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Abstract
Background Due to individual differences in tumors and immune systems, the response rate to immunotherapy is low in lung 
adenocarcinoma (LUAD) patients. Combinations with other therapeutic strategies improve the efficacy of immunotherapy 
in LUAD patients. Although radioimmunotherapy has been demonstrated to effectively suppress tumors, the underlying 
mechanisms still need to be investigated.
Methods Total RNA from LUAD cells was sequenced before and after radiotherapy to identify differentially expressed 
radiation-associated genes. The similarity network fusion (SNF) algorithm was applied for molecular classification based 
on radiation-related genes, immune-related genes, methylation data, and somatic mutation data. The changes in gene expres-
sion, prognosis, immune cell infiltration, radiosensitivity, chemosensitivity, and sensitivity to immunotherapy were assessed 
for each subtype.
Results We used the SNF algorithm and multi-omics data to divide TCGA-LUAD patients into three subtypes. Patients 
with the CS3 subtype had the best prognosis, while those with the CS1 and CS2 subtypes had poorer prognoses. Among 
the strains tested, CS2 exhibited the most elevated immune cell infiltration and expression of immune checkpoint genes, 
while CS1 exhibited the least. Patients in the CS2 subgroup were more likely to respond to PD-1 immunotherapy. The CS2 
patients were most sensitive to docetaxel and cisplatin, while the CS1 patients were most sensitive to paclitaxel. Experimental 
validation of signature genes in the CS2 subtype showed that inhibiting the expression of RHCG and TRPA1 could enhance 
the sensitivity of lung cancer cells to radiation.
Conclusions In summary, this study identified a risk classifier based on multi-omics data that can guide treatment selection 
for LUAD patients.
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Abbreviations
CNV  Copy number variation
GO  Gene ontology
GDSC  Genomics of drug sensitivity in cancer
ICI  Immune checkpoint inhibitor
IC50  Half-maximal inhibitory concentration
LUAD  Lung adenocarcinoma
OS  Overall survival
SNF  Similarity network fusion.
TCGA   The cancer genome atlas
TMB  Tumor mutation burden

Introduction

According to the global cancer data released by the Inter-
national Agency for Research on Cancer and World Health 
Organization, there were 19.29 million new cancer cases 
and 9.96 million cancer-related deaths worldwide in 2020. 
The incidence rate of lung cancer was 11.4%, which was the 
second highest incidence rate of cancer worldwide, and the 
mortality rate was 18.0%, which was the highest mortality 
rate for cancer worldwide [1]. Although various treatments, 
including surgery, radiation therapy, chemotherapy, tar-
geted therapy, and immunotherapy, have been substantially 
developed, the 5-year survival rate remains less than 18% 
[2], and the response rate to immunotherapy is still poor in 
patients with advanced lung cancer due to individual differ-
ences in tumors and immune systems [3]. Many preclinical 
and clinical studies have shown that radiotherapy can syner-
gize with immunotherapy to boost its antitumor effects [4]. 
This combination significantly prolongs lung cancer patient 
progression-free survival and overall survival, indicating its 
broad prospects and considerable potential [5]. However, the 
underlying mechanisms are not fully understood. Increasing 
attention has been given to avoiding the immunosuppressive 
effects of radiotherapy to maximize its immunostimulatory 
impacts.

Classification of cancer subtypes according to molecu-
lar characteristics has become essential for understanding 
the heterogeneity of cancer and its impacts on diagnosis, 
prognosis, and treatment [6]. Traditional classification meth-
ods are primarily based on the anatomical site of origin. 
However, these approaches fail to capture the molecular 
variations that drive disease progression. Subtypes should 
be determined by not only the anatomical location but also 
specific genetic and protein changes within tumor cells. 
Molecular classification refers to grouping cancer based on 
its unique genetic, epigenetic, and proteomic characteris-
tics [7]. Researchers have identified different subtypes with 
similar molecular characteristics and biological behaviors by 
studying the molecular features of tumors. These subtypes 
provide valuable insights into the potential mechanisms of 

cancer development and aid in the development of more 
targeted and personalized therapies. We have made nota-
ble advancements in our understanding of the biology of 
lung adenocarcinoma (LUAD) by categorizing various gene 
expression profiles at the transcriptional level [8]. The devel-
opment of malignant transformation requires multilayered 
molecular changes, and single-level histological approaches 
are used to identify the mechanisms of cancer development 
through high-throughput techniques [9]. However, no single-
molecule approach can fully explain the complexity of this 
problem [10]. Therefore, a multi-omics-based classification 
scheme for LUAD, which may uncover the heterogeneity 
of LUAD, has been proposed. This highlights the potential 
application of molecular classification in LUAD.

This study integrates transcriptomic, epigenetic, and 
somatic mutation data from LUAD patients to identify three 
subtypes using the similarity network fusion (SNF) algo-
rithm and analyzes the differences between subgroups to 
characterize key events in LUAD development. Addition-
ally, we discuss potential clinical treatment strategies based 
on specific molecular features, including chemotherapy and 
immunotherapy. This study provides a reference for preci-
sion medicine in LUAD patients.

Materials and methods

Cell culture and radiation

LUAD PC9 cells were purchased from the Type Culture 
Center of the Chinese Academy of Sciences (Shanghai, 
China), and A549 and H1299 cells were purchased from 
Procell (Wuhan, China). These cells were cultured in RPMI-
1640 medium (HyClone Ltd., USA) supplemented with 10% 
fetal bovine serum. All cells were cultured in a standard 
tissue culture incubator at 37 °C with 95% humidity and 5% 
 CO2. In the irradiation experiments, cells were exposed to 
a dose of 8 Gy using the Small Animal Radiation Research 
Platform (PXI X-RAD 225Cx, GulMay, CT, USA).

RNA sequencing

A549 cells in a 10-cm cell culture dish, A549 cells were 
divided into two groups: the radiation group and the control 
group, with three replicates in each group. The radiation 
group received 8 Gy of X-ray irradiation. After 48 h, the 
samples were collected, and each sample was lysed with 
1 mL of TrizolTRIzol (Vazyme, Nanjing, China) reagent to 
extract total RNA. Total RNA from six samples (three con-
trol and three radiation-treated samples) was sequenced on 
the BGISEQ platform (Beijing Genomics Institution, BGI). 
After filtering the reads with a PE150 sequencing length, 
HISAT was used to align the clean reads to the reference 
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genome sequence. Bowtie2 was subsequently applied to 
align the clean reads to the reference gene sequence to obtain 
alignment results. Finally, differential expression analysis 
was performed using Deseq2.

Data collection and processing

The RNA-seq TPM data of LUAD patients, including cor-
responding clinical data, were acquired from the TCGA 
and included 497 LUAD tissues and 54 normal tissues. 
Preprocessed methylation data were downloaded from the 
UCSC Xena database. Somatic mutation information was 
downloaded from the cBioPortal (https:// www. cbiop ortal. 
org/). Copy number variation (CNV) data were collected 
from FireBrowse. After integrating the gene expression, 
methylation, mutation, and copy number variation data of 
497 LUAD patients were integrated, the multi-omics data-
set of 446 patients was ultimately selected for subsequent 
analysis. The NSCLC patient survival datasets (GSE31210, 
GSE68465, GSE37745, and GSE50081) were downloaded 
from the GEO database as the validation sets [11–14]. The 
GSE31210, GSE50081, and GSE37745 data were gener-
ated with the GPL570 platform (Affymetrix Human Genome 
U133 Plus 2.0 Array) using 226, 181, and 196 NSCLC tis-
sue samples, respectively. The GSE68465 data were gener-
ated with the GPL96 platform (Affymetrix Human Genome 
U133A Array) using 442 LUAD samples. The immune-
related genes were obtained from the MSigDB (immune 
system process and immune response).

Identification of molecular subtypes

We conducted the data analysis following the official docu-
mentation of the R package "MOVICS" [15]. The molecular 
subtypes of LUAD were determined based on the expression 
of radiation-related genes and immune-related genes and on 
DNA methylation and somatic mutation data. Radiation-
related genes were identified from among the genes differen-
tially expressed in A549 cells after 8 Gy irradiation (Deseq2, 
logFC ≥ 1/logFC ≤ -1, Padj < 0.05). Differential analysis was 
performed on the DNA methylation CpG sites, followed by 
univariate Cox regression analysis to identify the CpG sites 
associated with overall survival (OS). The somatic muta-
tion data included the 30 genes with the highest mutation 
frequencies. We analyzed the cluster prediction index (CPI) 
and gap statistic to determine the optimal number of cancer 
subtypes [16]. Next, we classified the multiple omics data-
sets using 10 clustering algorithms, namely, iClusterBayes, 
moCluster, CIMLR, IntNMF, ConsensusClustering, COCA, 
NEMO, PINSPlus, SNF, and LRA.

Similarity network fusion (SNF) is a novel computational 
method for data integration [17]. Working within the sample 
network space, SNF circumvents issues of differing scales, 

collection biases, and noise across various data types. The 
nonlinear integration of data enables SNFs to capitalize on 
the commonalities and complementary information present 
in different data types.

Evaluation of genetic alterations among different 
subtypes

The CNV data of somatic cells were visualized using the 
"maftools" package in R [18]. The hg19.mat reference 
genome file was subsequently selected for annotation, and 
the GISTIC2.0 algorithm was used to assess the differences 
in genomic levels of loss and gain among different subtypes 
[19]. The tumor mutation burden (TMB) was obtained by 
calculating the number of nonsynonymous mutations per 
million bases. We used the built-in function of the MOV-
ICS package to calculate the fraction of the genome altered 
(FGA) by copy number amplification or deletion [20].

Immune cell infiltration and immune checkpoint 
analysis

The differences in immune cell infiltration among the 
three subtypes were evaluated using CIBERSORT and 
MCPcounte [21, 22]. Heatmaps revealed the differences 
in immune cell infiltration according to the different algo-
rithms. In addition, the differences in immune checkpoint 
expression levels among these three subtypes were analyzed, 
further revealing the link between subtypes and immunity.

Analysis of subtypes in relation to immunotherapy 
and chemotherapy sensitivity

We predicted the sensitivity of the samples to chemother-
apy by using the Genomics of Drug Sensitivity in Cancer 
(GDSC) database. Using the R package pRRophetic, we 
estimated the sensitivity of LUAD patients to commonly 
used drugs, namely, cisplatin, paclitaxel, and docetaxel, 
through ridge regression [23]. The half-maximal inhibitory 
concentration (IC50) was used to compare the response to 
the drugs between subtypes. A specific gene set of 795 genes 
was obtained from a melanoma cohort of patients receiving 
CTLA-4 or PD-1 antibodies [24]. Subclass mapping analysis 
was also conducted to compare the similarities between the 
risk group and the immunotherapy subgroup, and patients 
who responded to anti-CTLA-4 or anti-PD-1 immunother-
apy were identified [25].

Analysis of single‑cell RNA sequencing

The Seurat analysis pipeline provided by the R package 
scissor was used to analyze single-cell lung cancer data 
[26]. Cells with fewer than 200 genes and genes expressed 

https://www.cbioportal.org/
https://www.cbioportal.org/
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in fewer than three cells were excluded, and the remain-
ing cells were included for further analysis. Cell types 
were determined using marker genes from previous stud-
ies. Specifically, the tumor cell markers were EPCAM and 
KRT19; T/NK cell markers were NKG7, CD3E, CD3G, 
and CD3D; B-cell markers were CD79A and CD79B; 
myeloid cell marker was LYZ; mast cell markers were 
TPSB2 and TPSAB1; fibroblast markers were COL1A1 
and COL1A2; endothelial cell marker was CLDN5; and 
normal epithelial cell marker was CAPS [27].

The scissor algorithm combines single‑cell data 
with bulk data

The scissor algorithm is used to identify cell subpopula-
tions associated with a given phenotype from single-cell 
data [26]. We used the 'scissor' algorithm, we identified 
to identify scissor-positive and scissor-negative cells in 
single-cell data, which are related to the multi-omics 
molecular classification. These cells were denoted as '1' for 
scissor-positive and '2' for scissor-negative, while '0' rep-
resented cells unrelated to classification. Subsequently, we 
calculated the proportions of positive and negative cells 
across various cell subgroups. The functional differences 
between cell types were obtained by functional enrichment 
analysis of scissor + and scissor- cells. Then, using the R 
package cellChat, we calculated the cell communication 
intensity between scissor + and scissor- cells and the dif-
ferences in receptor–ligand pairs [28].

External cohort validation

To validate the accuracy of our molecular classification 
predictions for prognosis, four LUAD datasets (GSE31210, 
GSE50081, GSE37745, and GSE68465) from the GEO 
were selected as external datasets for validation. The nearest 
template prediction (NTP) algorithm is flexibly applied to 
cross-platform, cross-species, and multicategory predictions 
without parameter optimization during analysis [29]. There-
fore, the NTP algorithm was used to classify the external 
dataset molecularly and calculate the differences in progno-
sis among different classifications.

siRNA transfection

We transfected RHCG, TRPA1-specific, or TRPA1-non-
specific siRNAs synthesized by Beijing TsingKe Company 
(Beijing, China) using jetPRIME transfection reagent (Poly-
plus-transfection® SA, France). The siRNA sequences used 
are listed in Table S1.

RNA extraction and qRT‒PCR

Total RNA was isolated from cells using TRIzol reagent 
(Vazyme Ltd., China). We used HiScript® Q RT SuperMix 
(Vazyme Ltd., China) to transcribe RNA and ChamQTM 
SYBR® qPCR Master Mix (Vazyme Ltd., China) for qRT‒
PCR. The primer sequences are listed in Table S2.

Flow cytometry

For apoptosis, the cells and medium supernatant were col-
lected 48 h after treatment and washed twice with 4 °C PBS. 
The cells were stained with Annexin V-FITC and PI on ice. 
The cells were collected 24 h after treatment and washed 
with PBS for the cell cycle. The cells were then incubated 
with the staining agent PI at room temperature in the dark 
for 30 min. The data were acquired on the CytoFLEX system 
and analyzed with FlowJo V10.

Colony formation and cell counting kit‑8 (CCK‑8) assays

The cells were seeded into 6-well plates (1000 cells/well) 
and 96-well plates (1,000 cells/well) 48 h after radiation. 
A Cell Counting Kit-8 (CCK-8) assay was used to detect 
cell viability. After 10–14 days of culture, the colonies were 
fixed with 4% paraformaldehyde and stained with 0.5% crys-
tal violet. The numbers of colonies were then counted via 
ImageJ.

Statistical analysis

All experimental data are expressed as the mean ± standard 
deviation (SD). One-way analysis of variance (ANOVA) was 
used to determine significant differences among more than 
two groups. Student’s t test was used to test for statistical sig-
nificance between two groups, and P ≤ 0.05 was considered 
to indicate statistical significance.

Results

Three subtypes of LUAD patients were categorized 
by multi‑omics classification

A differential analysis was conducted on the sequencing 
data of A549 cells before and after radiation, which revealed 
1,068 differentially expressed genes, 284 of which exhibited 
decreased expression, and 784 of which exhibited increased 
expression after radiation (Fig. 1A). After matching the 
radiation-related gene, immune-related gene, methyla-
tion, and mutation data, 446 TCGA-LUAD samples were 
included in the subsequent analysis. The number of clus-
ters was estimated using the cluster prediction index (CPI) 
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Fig. 1  Achieving lung adenocarcinoma classification based on multi-
omics data. A Volcano plot of differentially expressed genes in A549 
cells before and after radiation. B Calculation of the CPI and gap sta-
tistic to identify the optimal clustering number for LUAD. C Using 
multi-omics data, a comprehensive heatmap displaying the detailed 

molecular landscapes of radio-related genes, immune-related genes, 
DNA methylation, and gene mutations in the three subtypes was con-
structed. D Kaplan‒Meier survival analysis of OS rates for the three 
subtypes. E Heatmap of upregulated biomarkers in the subgroups
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and gap statistics (Fig. 1B). We conducted the analysis with 
k = 3. Subsequently, we applied 10 algorithms to cluster 
LUAD patients. The results showed that the SNF algorithm 
could successfully separate and distinguish LUAD patients 
when k = 3 (Fig. 1C, Additional file 1: Fig. S1). Although 
the ConsensusClustering classification was meaningful 
in the TCGA-LUAD dataset, it failed to yield significant 
results in four independent validation sets. Based on the 
SNF algorithm, LUAD patients were classified into three 
subtypes: CS1, CS2, and CS3 (Fig. 1C, Table 1). Survival 
analysis revealed significant differences in overall survival 
rates among these three subtypes (P = 0.029; Fig. 1D). CS3 
patients had a relatively favorable prognosis, while CS2 
patients had the worst prognosis. The heatmaps of the upreg-
ulated biomarkers in these subgroups are shown in Fig. 1E.

Evaluation of genetic alteration for three subtypes

Gene mutations and CNVs play critical roles in the initia-
tion and progression of tumors [30]. Therefore, we com-
pared the gene alterations among the different subtypes. 
First, we compared the differences in the mutations of 
individual genes among these three subtypes. TTN, TP53, 
MUC16, CSMD3, and RYR2 were the five genes with the 
highest mutation frequencies in LUAD patients. Compared 

to those in the CS3 group, the CS1 and CS2 groups had 
higher mutation frequencies (Fig. 2A). The mutation fre-
quencies of the TTN and TP53 genes were slightly higher 
in the CS2 group than in the CS1 group, while the KRAS 
gene had the highest mutation frequency in the CS1 group 
(Table 2). The TMB is a promising and clinically vali-
dated biomarker for immune checkpoint inhibitors (ICIs) 
[31]. The TMB was highest in the CS2 group, while it was 
lowest in the CS3 group (Fig. 2B). High TMB represents 
the presence of new antigens in tumor cells, increasing 
the likelihood of recognition by the immune system and 
response to immunotherapy [32, 33]. Therefore, patients 
in the CS2 group may have a better response to immuno-
therapy. We also evaluated CNVs in the three subtypes by 
calculating the FGA score to study chromosomal insta-
bility. We found that, compared with the other subtypes, 
CS3 had better chromosomal stability and significantly 
lower copy number loss or gain. To explore the differences 
in somatic copy number alterations (SCNAs) among the 
different subtypes, we analyzed the changes in chromo-
somal regions using GISTIC 2.0. We plotted copy number 
amplifications and deletions based on G-scores. We found 
significant copy number amplifications on chromosomes 2 
and 8 in CS1 patients and on chromosomes 3, 7, and 12 in 
CS2 patients (Fig. 2D). These results revealed the reasons 

Table 1  Baseline characteristics 
of participants in CS1, CS2, and 
CS3 LUAD groups

Comptab.level Comptab.CS1 Comptab.CS2 Comptab.CS3 Comptab.p Comptab.test

n 142 182 122
Age (%)  <  = 65 78 (54.9) 82 (45.1) 52 (42.6) 0.311

 > 65 59 (41.5) 92 (50.5) 64 (52.5)
Unknown 5 ( 3.5) 8 ( 4.4) 6 ( 4.9)

M (%) M0 95 (66.9) 121 (66.5) 71 (58.2) 0.134
M1 9 ( 6.3) 7 ( 3.8) 3 ( 2.5)
Unknown 38 (26.8) 54 (29.7) 48 (39.3)

N (%) N0 92 (64.8) 114 (62.6) 84 (68.9) 0.076 Exact
N1 21 (14.8) 39 (21.4) 21 (17.2)
N2 27 (19.0) 26 (14.3) 11 ( 9.0)
N3 0 ( 0.0) 1 ( 0.5) 0 ( 0.0)
Unknown 2 ( 1.4) 2 ( 1.1) 6 ( 4.9)

T (%) T1 38 (26.8) 59 (32.4) 54 (44.3) 0.012 Exact
T2 87 (61.3) 100 (54.9) 51 (41.8)
T3 13 ( 9.2) 14 ( 7.7) 11 ( 9.0)
T4 4 ( 2.8) 9 ( 4.9) 3 ( 2.5)
Unknown 0 ( 0.0) 0 ( 0.0) 3 ( 2.5)

Gender (%) Female 58 (40.8) 100 (54.9) 82 (67.2)  < 0.001
Male 84 (59.2) 82 (45.1) 40 (32.8)

Stage (%) Stage 1 76 (53.5) 91 (50.0) 76 (62.3) 0.312 Exact
Stage 2 31 (21.8) 49 (26.9) 27 (22.1)
Stage 3 26 (18.3) 32 (17.6) 14 (11.5)
Stage 4 9 ( 6.3) 7 ( 3.8) 4 ( 3.3)
Unknown 0 ( 0.0) 3 ( 1.6) 1 ( 0.8)
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Fig. 2  Changes at the gene level in each subtype. A Waterfall plot 
showing significantly mutated genes in each subtype. B Analysis of 
TMB between subgroups. C Distribution of FGA and FGG/FGL. The 

bar chart represents the mean ± SD. D Copy number amplifications 
and deletions of 22 chromosomes in the three subgroups
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for the good prognosis of CS3 and the poor prognosis of 
CS1 and CS2 at the gene mutation and copy number levels.

Evaluation of the immune microenvironment 
and response to immunotherapy and chemotherapy

Considering the crucial role of the immune system in the 
progression of LUAD, we investigated the abundance of 
immune cell distributions and immune checkpoint expres-
sion in these three subtypes. Patients in the CS2 group 
exhibited the highest levels of immune checkpoint expres-
sion and immune cell infiltration, while those in the CS1 
group had the lowest levels (Fig. 3A). Subsequently, we 
investigated the treatment response of these three subtypes 
to ICIs. We used a subtype mapping approach to predict the 
clinical response to immune checkpoint blockade. The CS2 
patients were more likely to benefit from anti-PD-1 immu-
notherapy (p < 0.05, Bonferroni corrected), consistent with 
previous findings on TMB (Fig. 3B). We also analyzed the 

drug sensitivity of these three subtypes to cisplatin, pacli-
taxel, and docetaxel. The patients in the CS2 group were 
most sensitive to docetaxel and cisplatin, while those in the 
CS1 group exhibited the highest sensitivity to paclitaxel 
(Fig. 3C).

Functional enrichment analysis and single‑cell 
analysis of subtypes

We conducted functional enrichment analysis of the three 
subtypes using the GSEA algorithm (Fig. 4A). The results 
indicate that the CS1 group activates biological processes 
related to chromatin assembly or disassembly, chromatin 
silencing, and DNA packaging, which are associated with 
the cell nucleus. The CS2 group also exhibited activation 
tendencies in these biological processes, but the CS3 group 
exhibited inhibition of these life activities. Moreover, CS2 
is primarily associated with the production of immuno-
globulins, B-cell-mediated immunity, lymphocyte-mediated 

Table 2  Independent test of 
subtypes and mutations

Gene (Mutated) TMB CS1 CS2 CS3 p value p adj

TP53 174 (39%) 44 (31.0%) 107 (58.8%) 23 (18.9%) 8.84e-13 2.65e-11
TTN 195 (44%) 64 (45.1%) 102 (56.0%) 29 (23.8%) 1.08e-07 4.63e-07
MUC16 164 (37%) 64 (45.1%) 83 (45.6%) 17 (13.9%) 1.05e-09 7.88e-09
CSMD3 157 (35%) 46 (32.4%) 94 (51.6%) 17 (13.9%) 2.65e-11 3.97e-10
RYR2 150 (34%) 63 (44.4%) 71 (39.0%) 16 (13.1%) 1.62e-08 9.72e-08
LRP1B 134 (30%) 52 (36.6%) 68 (37.4%) 14 (11.5%) 2.15e-07 8.06e-07
USH2A 132 (30%) 49 (34.5%) 67 (36.8%) 16 (13.1%) 5.66e-06 9.99e-06
ZFHX4 123 (28%) 49 (34.5%) 61 (33.5%) 13 (10.7%) 1.35e-06 3.12e-06
KRAS 124 (28%) 62 (43.7%) 39 (21.4%) 23 (18.9%) 3.18e-06 6.36e-06
XIRP2 108 (24%) 35 (24.6%) 60 (33.0%) 13 (10.7%) 2.39e-05 3.77e-05
FLG 111 (25%) 43 (30.3%) 55 (30.2%) 13 (10.7%) 4.32e-05 6.17e-05
SPTA1 101 (23%) 40 (28.2%) 53 (29.1%) 8 (6.6%) 4.84e-07 1.45e-06
FAT3 80 (18%) 30 (21.1%) 41 (22.5%) 9 (7.4%) 7.88e-04 9.09e-04
NAV3 85 (19%) 34 (23.9%) 42 (23.1%) 9 (7.4%) 2.21e-04 2.88e-04
COL11A1 83 (19%) 40 (28.2%) 37 (20.3%) 6 (4.9%) 1.02e-06 2.78e-06
ZNF536 85 (19%) 27 (19.0%) 49 (26.9%) 9 (7.4%) 5.55e-05 7.57e-05
CSMD1 77 (17%) 34 (23.9%) 32 (17.6%) 11 (9.0%) 4.89e-03 5.24e-03
ANK2 83 (19%) 34 (23.9%) 40 (22.0%) 9 (7.4%) 3.40e-04 4.25e-04
PCLO 77 (17%) 26 (18.3%) 45 (24.7%) 6 (4.9%) 9.62e-06 1.60e-05
PCDH15 80 (18%) 29 (20.4%) 41 (22.5%) 10 (8.2%) 2.35e-03 2.61e-03
MUC17 78 (18%) 36 (25.4%) 39 (21.4%) 3 (2.5%) 3.44e-08 1.72e-07
RYR3 78 (18%) 33 (23.2%) 41 (22.5%) 4 (3.3%) 4.31e-07 1.44e-06
APOB 77 (17%) 24 (16.9%) 47 (25.8%) 6 (4.9%) 3.73e-06 6.99e-06
ADAMTS12 74 (17%) 20 (14.1%) 44 (24.2%) 10 (8.2%) 6.88e-04 8.26e-04
KEAP1 72 (16%) 43 (30.3%) 26 (14.3%) 3 (2.5%) 7.29e-10 7.29e-09
TNR 70 (16%) 30 (21.1%) 30 (16.5%) 10 (8.2%) 1.18e-02 1.22e-02
PAPPA2 73 (16%) 27 (19.0%) 35 (19.2%) 11 (9.0%) 2.77e-02 2.77e-02
DNAH9 70 (16%) 23 (16.2%) 43 (23.6%) 4 (3.3%) 1.50e-06 3.21e-06
RP1L1 70 (16%) 21 (14.8%) 43 (23.6%) 6 (4.9%) 2.60e-05 3.90e-05
ADGRG4 65 (15%) 22 (15.5%) 40 (22.0%) 3 (2.5%) 1.18e-06 2.95e-06
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immunity, and other immune response processes. These bio-
logical processes in the CS1 group were inhibited, which 
was consistent with the results of immune infiltration and 

may be the reason for the poor immune treatment response 
in CS1 patients.

We combined single-cell data with bulk data using the 
scissor algorithm to further explore the differences in tumor 

Fig. 3  Differences in the immune microenvironment and sensitivity 
to immunotherapy and chemotherapy among subtypes. A Heatmap 
showing the expression of immune checkpoint genes and the levels 

of tumor-infiltrating lymphocytes in each subtype. B Submap analysis 
displaying patient responses to PD-1 immunotherapy in each subtype. 
C IC50 values of commonly used chemotherapy drugs
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immune microenvironment subtypes. Cell annotation was 
performed after gene filtering, normalization, and principal 
component analysis were performed to obtain eight spe-
cific cell types (Fig. 4B, C). Subsequently, using the scis-
sor algorithm, we successfully predicted three cell clusters, 
labeled 0, 1, and 2. Here, 1 represents scissor-positive cells, 

2 denotes scissor-negative cells, and 0 corresponds to cell 
clusters unrelated to the classification (Fig. 4D). The bar 
chart shows the proportions of specific cell types predicted 
by the scissor algorithm in each cluster (Fig. 4E). Cluster 
C1 was enriched with B cells, T/NK cells, myeloid cells, 
and endothelial cells. Cluster C2 was enriched with normal 

Fig. 4  Integration analysis of single-cell and bulk sequencing data. A 
GO enrichment analysis displaying upregulated and downregulated 
pathways in each subtype. B UMAP dimensionality reduction cluster-
ing plot. C tSNE dimensionality reduction clustering plot. D UMAP 

plot of scissor cell distribution. E Proportions of specific cell types 
predicted by the scissor algorithm in each cell cluster. F Heatmap of 
single-cell functional enrichment analysis
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epithelial cells, fibroblasts, adipocytes, and tumor cells. 
Functional enrichment analysis of single-cell data was per-
formed using the UCell, singscore, and ssGSEA algorithms, 
followed by integration of the results using the RRA algo-
rithm (Fig. 4F). As shown in Fig. 4F, in the scissor + cells, 
genes related to the IFN-γ response, IFN-α response activa-
tion, P53 pathway, and UV response were inhibited, while 
the opposite was observed in the scissor- cells.

We also analyzed the differences in cell communication 
between scissor + and Scissor- cells, and the scissor + cells 
had both a higher number and stronger intensity of com-
munication than the scissor- cells (Fig. 5A). Network visu-
alization was generated to display the interactions between 
different cells (Fig. 5B). Ligand–receptor pair comparisons 
between cells revealed that the differences in ligand–receptor 
pairs between the scissor + and scissor- cells were mainly 
observed for B cells and T/NK cells, while myeloid cells and 
tumor cells among the scissor + cells exhibited greater com-
munication intensity and significance, which is consistent 
with the results obtained from the GSEA of these subtypes 
(Fig. 5C–E). These results suggested that B cells play impor-
tant roles in the CS2 subtype.

Validating the reliability of subtypes with four 
external datasets

We determined the top 200 upregulated biomarkers 
(P < 0.05) for the three subtypes using 'DESeq2'. Subse-
quently, we selected four external lung cancer datasets: 
GSE31210, GSE33745, GSE50081, and GSE68465. These 
external datasets were used to validate the reliability of the 
subtypes. Based on the specific upregulation profile of bio-
markers in each subtype, the NTP method was used to pre-
dict the prognosis for each dataset (Fig. 6A–D). The NTP 
results, as shown in the figure, demonstrated that CS3 had 
the best prognosis of all the external validation datasets, 
while CS1 and CS2 had poorer prognoses, consistent with 
the original subtype predictions (Fig. 6E–H). Moreover, 
there was no significant difference in prognosis between 
CS1 and CS2 patients; however, in some datasets, such as 
in GSE33745 and GSE68465, CS2 patients had a slightly 
worse prognosis than CS1 patients. These results indicated 
the reliability of our subtyping approach.

Acquisition and validation of marker genes 
for the CS2 subtype

We used the edgeR algorithm to perform differential 
expression analysis between CS2 and the other subtypes. 
We selected CS2-specific highly expressed marker genes 
and intersected these genes with differential genes in 
LUAD, prognostic-related genes, and radiation-enhanced 
genes, resulting in 35 common genes (Fig. 7A). These 

genes may play essential roles in the progression and radi-
oresistance of LUAD. We selected the top-ranking gene 
RHCG and the intermediate-ranking gene TRPA1 for 
bioinformatics and experimental validation. RHCG and 
TRPA1 were highly expressed in LUAD tissues and exhib-
ited significant differences in paired samples (Fig. 7B, C). 
Patients with high RHCG and TRPA1 expression had poor 
prognoses (Fig. 7D).

Validation of the impact of RHCG and TRPA1 
on radiosensitivity

Increased apoptosis can be induced by radiation. We tested 
the impact of silencing TRPA1 and the combination of 
silencing TRPA1 with radiation on apoptosis. TRPA1 
silencing increased A549 and H1299 cell apoptosis and 
radiation-induced apoptosis in A549 cells but not in 
H1299 cells, considering that H1299 cells were radiore-
sistant. When siTRPA1 was combined with radiation, the 
rate of apoptosis was more pronounced in both A549 and 
H1299 cells (Fig. 8A, B). Radiation increased the propor-
tion of G2/M phase cells, and the combination of radiation 
and TRPA1 silencing significantly increased the propor-
tion of G2/M phase cells among the A549 and H1299 cells 
compared to that in the radiation group (Fig. 8C, D). To 
investigate the impact of the combination of radiation and 
TRPA1 silencing on cell proliferation, colony formation 
and CCK-8 assays were also conducted. Radiation signifi-
cantly decreased the number of cell colonies formed by 
A549 and H1299 cells, and cell colony formation was sig-
nificantly reduced in the combination group compared to 
that in the radiation group (Fig. 8E, F). The CCK-8 assay 
results also showed that the combination treatment signifi-
cantly reduced the viability of both cell lines (Additional 
file 1: Fig. S3 A, B). Quantitative statistical analysis of the 
above experimental results revealed significant differences 
between the groups (Fig. 8G, H, I).

We also investigated the synergistic antitumor effect 
of RHCG silencing and radiation on A549 and PC9 cells 
(Additional file 1: Fig. S2 C, D). Flow cytometry was used 
to examine the impact of radiation and RHCG silencing 
on apoptosis. RHCG knockdown, in combination with 
radiation, enhanced cell apoptosis (Fig. S4A, B). Radia-
tion caused an increase in the number of G2/M phase cells, 
while the combination of RHCG silencing and radiation 
led to an even greater increase (Fig. S4 C, D). Colony 
formation and CCK-8 assays demonstrated that RHCG 
silencing enhanced the radiation-induced decrease in cell 
viability (Fig. S4 E, F; Additional file 1: Fig. S3 C, D). 
Quantitative statistical analysis of the above experimental 
results revealed significant differences between the groups 
(Fig. S4G, H, I).
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Fig. 5  Cell-to-cell communication analysis. A Bar graph displaying 
the strength and quantity of intercellular communication between the 
scissor + and Scissor- cells. B Circular plot of cell-to-cell communi-
cation among the major scissor + and scissor- cell types. C Ligand–

receptor pairs between cells. D Heatmap of intercellular communica-
tion between the scissor + and scissor- cells. E Relative information 
flow between the scissor + and scissor- cells
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Fig. 6  External dataset validation. A–D Heatmaps of NTP in 
four external datasets (GSE31210, GSE33745, GSE50081, and 
GSE68465) generated from subtype-specific upregulated biomarkers 

identified in the LUAD cohort. E–H Kaplan‒Meier survival curves 
predicting the three subtypes in four external datasets
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Fig. 7  Obtaining CS2 subtype signature genes. A Venn diagram 
showing the intersection of the CS2 signature gene, differential gene 
in LUAD, differential gene in radiotherapy, and prognostic gene 
sets. B Differences in the expression of TRPA1 and RHCG between 
tumor tissue and adjacent tissue in LUAD. C Differences in TRPA1 

and RHCG expression between paired sample tissues from LUAD 
patients. D Kaplan‒Meier curves demonstrating prognostic differ-
ences between the high- and low-expression groups of RHCG and 
TRPA1 in LUAD
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Fig. 8  Experiment to verify the effect of TRPA1 expression on 
the radiosensitivity of LUAD cells. A-B Flow cytometry was used 
to measure the apoptosis rate of A549 and H1299 cells. C-D Flow 
cytometry was used to detect the cell cycle distribution of A549 and 

H1299 cells. E–F Clonogenic assay to test the proliferation of A549 
and H1299 cells. G-I Quantitative statistical graphs of the above 
experiments
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Discussion

In this study, we successfully established a subtype clas-
sifier using the SNF algorithm, which is associated with 
radiation, immune responses, DNA methylation, and 
somatic mutations. TCGA-LUAD patients were classified 
into three subtypes. Among these three subtypes, patients 
in the CS3 group had a better prognosis than patients in 
the CS1 and CS2 groups. Consistent results were obtained 
in four independent external datasets.

Regarding genetic alterations, the CS1 and CS2 groups 
had higher gene mutation frequencies than the CS3 group, 
which may be the reason for the poorer prognosis of the 
CS1 and CS2 groups. The CS2 group had higher TTN and 
TP53 gene mutation frequencies than the CS1 group, while 
the KRAS gene mutation frequency was highest in the 
CS1 group. In the early stages of carcinogenesis, KRAS 
mutation promotes the survival, invasion, and migration of 
cancer cells [34]. In LUAD patients, the presence of TP53 
mutations is associated with shorter overall survival [35]. 
TTN gene mutations are related to myofilament dysfunc-
tion and abnormal muscle fiber growth. In recent years, 
the relationship between TTN gene mutations and solid 
tumors has received widespread attention. LUAD patients 
with TTN mutations have an inflammatory tumor micro-
environment and high levels of activated immune cells. 
TTN mutation may be a potential predictive biomarker 
for LUAD patients receiving ICI therapy [36]. The TMB 
was higher in the CS2 group than in the other group, while 
the CS3 group had a lower TMB than the other groups. 
Patients with high TMB are more likely to be recognized 
by the immune system and to respond to immunotherapy. 
Therefore, the CS2 group may respond better to immune 
therapy, consistent with the previous immunotherapy 
response analysis results.

Immunotherapy provides a promising and innovative 
approach for the treatment of cancer. By harnessing the 
power of the immune system, immunotherapy has shown 
significant efficacy in treating various types of cancer, 
improving outcomes, and offering new hope to patients 
worldwide [37, 38]. However, despite the tremendous 
success of immunotherapy, some limiting factors, such as 
tumor heterogeneity, primary and acquired resistance, side 
effects, and toxicity, still hinder its widespread application 
[39]. Therefore, utilizing specific biomarkers to distinguish 
between sensitive and insensitive populations is crucial. 
In the era of precision cancer treatment, our established 
LUAD classification system holds a great potential for pre-
dicting and evaluating the effects of immunotherapy on 
LUAD patients. We utilized the SubMap method to have 
a higher likelihood of obtaining a better response to PD-1 
immunotherapy in CS2 patients. Furthermore, considering 

that chemotherapy is a standard lung cancer treatment, 
we estimated the chemosensitivity of each sample based 
on the IC50 value. The results showed that patients in the 
CS2 group were most sensitive to docetaxel and cisplatin, 
while patients in the CS1 group were most sensitive to 
paclitaxel.

The tumor microenvironment is crucial for tumor initia-
tion, progression, and immunity [40]. Studies have shown 
that tumor-infiltrating B cells are essential regulators of 
lung cancer progression [41]. Under tumor microenviron-
ment signaling, B cells infiltrate, proliferate, and develop 
within tumors. Tumor-infiltrating B cells exert antitumor 
immune responses by secreting tumor-specific antibodies, 
promoting T-cell responses, and maintaining the structure 
and function of tertiary lymphoid structures, all of which 
are associated with favorable outcomes in lung cancer 
patients. However, as multifaceted effectors, B cells can 
also develop an immunosuppressive phenotype character-
ized by the secretion of IL-10, leading to tumor progres-
sion [42]. We used the scissor algorithm combined with 
molecular typing and single-cell data to uncover the under-
lying mechanisms of the subtypes. The results showed that 
B cells play an essential role in CS2 subtyping, which is 
consistent with the functional enrichment results, suggest-
ing that B cells, as potential targets, play a crucial role in 
immunotherapy.

The Rh family C glycoprotein (RHCG) is an electroneu-
tral and bidirectional ammonia transporter that can regulate 
ammonia secretion across epithelia [43]. Research has shown 
that RHCG plays an important role in various cancers, such 
as cervical squamous cell carcinoma and esophageal can-
cer, but has a procarcinogenic effect on gastric cancer [44]. 
RHCG affects the proliferation, motility, and metastasis of 
tumor cells However, no study has explored the expression 
and potential functions of RHCG in LUAD. Transient recep-
tor potential cation channel subfamily A member 1 (TRPA1) 
is a nonselective cation channel that plays a vital role in 
sensation and pain perception [45]. Emerging evidence sug-
gests that TRPA1 may have significant implications for the 
occurrence and development of cancer. High expression of 
TRPA1 has been observed in several types of cancer, includ-
ing breast, lung, pancreatic, and colorectal cancer [46–48]. 
Studies have shown that activation of TRPA1 can promote 
cancer cell growth, invasion, and metastasis, which makes 
TRPA1 an attractive target for therapeutic intervention. 
Overall, the roles of RHCG and TRPA1 in the context of 
radiotherapy and immunotherapy in LUAD have not yet 
been determined. Our findings suggest that the inhibition 
of RHCG and TRPA1 enhances the sensitivity of lung can-
cer cells to radiation and may provide a new target for the 
combination of radiotherapy and immunotherapy for lung 
cancer treatment. Further research can identify the detailed 
mechanisms of these molecules in tumor radiation therapy 
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and immunotherapy, providing a theoretical basis for devel-
oping new treatment strategies.

However, several limitations in the current study should 
be considered when interpreting our results. First, tran-
scriptome analysis can only reflect changes at the mRNA 
level rather than overall changes. Second, our study focused 
on investigating the reasons for poor prognosis in the CS2 
group, but there was insufficient research on the differences 
between the CS2 and CS1 groups. The CS1 group, which 
includes cold tumors, may represent a population that is 
insensitive to immunotherapy in the clinic. Therefore, fur-
ther exploration of the differences between these two groups 
may provide a potential solution to address the poor response 
to immune checkpoint inhibitors. Finally, our results need to 
be validated using in vivo experiments and clinical samples.

Conclusion

In conclusion, we successfully classified LUAD into three 
subtypes by integrating various omics data. These subtypes 
are closely associated with patient prognosis, tumor micro-
environment characteristics, molecular features, chemo-
therapy, and immunotherapy response. Our findings may 
contribute to a better understanding and exploration of 
the heterogeneity of LUAD and its underlying pathologi-
cal mechanisms. We hope that this innovative classification 
method for LUAD will further contribute to precision med-
icine and provide insights for developing rational clinical 
strategies for radiotherapy and immunotherapy.
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