cells at the logarithmic 
growth phase, seeded at a density of 1 × 104 cells per well 
in a 96-well plate, and incubated overnight. The evaluation 
employed the CCK-8 assay kit (E606335, Sangon Biotech, 
China) as follows: CCK-8 reagent (10 μL) was introduced 
to each well at intervals of 0, 24, 48, and 72 h during cell 
culture. Following a 1-h incubation in a humidified incubator 
at 37 °C, absorbance at 450 nm was measured with an Epoch 
Microplate Spectrophotometer (Bio-Tek, USA) [29].

Apoptosis detection via flow cytometry

The Annexin V-FITC/PI double staining method was 
employed for apoptosis detection. T98G or LN-229 
glioblastoma cells were collected, centrifuged at 800g, and 
discarded supernatant. After two PBS washes, cells were 
resuspended in 500 μL of binding buffer as per the cell 
apoptosis detection kit's protocol (556,547, BD Bioscience, 
USA). To each sample, 5 μL of FITC and 5 μL of PI were 
added and mixed thoroughly. Post a 15-min incubation, 
apoptosis was detected using a BD FACSCalibur flow 
cytometer (BD FACSVerse, USA) [30], with Annexin 
V-FITC indicating positively stained apoptotic cells.

Isolation and enrichment of CD4+ T cells

Peripheral blood mononuclear cells (PBMCs) were initially 
segregated from the blood of volunteer donors. These cells 
underwent enrichment for CD4+ T cells utilizing the Human 
CD4+ T Cell Enrichment Kit (8802-6831-74, Thermo 
Fisher, USA). Post-enrichment, the cells were processed 
through centrifugation over a non-continuous Percoll 
gradient, specifically layering a 40% Percoll solution atop 
an 80% solution and centrifuging at 320 g for 25 min. The 
purified cells were then propagated in RPMI 1640 medium, 
enriched with 10% FBS, 1% antibiotics, 10 mM HEPES, 
2 mM L-glutamine, 1 mM sodium pyruvate, MEM non-
essential amino acids, and 55 μM β-mercaptoethanol [31, 
32].

Co‑culture of immune cells and cancer cells

CD4+ T cells derived from healthy volunteers were 
co-cultivated with gastric cancer cells. The T cells were 
initially labeled with CFSE (C34554, Thermo Fisher, USA) 
diluted at a 1:1000 ratio and then mixed gently. After a 24-h 
co-cultivation period with gastric cancer cells, the T cells 
were collected, and the CFSE intensity was quantified via 
flow cytometry. The T cells were then fixed, permeabilized, 
and stained with an anti-Ki-67 antibody (ab279653, Abcam, 
UK) for proliferation assessment through flow cytometric 
analysis using a BD FACS Canto II system [33, 34].

Immunofluorescence staining

Cells were affixed onto glass slides with 4% formaldehyde 
for 10 min and permeabilized using 0.1% Triton X-100 
(93,443, Sigma-Aldrich, USA). They were incubated 
overnight at 4 °C with a METTL1 antibody (ab271063, 
Abcam, USA) at a 1:100 dilution. Following this, cells were 
incubated with a FITC-labeled secondary antibody (Alexa 
Fluor 488) (ab150077, Abcam, UK) diluted 1:1000 for 1 h. 
Nuclei staining was performed using DAPI. Fluorescence 
microscopy (Olympus, Japan) was employed to observe 
and capture the fluorescence intensity across coverslips, 
with quantitative analysis conducted using ImageJ software 
(National Institutes of Health) [35].

Western blot

Total protein from cells was extracted employing RIPA lysis 
buffer (P0013C, BiYunTian, Shanghai, China) supplemented 
with PMSF. The mixture was incubated on ice at 4 °C for 
30 min and subsequently centrifuged at 8000g for 10 min 
to separate the supernatant. Protein concentration within 
the supernatant was ascertained using the BCA assay kit 
(Catalog number 23227, Thermo Fisher, USA). A quantity 
of 50 μg of protein was mixed with 2 × SDS loading buffer 
and heated at 100 °C for 5 min. The prepared samples were 
then subjected to SDS-PAGE gel electrophoresis, followed 
by protein transfer onto a PVDF membrane. The membrane 
was blocked using 5% skim milk at ambient temperature 
for 1 h before overnight incubation at 4 °C with primary 
antibodies diluted in the buffer: CTLA4 (ab237712, 1:2500, 
Abcam, UK), PDCD1 (ab309363, 1:2500, Abcam, UK), 
and GAPDH (ab9485, 1:2500, Abcam, UK) serving as the 
loading control. The membrane was washed thrice with 
TBST, each wash lasting 10 min, and then incubated with 
HRP-conjugated secondary antibody, goat anti-rabbit IgG 
H&L (HRP) (ab97051, 1:2000, Abcam, UK) for 1 h. After 
additional washes with TBST, the membrane was positioned 
on a clean glass plate for detection. Components A and B 
from the ECL fluorescence detection kit (catalog number 
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abs920, Shanghai ABclonal Technology Co., Ltd., Shanghai, 
China) were mixed in equal volumes under dim light and 
applied to the membrane. Imaging was carried out using the 
Bio-Rad imaging system (Bio-Rad, USA), and the images 
obtained were analyzed with Quantity One v4.6.2 software. 
The relative abundance of proteins was expressed through 
the ratio of the grayscale intensity of the target protein bands 
to that of the GAPDH band [36].

Animal experiments

Male BALB/c mice, aged 4–6 weeks, were acquired from 
Beijing Vital River Laboratory Animal Technology Co., 
Ltd. (Beijing, China). Seventy-two mice were housed in 
standard cages under sterile conditions and maintained 
at a constant room temperature of 23 ± 1  °C. The mice 
were exposed to a 12-h light–dark cycle with controlled 
temperature and humidity. They were provided ad libitum 
access to food and water and were acclimatized for one week 
before the experiment. The experimental procedures and 
animal use protocols in this study were conducted following 
international ethical guidelines for animal experimentation 
and received approval from the Animal Ethics Committee 
of the First Affiliated Hospital of Bengbu Medical College.

We utilized the MFC cell line derived from mouse gastric 
cancer to establish a mouse gastric cancer model. Initially, 
we assessed the effectiveness of lentiviral infection. The 
expression of METTL1 in MFC cells was detected using the 
RT-qPCR method. The findings demonstrated a reduction in 
METTL1 expression in the sh-METTL1 group compared 
to the sh-NC group. Notably, the silencing efficiency of 
sh-METTL1-1 was higher than that of sh-METTL1-2. 
Consequently, sh-METTL1-1 was selected for silencing 
MFC cells in subsequent experiments. Conversely, the 
overexpression of METTL1 led to a substantial increase in 
METTL1 expression in MFC cells (Figure S1).

MFC cells, numbering 1 × 106, were suspended in 100 μl 
of serum-free culture medium and subsequently implanted 
subcutaneously into mice to facilitate tumor development. 
The growth and localization of the tumors were monitored 
by measuring subcutaneous nodules with a caliper at 7-day 
intervals. Both the longitudinal and transverse diameters of 
each tumor were measured, with the volume being calculated 
using the formula V = π/6 × L (long diameter) × W2 (short 
diameter). Following a 28-day period, the mice were 
euthanized, and the tumors were excised, photographed, 
and weighed utilizing an electronic scale. Documentation 
of experimental data was meticulously conducted. For 
subsequent immunohistochemical analysis to confirm 
METTL1 expression within the tumor tissues, the tumors 
were preserved in cryovials and stored at − 80 °C.

In vivo fluorescence imaging was performed to examine 
the impact of METTL1 on tumor growth using the In-Vivo 

Imaging System (Caliper Lifesciences, USA). The study 
encompassed four groups of mice, each with distinct cellular 
transfections: sh-NC (MFC cells transfected with sh-NC 
and injected subcutaneously), sh-METTL1 (MFC cells 
transfected with sh-METTL1 and injected subcutaneously), 
oe-NC (MFC cells transfected with oe-NC and injected 
subcutaneously), and oe-METTL1 (MFC cells transfected 
with oe-METTL1 and injected subcutaneously). Each 
specified group consisted of six mice.

After subcutaneously injecting cancer cells using the 
method described above, we administer CTLA4 or PD1 
inhibitors for immunotherapy once the tumor volume 
reaches 100 mm3 [37, 38]. A volume of 100 μl of serum-
free medium was used to add 200  μg of anti-CTLA4 
(ab237712, Abcam, Cambridge, UK) and anti-PD-1 
(ab214421, Abcam, Cambridge, UK) per mouse to achieve 
the blockade of CTLA4 and PD-1 for immunotherapy. Anti-
IgG (ab172730, Abcam, Cambridge, UK) was used as a 
control [38]. Survival rate analysis was conducted on mice. 
Animal grouping: sh-NC + anti-IgG (subcutaneous injection 
of sh-NC transfected MFC cells + intraperitoneal injection of 
anti-IgG), sh-METTL1 + anti-IgG (subcutaneous injection 
of sh-METTL1 transfected MFC cells + intraperitoneal 
injection of anti-IgG), sh-METTL1 + anti-CTL4 
(subcutaneous injection of sh-METTL1 transfected 
MFC cells + intraperitoneal injection of anti-CTL4), 
sh-METTL1 + anti-PD1 (subcutaneous injection of 
sh-METTL1 transfected MFC cells + intraperitoneal 
injection of anti-PD1), oe-NC + anti-IgG (subcutaneous 
injection of oe-NC transfected MFC cells + intraperitoneal 
inject ion of anti-IgG),  oe-METTL1 + anti-IgG 
(subcutaneous injection of oe-METTL1 transfected 
MFC cells + intraperitoneal injection of anti-IgG), 
oe-METTL1 + anti-CTL4 (subcutaneous injection of 
oe-METTL1 transfected MFC cells + intraperitoneal 
injection of anti-CTL4), and oe-METTL1 + anti-PD1 
(subcutaneous injection of oe-METTL1 transfected MFC 
cells + intraperitoneal injection of anti-PD1). Each group 
comprised six mice.

In vivo fluorescence imaging

Prior to euthanasia, mice were subjected to in  vivo 
f luorescence imaging through the intraperitoneal 
administration of 2 mL of fluorescein (150 mg/mL) provided 
by Caliper Lifesciences, USA. The imaging process utilized 
an in vivo imaging system from the same manufacturer, with 
live image software facilitating the analysis. During imaging, 
the mice were anesthetized using 2% isoflurane and captured 
by a cooled CCD camera. A quantitative assessment of the 
bioluminescent signals emitted by the xenograft-bearing 
mice was performed using Vivo Image 3.0 software [39, 40].
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Immunohistochemistry staining

Transplanted tissues were fixed in 10% formalin solution and 
then dewaxed with xylene in two 10-min sessions. Hydration 
was achieved through sequential ethanol–water gradients 
of 100%, 95%, 75%, and 50%, each stage lasting 5 min. 
Afterward, samples were incubated with H2O2 for 10 min 
at room temperature. They were then treated with 0.01mol/L 
citrate buffer, followed by microwave-assisted antigen retrieval 
for 20 min. Normal goat serum was applied for 5 min at room 
temperature before the addition of primary antibodies against 
METTL1 (ab271063, Abcam, USA) and PD-L1 (ab205921, 
Abcam, USA) overnight at 4 °C. After incubation at 37 °C 
for 1 h with biotinylated goat anti-rabbit secondary antibody 
(ab150077, Abcam, USA) for 30 min, DAB chromogenic 
solution was applied for 1–2 min, followed by hematoxylin 
counterstaining. The samples were dehydrated and mounted. 
Optical microscopy was used to observe and capture images 
from five randomly selected high-magnification fields. Positive 
staining was determined by the presence of brown or yellow 
cytoplasm, and the proportion of positively stained cells was 
quantified [41].

Statistical analysis

The data utilized in this study have undergone meticulous 
quality control and preprocessing. The scRNA-seq data were 
standardized and dimensionally reduced using PCA and 
UMAP. The Wilcoxon rank-sum test assessed differences 
among DEGs. IPA software was used to identify METTL1-
associated genes from RNA-seq data retrieved from the GEO 
database. Survival analysis was conducted using the survival 
package, and random forest models were developed using 
machine learning to construct and validate decision trees, 
including OOB sample evaluation. The Cox regression model 
was employed for survival analysis in both univariate and 
multivariate formats. The model's efficacy was gauged through 
time-dependent ROC curves. The TIDE method assessed 
immunotherapy responses, with significance set at a p-value of 
less than 0.05. Statistical analyses were performed in R version 
4.1.1, employing GraphPad Prism 9 for data visualization. 
Measurement data were presented as mean ± SD, with the 
unpaired Student's t test for two-group comparisons and one-
way ANOVA with a post hoc Tukey test for multiple-group 
comparisons. A p-value of < 0.05 was considered indicative 
of statistical significance.

Results

scRNA‑seq of gastric cancer reveals distinct 
subpopulations of cells specific to the tumor

To ensure the reliability of the data sources, we initially 
analyzed the results of gastric cancer-related scRNA-
seq data obtained from the GEO database (https://​www.​
ncbi.​nlm.​nih.​gov/​geo/). Our analysis results indicate that 
the scRNA-seq data can be categorized into 18 groups 
(Fig. 1A). The high expression of tumor-related genes 
(EPCAM, CD24, CDH1, ELF3, KRT18, KRT19, KRT8, 
and MUC1) in groups 10 and 11 suggests that cells in 
these groups are tumor cells (Fig. 1B). Figure 1C-D dis-
plays the scatter plot and heat map.

The disparities in gene expression between tumors 
and normal tissues elucidate the involvement 
of the tRNA signaling pathway and underscore 
the significance of METTL1

To further identify genes exhibiting abnormal expres-
sion in tumors, we employed GESA to compare the dif-
ferences between tumor and normal tissues. Our findings 
revealed that the tRNA-related signaling pathway displays 
increased activity in tumor tissues compared to normal tis-
sues (Fig. 2A). Additionally, we found that the METTL1 
gene was overexpressed in tumor tissues of GSE84437 
(Fig. 2B-C). Survival analysis revealed that higher expres-
sion of METTL1 was associated with improved patient 
survival compared to lower expression (Fig. 2D). Further-
more, we observed an overexpression of METTL1 in gas-
tric cancer tissue samples obtained from 69 patients with 
gastric cancer (Fig. 2E).

Random forest model based on genes related 
to METTL1 demonstrate potential for prognostic 
analysis

To further elucidate the potential regulatory mecha-
nisms, we identified genes associated with mettl1 using a 
novel technique called Intuitive Pathway Analysis (IPA) 
(Fig. 3A). We selected prognostic genes and visualized 
them in a network diagram (Fig. 3B). Subsequently, we 
included the pertinent prognostic genes in a random for-
est survival model (Fig. 3C). Furthermore, we identified 
ACTA2, MYC, METTL1, ENG, TLR4, and WNT2 as 
factors that enhance the model's accuracy. Conversely, 
STATA3, RPS6KA3, WNT2B, VIM, CCNDBP1, PCNA, 
CTNNB1, NME1, CDH1, FEN1, CCNA2, ZWINT, and 
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WDR4 were shown to exhibit an inverse relationship 
(Fig. 3D).

The risk scoring system demonstrates the disparity 
in survival rates between high‑risk and low‑risk 
patients with gastric cancer

To facilitate the study of the model, the patients were 
divided into high-risk and low-risk groups using the opti-
mal threshold obtained from the training set (Fig. 4A). 
The identical method was also utilized in the testing group 
(Fig. 4B) and the complete patient population (Fig. 4C). 
In comparison to patients with a lower mortality risk in 

all categories, individuals with a greater risk of death 
exhibit elevated mortality rates (Fig. 4D-F). A heatmap 
illustrating gene expression changes associated with prog-
nosis in high-risk and low-risk patients was generated and 
presented (Fig. 4G-I). Furthermore, the survival analysis 
demonstrated that high-risk patients exhibit inferior over-
all survival compared to low-risk patients, irrespective of 
their assigned group (Fig. 5A-C). The ROC curves for each 
group were analyzed. For the training group, the AUC 
values were as follows: 1-AUC = 0.881, 2-AUC = 0.916, 
3-AUC = 0.910. Similarly, for the testing group, the 
AUC values were 1-AUC = 0.774, 2-AUC = 0.705, and 
3-AUC = 0.681. Lastly, for the total patient group, the 

Fig. 1   Cell subtypes and expression distribution of key tumor-
related genes revealed by scRNA-seq of gastric cancer. A Single-cell 
sequencing divided gastric cancer tissue into 18 subgroups. B Differ-

ential expression of different genes in 10/11 subgroups. C Location of 
these DEGs. D Heatmap of gene expression differences
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AUC values were: 1-AUC = 0.863, 2-AUC = 0.871, and 
3-AUC = 0.859. These results are presented in Fig. 5D-F.

Validation of the risk score as an independent 
prognostic factor for gastric cancer

We performed Cox regression analysis to determine if the 
predictive accuracy of our model for patient prognosis 
is affected by other variables that may influence clinical 
outcomes. In this analysis, the model was tested in con-
junction with these additional parameters. The results sug-
gested that the risk score was considered an independent 
prognostic factor, regardless of the impact of other clinical 
variables (Fig. 6A-B). The results of the multivariate AUC 
analysis demonstrated that the random forest column line 
chart analysis (AUC = 0.863) had a superior prognostic 
value compared to the AUC of other factors (Fig. 6C). 
Furthermore, decision curve analysis demonstrated that 
random forest analysis provides more accurate predictions 
for gastric cancer patients than line graphs (Fig. 6D).

A comprehensive analysis of the immune 
microenvironment: investigating the relationship 
between risk score and infiltration of immune cells

To comprehend the correlation between immune function 
and risk scoring, we initially compared the outcomes of 
various groups (Figure S2A). Subsequently, we utilized 
estimation software along with estimation algorithms to 
evaluate the immunological scores, stromal scores, and 
estimation scores of each patient, which indicate the 
immune microenvironment of gastric cancer. The results 
indicated that the interstitial score, immune score, and 
estimated score were comparatively high in high-risk 
patients (Figure S2B). Moreover, we employed the Sibar 
classification method to quantitatively assess the extent 
of immune cell infiltration in gastric cancer samples. 
This result enabled us to calculate the relative abundance 
of immune cells in the tumor microenvironment. The 
infiltration of immune cells varied significantly, including 
B memory cells, plasma cells, CD4 memory-activated T 
regulatory cells (Treg), resting macrophages, and resting 
dendritic cells (Figure S2C).

Fig. 2   Differential activity of tRNA signaling pathway and associa-
tion of METTL1 expression with survival in tumor and normal tis-
sues. A Gene set enrichment analysis shows differential expression in 
tRNA-related pathways. B Higher expression of METTL1 in gastric 
cancer cells. C Differential expression of METTL1 between tumor 

and normal cells. D Survival curves for METTL1 at different expres-
sion levels. E qRT-PCR detection of METTL1 expression in tumor 
and adjacent samples from 69 gastric cancer patients; **p < 0.01; 
****p < 0.0001
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Analysis of the association between risk scoring 
and immunotherapy response sensitivity in gastric 
cancer

We are interested in investigating the relationship 
between risk score and immunotherapy response because 
of the correlation between risk score and immune cell 
infiltration. The research showed that the high-risk group 
exhibited higher TIDE values (Figure S3A). Furthermore, 
patients in the high-risk group demonstrated decreased 
sensitivity to immunotherapy compared to those in 
the low-risk group (Figure  S3B). Moreover, the risk 
score negatively correlated with the expression levels 
of immune checkpoint genes, namely CTLA4, CD274, 
PDCD1, CD80, LGALS9, and LAG3, as depicted in 
Figure S3C.

Regulatory function of METTL1 in gastric cancer 
cells and its influence on the immune response

To further validate the findings of the bioinformatics analysis 
regarding the regulation of gastric cancer immunotherapy by 
the METTL1 gene, we performed supplementary in vitro 
cell experiments for verification.

We initially detected the expression levels of METTL1 in 
human gastric mucosal epithelial cells (GES-1) and gastric 
cancer cell lines (AGS, MKN45, and SNU-216) using RT-
qPCR. The results displayed in Fig. 7A revealed an increase 
in METTL1 expression in AGS, MKN45, and SNU-216 
cells when compared to GES-1 cells. Notably, the observed 
change in AGS cells was more prominent than in MKN45 
and SNU-216 cells. Consequently, AGS cells were selected 
for further functional studies.

Fig. 3   Network analysis of METTL1 and related prognostic genes, 
and predictive evaluation of random forest model. A Network of 
METTL1 and its associated genes. B Network of related prognostic 
genes. C OOB prediction error rate for each tree generated in the ran-

dom forest model. D Feature prognostic gene characteristics: ranking 
of prognostic genes based on their value. Genes highlighted in red 
indicate their ability to improve prediction accuracy, while those in 
blue indicate the opposite
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Fig. 4   Score distribution, survival status, and heatmap of prognos-
tic gene expression in subgroups of gastric cancer patients under the 
risk scoring system. A Distribution and median of risk scores for the 
training group, B testing group, and C entire group of patients. D OS 

status, OS, and risk score distribution for the training group, E testing 
group, and F all patients. Heatmap of prognostic genes for the train-
ing group (G), testing group (H), and high-risk and low-risk patients 
(I)

Fig. 5   Survival analysis and ROC validation of high-risk and low-risk 
subgroups of gastric cancer patients. A Survival analysis for the train-
ing group, B testing group, and C entire group of patients. D AUC 

values for the training group (1-, 2-, 3-AUC = 0.881, 0.916, 0.910), E 
testing group (1-, 2-, 3-AUC = 0.774, 0.705, 0.681), and F all patients 
(1-, 2-, 3-AUC = 0.863, 0.871, 0.859)
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Subsequently, METTL1-specific shRNA was utilized to 
silence the gene through lentivirus infection. To confirm 
the efficiency of the lentivirus infection, RT-qPCR was 
employed to assess the expression of METTL1 in AGS 
cells. The results demonstrated a reduction in the expression 
of METTL1 in the sh-METTL1 group compared to 
the sh-NC group in AGS cells. Moreover, the silencing 
efficiency of sh-METTL1-1 was notably higher than that 
of sh-METTL1-2. Thus, sh-METTL1-1 was chosen for 
subsequent gene silencing experiments.

On the contrary, the overexpression of METTL1 led to 
an increase in METTL1 expression in these cells (Fig. 7B). 
Immunofluorescence detection was employed to examine the 
expression of the METTL1 protein in different groups of 
AGS cells. The results revealed that cells in the oe-METTL1 
group exhibited a higher signal intensity of the METTL1 
protein in immunofluorescence staining, indicating an 
upregulation of METTL1 expression (Fig. 7C). Hence, the 
plasmids acquired via lentiviral infection can be utilized for 
subsequent experiments.

Next, the CCK-8 assay investigated the correlation 
between METTL1 expression and cell proliferation. The 
results demonstrated that the sh-METTL1 group exhibited 
reduced cell proliferation capacity in AGS cells compared 

to the sh-NC group. Conversely, the overexpression of 
METTL1 enhanced the proliferation ability of these 
cells (Fig. 7D). Moreover, we conducted flow cytometry 
experiments to investigate the apoptosis rate changes in 
AGS cells under the influence of METTL1. The results 
indicated that the sh-METTL1 group exhibited an elevated 
apoptosis rate compared to the sh-NC group. Conversely, the 
overexpression of METTL1 decreased the apoptosis rate of 
gastric cancer cells (Fig. 7E).

We conducted a co-culture experiment of AGS cells with 
T cells to investigate and confirm the regulatory mechanism 
of METTL1 on gastric cancer cells. The proliferative 
capacity of T cells co-cultured with AGS cells was assessed 
using a CFSE proliferation assay. The findings revealed 
that when METTL1 expression was suppressed, T cells 
exhibited enhanced proliferation when co-cultured with 
AGS cells. Conversely, the opposite effect was observed 
upon overexpression of METTL1 (Fig. 7F).

Previous research has demonstrated that CTLA4 and 
PDCD1 are biomarkers with high expression levels in 
gastric cancer tissues [42]. The low expression level of it can 
serve as a molecular-level detection standard for successful 
immunotherapy in patients [43]. Therefore, we conducted 
a Western blot to analyze the protein expression levels of 

Fig. 6   Statistical validation of risk scoring as an independent prog-
nostic factor for gastric cancer and comparison of model prediction 
performance. A Univariate analysis of risk scoring. B Multivariate 

Cox analysis of risk scoring. C Multi-index ROC curve. D Decision 
curve analysis of clinical features and risk model
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Fig. 7   In vitro cell experiments to verify the regulatory role of 
METTL1 in gastric cancer cells and its impact on immune response. 
A RT-qPCR detection of METTL1 expression levels in human gas-
tric epithelial cells GES-1 and gastric cancer cell lines AGS, MKN45, 
and SNU-216. B RT-qPCR detection of METTL1 expression and 
silencing efficiency in AGS cell lines. C Immunofluorescence detec-
tion of METTL1 protein expression in AGS cells (scale bar: 25 μm; 
DAPI: Blue; METTL1: Green, nucleus). D CCK-8 assay to meas-

ure cell proliferation in AGS cell lines. E Flow cytometry to assess 
apoptosis in AGS cell lines. F CFSE proliferation assay to evaluate 
the proliferation capacity of T cells co-cultured with AGS cell lines. 
G Western blot to detect the protein expression levels of CTLA4 and 
PDCD1 in AGS cells. *P < 0.05 compared with the sh-NC group; 
# P < 0.05 compared with the oe-NC group; Cell experiments were 
repeated three times
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immune checkpoint proteins CTLA4 and PDCD1. This 
investigation aimed to determine the impact of METTL1 
expression on immunotherapy in clinical settings. The 
results indicated that silencing METTL1 decreased the 
protein expression levels of CTLA4 and PDCD1, whereas 
overexpressing METTL1 increased the levels of both 
proteins (Fig. 7G).

In conclusion, the overexpression of METTL1 in AGS 
cells leads to a decrease in T cell activity when co-cultured 
with AGS cells. This overexpression also enhances the 
expression of immune checkpoint proteins, CTLA4 and 
PDCD1, ultimately inhibiting immunotherapy targeting 
gastric cancer cells.

Effects of METTL1 in a mouse model and its impact 
on in vivo immunotherapy response.

To validate the regulatory role of METTL1 in gastric cancer 
cells and its impact on the immune response, a mouse gastric 
cancer model was successfully developed using MFC cells 
that were either overexpressing or silenced for METTL1. 
Furthermore, we apply the model to treating immune 
checkpoint inhibitors such as CTLA4 or PD1.

Firstly, the changes in tumor volume and mass in the 
different groups of mice show that the sh-METTL1 group 
had smaller tumor volume and mass compared to the sh-NC 
group, while the oe-METTL1 group had larger tumor vol-
ume and mass compared to the oe-NC group mice (Fig. 8A-
C). Subsequently, we used the In-Vivo Imaging System to 
conduct in vivo fluorescence imaging for detecting tumor 
formation in mice. The results revealed that the sh-METTL1 
mice group displayed lower signal intensity on the fluores-
cence images, indicating a decrease in tumor growth activity 
compared to the sh-NC group. Conversely, the oe-METTL1 
mice group exhibited higher signal intensity on the fluores-
cence images, indicating an increase in tumor growth activ-
ity compared to the oe-NC group (Fig. 8D). The immunohis-
tochemical staining results of the mice tumor tissue further 
validated observed expression alterations of METTL1, 
which were consistent with the findings from the in vitro 
cell experiments (Fig. 8E).

Following immunotherapy with CTLA4 or PD1 
inhibitors, the analysis of survival rates in mice demonstrates 
a prolonged survival period in the sh-METTL1 + anti-
IgG group compared to the sh-NC + anti-IgG group. 

Fig. 8   In vivo animal experiments to validate the in  vivo effects 
of METTL1 in a mouse model and its impact on immunotherapy 
response. A Tumor images of mice in each group. B Tumor vol-
ume changes in each group of mice. C Tumor mass in each group. 
D IVIS fluorescence imaging to detect tumor tissue in mice. E 
Immunohistochemistry to detect positive expression of METTL1 in 
tumor tissue (Scale bar = 25  μm). F Kaplan–Meier curve to meas-
ure survival period in mice. *P < 0.05 compared with the sh-NC 
group or sh-NC + anti-IgG group; **P < 0.01 compared with the 
sh-NC + anti-IgG group; # P < 0.05 compared with the oe-NC group 
or oe-NC + anti-IgG group; 6 mice per group

▸
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Additionally, both the sh-METTL1 + anti-CTLA4 group 
and the oe-METTL1 + anti-PD1 group further prolong 
the survival period, suggesting that mice with silenced 
METTL1 exhibit an enhanced response to CTLA4 or PD1 
inhibitor immunotherapy leading to increased survival. 
In contrast, compared to the oe-NC + anti-IgG group, 
mice in the oe-METTL1 + anti-IgG group exhibited a 
shorter survival period. However, there was no change 
in the survival period of mice in the oe-METTL1 + anti-
CTLA4 or the oe-METTL1 + anti-PD1 group compared to 
the oe-METTL1 + anti-IgG group. These results indicate 
that mice overexpressing METTL1 had a poor response 
to CTLA4 or PD1 inhibitors and did not show improved 
survival rates (Fig. 8F).

In conclusion, studies on mouse models have shown 
that silencing METTL1 can inhibit tumor occurrence and 
development, increase mouse survival, and enhance the 
efficacy of immunotherapy targeting CTLA4 and PD1.

Discussion

Interestingly, scRNA-seq technology has revolutionized 
our comprehension of tumor cellular heterogeneity, 
offering unprecedented insights into the complex biological 
landscape of cancers, including gastric cancer [20, 44, 45]. 
In this study, we have identified distinct subgroups within 
gastric cancer cells, with particular attention to groups 10 
and 11, which manifest significantly elevated expression 
levels of genes closely associated with tumorigenesis [46, 
47]. This stratification of tumor cells not only deepens our 
understanding of the intrinsic biological diversity within 
gastric cancer but also paves the way for the development 
of targeted therapeutic interventions.

In addition, our investigation shed light on the critical 
role of tRNA-related signaling pathways in the context of 
gastric cancer. The upregulation of the METTL1 gene within 
tumor specimens correlates with improved patient survival 
outcomes, suggesting that METTL1 may influence both 
the initiation and progression of gastric cancer [48]. The 
implications of our findings are profound, indicating that 
targeting METTL1 and its downstream signaling pathways 
could represent a viable strategy for the treatment of gastric 
cancer [49].

Further exploration into the regulatory dynamics of 
METTL1 has underscored its pivotal importance in gastric 
cancer pathophysiology. Experimental manipulation 
revealed that downregulation of METTL1 expression 
curtails the proliferation of gastric cancer cells while 
concurrently elevating apoptotic rates. Conversely, the forced 
overexpression of METTL1 augments cell proliferation, 
underscoring its central role in the modulation of gastric 
cancer cell behavior. Multiple studies have demonstrated that 

METTL1 promotes tumorigenesis through tRNA-derived 
fragment biogenesis in various cancer types [50–52]

We have developed a risk scoring framework based 
on METTL1-associated genes to enhance prognostic 
predictions for gastric cancer patients. This innovative 
system enables the stratification of patients into distinct risk 
categories, thereby facilitating the delivery of more tailored 
therapeutic recommendations by healthcare professionals. 
Notably, our risk assessment model underscores the critical 
influence of the tumor immune microenvironment on patient 
outcomes. Enhanced infiltration of immune cells within 
the tumors of patients categorized as high risk illuminates 
the intricate interplay between immune responses and the 
pathogenesis of gastric cancer [53].

The random forest model offers a novel approach to 
predicting the prognosis of patients with gastric cancer [21, 
22], exhibiting superior predictive performance relative 
to conventional clinical metrics. The validation of our 
risk score as an autonomous prognostic indicator further 
emphasizes its utility in clinical settings [43]. This study 
contributes a novel, highly accurate tool for prognostic 
assessment, offering the potential to significantly improve 
patient management in gastric cancer, highlighting the 
transformative impact of integrating molecular and 
computational approaches in the fight against this formidable 
cancer [54].

Conclusion

In conclusion, the present study, based on scRNA and a 
random forest model, explored the cellular heterogeneity 
inherent in gastric cancer, revealing distinct tumor cell 
subgroups with varying expression of tumor-related genes. 
The identification of the METTL1 gene as a key player 
in tRNA-related signaling pathways and its association 
with improved patient survival underscores the potential 
of METTL1 as a therapeutic target (Figure  S4). The 
development of a risk scoring system based on METTL1-
related genes for prognostic prediction represents a 
significant advancement in personalized medicine for gastric 
cancer patients. Despite these advancements, our study is not 
without limitations. The classification of tumor cells into 
subgroups and the identification of METTL1 as a therapeutic 
target are based on observational data, which may not 
fully capture the complex interactions within the tumor 
microenvironment. Additionally, the predictive accuracy of 
the risk scoring system, while promising, requires validation 
in larger, independent cohorts to confirm its clinical utility. 
Additionally, experimental studies aimed at elucidating the 
mechanistic role of METTL1 in gastric cancer progression 
and response to therapy are warranted.
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