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Abstract
The response rate of anti-PD1 therapy is limited, and the influence of anti-PD1 therapy on cancer patients is unclear. To 
address these challenges, we conducted a longitudinal analysis of plasma proteomic changes with anti-PD1 therapy in 
non-small cell lung cancer (NSCLC), alveolar soft part sarcoma (ASPS), and lymphoma patients. We included 339 plasma 
samples before and after anti-PD1 therapy from 193 patients with NSCLC, ASPS, or lymphoma. The plasma proteins were 
detected using data-independent acquisition-mass spectrometry and customable antibody microarrays. Differential proteomic 
characteristics in responders (R) and non-responders (NR) before and after anti-PD1 therapy were elucidated. A total of 
1019 proteins were detected using our in-depth proteomics platform and distributed across 10–12 orders of abundance. By 
comparing the differential plasma proteome expression between R and NR groups, 50, 206, and 268 proteins were identi-
fied in NSCLC, ASPS, and lymphoma patients, respectively. Th17, IL-17, and JAK-STAT signal pathways were identified 
upregulated in NR group, while cellular senescence and transcriptional misregulation pathways were activated in R group. 
Longitudinal proteomics analysis revealed the IL-17 signaling pathway was downregulated after treatment. Consistently, 
many proteins were identified as potential combinatorial therapeutic targets (e.g., IL-17A and CD22). Five noninvasive 
biomarkers (FLT4, SFTPB, GNPTG, F5, and IL-17A) were further validated in an independent lymphoma cohort (n = 39), 
and another three noninvasive biomarkers (KIT, CCL3, and TNFSF1) were validated in NSCLC cohort (n = 76). Our results 
provide molecular insights into the anti-PD1 therapy in cancer patients and identify new therapeutic strategies for anti-PD1-
resistant patients.
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Introduction

Immune checkpoint inhibitors (ICIs) targeting pro-
grammed death 1 (PD1) or programmed death-ligand 1 
(PD-L1) have revolutionized the pattern of anti-tumor 
treatment with improved survival in multiple cancer types 
[1, 2]. However, a large portion of cancer patients can-
not benefit from anti-PD1 therapy [3]. Previous genomic 
and transcriptomic studies have identified biomarkers for 
the efficacy prediction of anti-PD1 therapy. To date, only 
three markers were approved by the United States Food 
and Drug Administration (FDA) [4], including micro-
satellite instability (MSI)/mismatch-repair deficiency 
(dMMR) [5], tumor mutation burden (TMB) [6] in pancan-
cer, and PD-L1 expression in non-small cell lung cancer 
(NSCLC) [7]. Moreover, the clinical predictive value of 
these biomarkers remains within the range of 20%–80% 
and is largely influenced by the assay used and cancer 
type [8–12]. Therefore, it is imperative to identify new 
biomarkers for anti-PD1 immunotherapy [13].

Proteomics technologies that can measure all proteins in 
clinical samples offer an alternative approach in elucidat-
ing the heterogeneous responses of cancer patients and dis-
covering biomarkers for anti-PD1 therapy [14]. Compared 
to tissues, the detection of protein biomarkers is simple, 
noninvasive, and can be easily adapted in the clinic [15, 
16]. In our previous study, we identified five autoantibody 
biomarkers for anti-PD1 therapy using high-throughput 
protein arrays [17]. In addition to autoantibodies, there 
are numerous plasma proteins that can be used as bio-
markers in clinical diagnostics and prognosis prediction 
[18]. However, the detection of low-abundance proteins is 
particularly challenging for mass spectrometry (MS). To 
address this need, we developed an in-depth serum prot-
eomic platform using DIA-MS and customizable antibody 
microarrays that can detect serum proteins covering 10–12 
orders of abundance magnetite [19]. Using a similar strat-
egy, Babačić et al. investigated serial plasma samples from 
24 patients with metastatic melanoma and observed an 
increase in circulating PD1 during anti-PD1 therapy, as 
well as diverse immune plasma proteomic signatures in 
anti-PD1 responders [20]. However, the number of patients 
analyzed in that study is limited and thus requires valida-
tion using a larger cohort. Moreover, only one cancer type 
was investigated in the study, and the influence of PD1 
therapy on different cancers is unclear.

In this study, we systematically analyzed the expres-
sion of the plasma proteome (n = 339) in a cohort of 193 
NSCLC, alveolar soft part sarcoma (ASPS), and lymphoma 
patients longitudinally using our in-depth proteomic plat-
form by integrating DIA-MS and antibody microarrays. 
The differentially expressed proteins between responders 

(R) and non-responders (NR) were identified by statistical 
analysis. Bioinformatics analysis further illustrated com-
mon and specific biological processes and signaling path-
ways that were altered in NSCLC, ASPS, and lymphoma 
cancer patients. In addition, biomarkers and combinational 
protein targets that could be potentially used to maximize 
therapeutic benefits for cancer patients were identified and 
validated in independent clinical cohorts.

Materials and methods

Plasma sample collection

We longitudinally collected serial plasma samples before 
and after treatment, including the 1st, 2nd, 3rd, or more than 
3rd assessment time points. A total of 339 plasma samples 
were collected from August 2016 to March 2022 from 93 
NSCLC patients (92 patients have pre-treatment samples), 
12 ASPS patients, and 88 lymphoma patients (Table S1). 
Among NSCLC patients, six patients were EGFR muta-
tion positive, none had ALK rearrangements, in 29 NSCLC 
patients with PD-L1 expression level available, and PD-L1 
scores of TPS ≥ 50%, TPS 1 to 49%, and TPS < 1% were 
observed in 10, 11, and 8 patients, respectively. All blood 
samples were collected in EDTA tubes. After centrifugation 
at 16,000g at 4 °C for 10 min, the plasma was collected in a 
new tube and stored at − 80 °C until use.

Patient baseline characteristics including age at treat-
ment start, gender, ECOG performance, and tumor stage 
are shown in Table S2. Three approved anti-PD1 antibod-
ies including Sintilimab, Toripalimab, and Nivolumab were 
used. Treatment efficacy was evaluated by oncologists and 
radiologists according to clinical and radiological examina-
tion results. The clinical response was defined as complete 
response (CR), partial response (PR), stable disease (SD), 
or progressive disease (PD) based on Response Evaluation 
Criteria in Solid Tumours (RECIST) version 1.1 for ASPS, 
NSCLC, and International Working Group 2007 Criteria for 
lymphoma [21, 22]. Responder (R) patients were defined 
as patients with CR/PR or SD lasting ≥ 6 months. The non-
responder (NR) group included patients who had PD on/
before 6 months [23–25].

All experiments were conducted with the approval of the 
Research Ethics Committee and according to the Declara-
tion of Helsinki.

Screening of serum proteome using antibody 
microarrays

The preparation of antibody microarray and serum screen-
ing were performed as previously described [19]. Briefly, 
10 μL of serum samples were diluted to 100 μL with 
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phosphate-buffered saline (PBS pH 7.4) and then labeled 
by NHS-PEG4-Biotin (Thermo Fisher Scientific, MA, USA) 
at room temperature for 1 h. Excess biotin molecules were 
removed, and the biotinylated serum samples were diluted 
with 400 μL of PBS containing 5% milk (w/v). In paral-
lel to biotin labeling, antibody microarrays were blocked 
with 500 μL of PBS with 5% milk (w/v) for 1 h at room 
temperature. After removing the milk, the microarrays were 
incubated with biotinylated serum for 2 h at room tempera-
ture, followed by washing with PBS containing 0.05% (w/v) 
Tween-20 (PBST). To detect bound proteins, the arrays were 
incubated with 2 µg/mL streptavidin–phycoerythrin (PE) 
(Jackson Immunoresearch, USA) for 1 h at room temperature 
in the dark and then washed with PBST. After centrifuging 
for 2 min at 1000g, the slides were scanned using a Gene-
Pix 4300A microarray scanner at a wavelength of 532 nm. 
BSA was used as negative control for protein detection by 
microarray.

Measurement of serum proteome using DIA‑MS

Peptide sample preparation and data-independent acquisition 
analysis were performed as previously described [26]. Briefly, 
2 µL serum sample was diluted with lysis buffer containing 
6 M urea (Sigma, USA). Next, the serum was reduced with 
10 mM dithiothreitol (DTT) at 37 °C for 60 min and then 
alkylated with 500 mM iodoacetamide (IAA) at room tem-
perature for 45 min in the dark. Proteins were sequentially 
digested with trypsin for 16 h at 37 °C. The tryptic peptides 
were acidified with 1% trifluoroacetic acid and desalted with 
a C18 desalination column according to the manufacturer’s 
protocol. The desalted peptide was dried under vacuum and 
dissolved in 20 μL of buffer containing 0.1% formic acid and 
2% acetonitrile. Peptide concentrations were measured by 
Nanoscan (Analytik Jena AG, Jena, Germany). Approximately 
1.5 µg of peptides were separated on a 30-min LC gradient 
using an analytical column (150 µm × 250 mm, 2 µm 200 Å 
C18 particles) and injected into a QE-HF mass spectrometer 
(Q Exactive HF Hybrid Quadrupole Orbitrap™, Thermo 
Fisher). The DIA acquisition scheme consisted of 45 fixed 
windows ranging from 350 to 1500 m/z. The windows were set 
for DIA acquisition as follows: 348–400, 400–424, 424–449, 
449–465, 465–478, 478–489, 489–500, 500–514, 514–527, 
527–540, 540–550, 550–559, 559–568, 568–579, 579–588, 
588–599, 599–609, 609–621, 621–631, 631–641, 641–651, 
651–663, 663–674, 674–686, 686–696, 696–708, 708–720, 
720–733, 733–746, 746–760, 760–774, 774–788, 788–804, 
804–820, 820–837, 837–856, 856–876, 876–898, 898–922, 
922–949, 949–979, 979–1017, 1017–1064, 1064–1138, and 
1138–1400 m/z. The resolution distribution of MS1 and MS2 
was 60,000 and 30,000, respectively. A Spectronaut Pulsar 
X 12.0 (Biognosys, Schlieren, Switzerland) was used for 

identification and quantification. Finally, peptides FDR and 
proteins FDR were all set at 1% (FDR).

Validation of biomarkers via enzyme‑linked 
immunosorbent assay (ELISA)

To verify the prognostic value of biomarkers on the efficacy of 
NSCLC patients using immunotherapy, we collected plasma 
samples of an external cohort of 76 NSCLC patients. The 
ELISA kit we used was assessed from Novus, Proteintech, 
and Sino Biological. The detailed steps were strictly followed 
by the manufacturer’s instruction.

Data analysis

We included 615 positive array-detected proteins and 509 MS 
proteins in the analyses, and all proteins were named by gene 
names. The testing data were normalized using the quantile 
method and log2 transformed. To investigate differentially 
expressed plasma proteins (DEPs) in pre-treatment samples 
between the R and NR groups and during treatment among the 
ASPS, NSCLC, and lymphoma patients, the Mann–Whitney 
U test was used, and differences with p < 0.05 were defined as 
statistically significant. The DEPs were clustered by the Hiplot 
platform (https:// hiplot. com. cn).

Pathway and Gene Ontology (GO) enrichment analyses 
were performed by ClueGo in Cytoscape (version3.8.0) or 
omicsbean (http:// www. omics bean. cn/ login/? next=/ dashb 
oard/). Protein drug targets were obtained from the Human 
Protein Atlas (HPA), comprehensive information was collected 
from the HPA and the Therapeutic Target Database (TTD) 
[27], and information on clinical trials was obtained from 
the clinical trial database (https:// clinicaltrials.gov/). Hier-
archical clustering and principle component analysis (PCA) 
were implemented and plotted using the statistical language 
R (version 4.2.3). A Venn diagram was constructed using an 
online platform (http:// bioin forma tics. psb. ugent.be/webtools/
Venn/). We used TIMER2.0 for analysis of immune infiltrates 
[28]. Survival curves were constructed using Kaplan–Meier 
analyses. Multivariate Cox regression analyses were applied 
to further identify the prognostic effect of the biomarkers. In 
group comparisons of categorical variables, chi-square test 
was used. The analyses were carried out via GraphPad Prism 
(version 8.0) and R (version 4.2.3).

Results

In‑depth profiling of the plasma proteome in cancer 
patients receiving anti‑PD1 therapy

The plasma samples from NSCLC, ASPS, and lymphoma 
patients were collected before and at various time points 

https://hiplot.com.cn
http://www.omicsbean.cn/login/?next=/dashboard/
http://www.omicsbean.cn/login/?next=/dashboard/
http://bioinformatics.psb.ugent
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after treatment (Fig. 1A). The plasma proteome was detected 
by DIA-MS and antibody microarray as previously described 
[19] (Fig. 1B). The detection correlation coefficients of 
plasma proteins within and among different experiments 
using antibody microarray were 0.976 and 0.913, respec-
tively (Figure S1). To assess the reproducibility of DIA-
MS, we employed H293 cell lysates as a control, which was 
tested in 45 consecutive time points throughout the plasma 
screen. The average Pearson correlation coefficient of 45 QC 
tests was 0.94 (Figure S2). These results suggest that our 
in-depth proteomic platform in plasma proteome screening 
is reproducible.

Using our platform, 96.5% (615/637, Figure S3) of the 
proteins were detected by microarray. We identified 1018, 
1019, and 1012 proteins in NSCLC, ASPS, and lymphoma 
patients, respectively. Notably, there were no marked dif-
ferences between the number of proteins identified in the 
R and NR patient groups in the three cancers (Fig. 1C, D). 
The concentration of these proteins was distributed across 
12 orders of magnitude in plasma (Fig. 1E). Bioinformat-
ics analysis showed that the proteins detected by antibody 
microarrays enriched B cell and T cell activation; CCKR, 
P53, PI3K, interleukin, PDGF, TGF-β, and VEGF pathways; 
and the proteins detected by DIA-MS enriched the cadherin, 
cytoskeletal regulation, proline biosynthesis, nicotinic ace-
tylcholine, fructose galactose metabolism, and pentose 
phosphate pathways (Fig. 1F). These results demonstrate 
the advantages of our platform in acquiring the expression 
information of plasma proteins according to breadth (> 1000 
proteins) and depth (12 orders of magnitude).

Proteomic landscape mapping of the dysregulated 
pathways in anti‑PD1‑resistant cancer patients

Using the Mann–Whitney U test, 50 (NR 32 vs. R 18), 206 
(NR 172 vs. R 34), and 268 (NR 179 vs. R 89) differen-
tially expressed proteins were identified in NSCLC, ASPS, 
and lymphoma patients, respectively (Fig. 2A–C). Principle 

component analysis (PCA) revealed that the plasma profile 
in R group was distinct to that in NR patients (Figure S4). 
GO terms of these DEPs were enriched in processes of 
cytokine secretion and angiogenesis regulation in NSCLC, 
cell-substrate adhesion and metabolism in ASPS, and pro-
tein activation and humoral immune response in lymphoma. 
Moreover, some common processes were shared in NR 
patients of the three cancers, such as platelet degranulation 
(Figure S5). KEGG pathway analysis revealed that proteins 
upregulated in NR patients were enriched in cytokine-
cytokine receptor interactions and TNF signal pathways 
in NSCLC (Fig. 2D), adherent junction and apoptosis in 
ASPS (Fig. 2E), and EGFR TKI resistance and complement 
coagulation cascades in lymphoma patients (Fig. 2F). Some 
common pathways were shared in NR patients compared 
to R patients across three cancer types, including immune-
related pathways such as Th17 cell differentiation, the IL-17 
signal pathway, and the HIF-1 signal pathway, as well as 
tumor, infection, autoimmune disease-related pathways such 
as the JAK-STAT signal pathway and cell adhesion path-
ways (Fig. 2D–F). For R patients, proteins altered might be 
involved in cellular senescence and transcriptional misregu-
lation pathways (Fig. 2D–F). The activated pathway details 
are shown in Figure S6. Some differentially expressed pro-
teins in cell adhesion (CADM1 in NSCLC, TUBA1B and 
ITGA5 in ASPS, and CDH5 and ICAM3 in lymphoma) and 
immune modulation (CCR3 and CD27 in NSCLC, FOS and 
MMP2 in ASPS, and CXCL13 and CCL26 in lymphoma) 
are shown in Figure S7.

Longitudinal changes of the plasma proteome 
of cancer patients after therapy

We performed longitudinal analyses of proteomic changes 
before and after anti-PD1 therapy, wherein we identified 
339, 462, and 800 overexpressed proteins in the R group and 
354, 201, and 258 overexpressed proteins in the NR group 
of NSCLC, ASPS, and lymphoma patients, respectively 
(p < 0.05). The DEPs were classified into six patterns by 
the Hiplot platform, and the pathways of each cluster were 
annotated by ClueGo in Cytoscape. The corresponding path-
ways for every cluster in the R and NR groups of NSCLC, 
ASPS, and lymphoma patients are shown in Figures S8–S10, 
respectively. Downregulated proteins after treatment in R 
were significantly enriched in the IL-17 signal pathway, 
whereas upregulated proteins were enriched in the vitamin 
digestion and absorption pathway (Fig. 3A–C and S11). For 
NR patients, proteins involved in the complement and coag-
ulation cascades pathway were upregulated after treatment 
(Fig. 3D–F). These findings imply that the dysfunction of 
IL-17 signal modulation and coagulation function probably 
related to the benefit of anti-PD1 therapy.

Fig. 1  In-depth plasma proteomic profiling of cancer patients treated 
with anti-PD1 therapy. A Sample collection. A total of 339 plasma 
samples before and after anti-PD1 therapy from 93 NSCLC (92 
patients have pre-treatment samples), 12 ASPS, or 88 lymphoma 
patients were collected. B The detection workflow of antibody array 
and MS method. C Total number of detected proteins in the R and 
NR groups of NSCLC, ASPS, and lymphoma cohorts. D Venn dia-
grams show the overlap of proteins in the R and NR groups of the 
NSCLC, ASPS, and lymphoma cohorts. E The concentration of 
plasma proteins identified using an in-depth proteomic platform. A 
total of 1019 proteins were identified, and the orange, blue, green 
plots indicate proteins identified by arrays, MS and array MS both, 
respectively. F Comparison of signal pathways of proteins identified 
by antibody microarrays and DIA-MS. Pathways in gray were shared 
by array and MS technology, and pathways in blue and orange indi-
cate the unique pathways identified by array and MS technology, 
respectively

◂
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Notably, we identified 15 noninvasive monitoring bio-
markers whose expression is well correlated with changes in 
tumor size in the three cancers (R > 0.8, p < 0.05) (Fig. 3G). 
GO enrichment analysis further identified six proteins 
(CD19, CFI, IGHV3OR15-7, IGHV4-39, LTA, MBL2) 
related to adaptive immune response (p < 0.05). Longitudi-
nal analysis showed that the expression of IGHV4-39 pos-
sessed a similar trend, while MBL2 and LTA showed an 
opposite trend to tumor size, which may have the potential 
to predict cancer recurrence after therapy (Fig. 3H, I).

Identification of combinatorial targets in cancer 
patients who did not benefit from anti‑PD1 therapy

To identify protein targets for cancer patients treated with 
anti-PD1 antibodies, we performed Venn diagram analysis of 

1019 proteins that were detected using our in-depth plasma 
proteomics platform and 2080 protein targets from the 
HPA database (https:// www. prote inatl as. org/). 214 proteins 
including 128 approved and 86 potential targets were identi-
fied (Fig. 4A). We further selected 40 potential targets whose 
expressions were upregulated in NR patients or downregu-
lated in R patients among the list of all DEPs (Fig. 4B). Pro-
tein class analysis indicated these proteins belonged to signal 
receptor, enzyme, activity modulator, cytokine, and other 
classes (Fig. 4C). KEGG pathway analysis showed that these 
40 proteins significantly enriched in cancer signaling path-
ways, including the HIF-1, JAK-STAT, cytokine–cytokine 
receptor interaction, and p53 signal pathways (Fig. 4D).

Detailed information on these targets, including full 
name, bioclass, drug information, and indications, is shown 
in Table S3. Among these protein targets, 70% (28/40) of the 
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targets were approved or in clinical trials, and 66% (8/12) 
of these were administered in combination in clinical trials 
and have entered phases II and III. The approved indications 
focused on tumor/leukemia, autoimmune disease, or infec-
tious disease (Fig. 4E). Notably, four clinical trials on mye-
loma, diffuse large B cell lymphoma (DLBCL), melanoma, 
and NSCLC are ongoing which combine anti-PD1 antibody 
and IL-17A (NCT03111992), CD22 (NCT03287817), KIT 
(NCT04493203), or AXL (NCT04681131), respectively 
(Fig. 4F).

To explore potential combination therapy mechanisms 
of anti-IL-17A and immunotherapy, analysis of the IL-17 
signal relevant data showed high expression of multiple 
molecules on the pathway including MAPKs, IL6, CXCL8, 
MMP9, etc. The immune infiltration showed IL-17A was 
positive correlated with expression microphage M2, PD-L1, 
T cell regulatory (Tregs), negatively correlated with mac-
rophage M1, in general, creating an immunosuppressive 

microenvironment (Figure S12). The therapeutic benefits 
of these combinatorial therapies to cancer patients have yet 
to be identified.

Validation of predictive biomarkers 
in the independent lymphoma cohort and external 
NSCLC cohort

To validate our findings, we collected pre-treatment samples 
from a validation cohort of 39 lymphoma patients, including 
20 R and 19 NR patients. The results showed that 110 of 
268 differentially expressed proteins in the lymphoma dis-
covery cohort were successfully validated (p < 0.05). PCA 
analysis using the discovery and validation cohorts showed 
that patients with different responses were distributed in two 
separate areas (Fig. 5A, B). Pathway analysis showed that 
the validated proteins significantly enriched immune-related 
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pathways, including the Th17 cell differentiation, IL-17 sig-
nal pathway, and estrogen signal pathways (Figure S13).

To identify specific predictive biomarkers, we selected 
five biomarkers (F5, FLT4, GNPTG, IL-17A, and SFTPB) 
that were differentially expressed between the R and NR 
patient groups in both lymphoma cohorts from the top 20% 
of significantly differentially expressed proteins (p < 0.05). 
The AUCs of these five biomarkers (F5, FLT4, GNPTG, 

IL-17A, and SFTPB) were 0.72, 0.69, 0.72, 0.72, and 0.74 in 
the discovery cohort and 0.75, 0.74, 0.69, 0.69, and 0.76 in 
the validation cohort, respectively (Fig. 5C, D). The results 
indicate that these biomarkers may potentially be utilized 
in predicting anti-PD1 therapy outcomes, though they still 
require validation in a large independent cohort.

To further validate the predictive capability of the bio-
markers in NSCLC patients, we collected an external valida-
tion cohort of 76 pre-treatment NSCLC patients, including 
33 R and 43 NR. Three (TNFSF12, CCL3, and KIT) bio-
markers were observed to be effective in clinical validation. 
In KIT and TNFSF12 high expression group, significantly 
prolonged PFS (KIT: p = 0.012; TNFSF12: p = 0.030) and 
higher ratio of responder patients toward anti-PD1 ther-
apy (KIT: 57% vs. 30%, p = 0.012; TNFSF12: 67% vs. 
41%, p = 0.037) were observed. In CCL3 high expression 
group, patients presented a worse PFS (p = 0.030) and the 
proportion of non-responder patients was higher (60% vs. 
37%, p = 0.024) compared to CCL3 low expression group 
(Fig. 5E, F). PD-L1 expression is a known predictive bio-
marker for anti-PD1 therapy in NSCLC; however, it is lim-
ited by the availability of biopsy tissue. In patients with 
PD-L1 expression available, the PD-L1 expression did not 
appear as a significant predictor of PFS and OS outcome in 
our cohort, and no association was observed between PD-L1 
expression and three (TNFSF12, CCL3, and KIT) biomark-
ers (Figure S14). To avoid potential confounding factors, 
we did multivariate Cox regression analyses of the clinical 
characteristics including PD-L1 expression and the three 
plasma biomarkers. Multivariate Cox regression analyses 
confirmed that TNFSF12, CCL3, and KIT were independent 
risk factors (Figure S15).

Discussion

Although extensive studies have been conducted in the field 
of immunotherapy, understanding of the molecular mech-
anism of anti-PD1 treatment of cancer remains unclear, 
and the availability of biomarkers for predicting responses 
remains limited. We conducted the largest, to our knowl-
edge, dynamic proteomic study of 193 ASPS, NSCLC, and 
lymphoma patients who received anti-PD1 therapy using an 
in-depth plasma proteomic platform. And we validated the 
prognostic biomarkers in lymphoma (n = 39) and NSCLC 
cohort (n = 76).

The results identified a total of 534 DEPs, which involved 
in Th17 cell differentiation, IL-17 signaling pathway, JAK-
STAT signaling pathway, and cell adhesion molecular path-
ways. Helper T cells 17 (Th17) are a subpopulation of T 
cells that are capable of secreting IL-17, IL-21, and IL-22, 
which mainly play important roles in autoimmunity and 
defense response against extracellular bacteria or fungi [29]. 

Fig. 5  Validation of signaling pathways and predictive biomark-
ers in lymphoma and NSCLC cohorts. A PCA of R and NR patients 
using identified differentially expressed proteins in the lymphoma 
discovery cohort. B PCA of R and NR patients using validated dif-
ferentially expressed proteins in the lymphoma validation cohort. C, 
D ROC analysis of five validated predictive biomarkers in the lym-
phoma discovery and validation cohort. E Kaplan–Meier curve of 
median PFS of ICI treatment in KIT, CCL3, and TNFSF12 high and 
low expression groups in external NSCLC validation cohort. F R and 
NR patients comparison in KIT, CCL3, and TNFSF12 high and low 
expression groups
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Th17 cell differentiation is induced by IL-23, STAT3, and 
retinoid acid-related-orphan nuclear receptorγt (RORγt). 
The activation of RORγt initiates the differentiation cascade 
of Th17 cells; following activation, RORγt promotes the 
expression of the IL-17 and IL-23 receptors (IL-23R) [30]. 
The JAK-STAT signaling pathway is necessary for immune 
modulation of host immune responses or immune interac-
tions with non-immune factors [31, 32]. Besides Th17 cells, 
IL-17A can be secreted by natural killer T cells (NKT) and 
lymphoid tissue-inducing cells. IL-17 plays a role in pro-
moting tumor development by facilitating angiogenesis and 
tumor cell proliferation and inhibiting apoptosis to promote 
tumor growth [33–35]. IL-23R can recruit Jak2, the JAK-
STAT signaling system induced by IL-23 regulates Th17 
cells, and drugs that inhibit the JAK-STAT signal pathway 
can target Th17 cells [36]. JAK-STAT signaling components 
are polarized in epithelial cells, and the JAK-STAT pathway 
also targets many genes controlling cell polarity and adhe-
sion. Thus, activation of the JAK-STAT pathway is associ-
ated with cell adhesion [37]. The activation of JAK-STAT 
signaling is associated with upregulated PD-L1 expression 
in tumor cells, which promotes immune cell exhaustion and 
therapy resistance [38]. Consistent with the training cohort, 
we confirmed the Th17 and IL-17 signaling pathways in the 
validation cohort. We hypothesize that the immunosuppres-
sive microenvironment induced by the JAK-STAT, Th17, 
and IL-17 axis correlates with efficacy of anti-PD1 therapy, 
although the detailed mechanism has yet to be elucidated.

The low efficiency of anti-PD1 therapy is currently an 
impeding problem that needs to be solved, and thus, screen-
ing for effective markers to predict and identify responder 
populations and to monitor cancer relapse is essential to 
improve the success of immunotherapy. To address this 
question, we validated eight plasma proteins (IL-17A, 
F5, FLT4, SFTPB, and GNPTG in lymphoma, TNFSF12, 
CCL3, and KIT in NSCLC) for response prediction and 
three plasma proteins (IL36G, SERPINC1, and LTA) for 
relapse monitoring. We found that the upregulated expres-
sion of IL-17A is associated with the poor prognosis of 
anti-PD1 therapy. In line with this finding, one study has 
reported that an increase in IL-17A can promote lung cancer 
growth by promoting inflammation, which results in resist-
ance to anti-PD1 therapy and sensitizes tumors to cytokine 
and neutrophil depletion [39]. We also found that proteins 
to the IL-17 signal pathway were downregulated following 
treatment, which could lead to an anti-tumor microenviron-
ment. Studies have shown that IL-17 reduces the presence 
of CD4 + and CD8 + lymphocytes in the tumor microenvi-
ronment, increases infiltrative Tregs, and further promotes 
angiogenesis, invasion, and metastasis [40]. In addition, 
coagulation factor V (F5) is the central regulator of hemo-
stasis and results in the activation of prothrombin to throm-
bin. A study has reported the association between disorders 

of the coagulation–fibrinolysis system and immune activa-
tion by ICIs in cancer patients [41]. Fms-related tyrosine 
kinase 4 (FLT4) encodes vascular endothelial growth factor 
receptors (VEGFR3). This protein plays an important role in 
lymphangiogenesis and tumor metastasis. Studies also reveal 
that the VEGFR3 signal axis can influence tumor-associated 
microphages to inhibit anti-tumor immunity and promote 
tumor growth, and that it is correlated with patient survival 
[42, 43]. Besides efficacy, the association of blood proteins 
and toxicity of anti-PD1 therapy or use of corticosteroids is 
worthy of exploration.

Anti-PD1-resistant cancers require effective therapies, 
and the discovery of new drug targets or combinational drug 
targets to reverse anti-PD1 resistance has become a critical 
issue in the field of immunotherapy. To address this concern, 
we explored protein targets for combination therapy with 
anti-PD1 antibodies, which identified 40 potential drug tar-
gets that enriched cancer-related pathways. Among the 40 
targets identified by longitudinal analysis, at least four clini-
cal trials are ongoing, which is suggestive of its potential 
use. The IL-17 signaling axis plays an important role in the 
pathogenesis of rheumatoid arthritis, multiple sclerosis, and 
systemic lupus erythematosus. Antibodies targeting IL-17A 
have been approved for the treatment of plaque psoriasis; the 
observation in our cohort supports the rationale for com-
bining anti-PD1 antibodies with IL-17A-targeted therapy in 
multiple cancer patients for overcoming immune suppression 
[44, 45]. A clinical trial utilizing the anti-IL-17A antibody 
alone or with the anti-PD1 antibody in multiple myeloma 
patients is ongoing [46]. In addition, the SERPINC1 gene 
encodes the antithrombin III protein, which was identified 
in our cohort to be correlated with tumor size and can serve 
as a monitoring biomarker; medicines targeting SERPINC1 
have been approved for venous thrombosis and coagula-
tion defect treatment, although the combinatorial effect of 
SERPINC1-targeted therapy with anti-PD1 antibodies has 
yet to be explored.

This study has several limitations. The number of ASPS 
samples employed in this study is limited, it would be ideal 
to involve more clinical samples and validate in a large and 
different cohort. In addition, the detailed roles of the bio-
marker proteins or function of combinatorial targets with 
anti-PD1 antibodies require further investigation, such as 
IL-17A, should be further elucidated or in vitro and in vivo 
experimentally validated. At last, PD-L1 expression did not 
appear as a significant predictor of outcome in multivariate 
analysis in our cohort, which may be due to the small sub-
set of patients with available measured PD-L1 expression 
(n = 29), and the predictive performance of the proteins in 
combination with other known biomarkers (e.g., TMB, MSI/
dMMR) can also be explored.

In conclusion, our study provides fundamental insights 
into the molecular changes in different cancer patients before 
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and after anti-PD1 therapy and has identified biomarkers as 
well as combinatorial targets for patients who are resistant to 
treatment. These results are valuable for understanding the 
mechanism of anti-PD1 treatment and for developing new 
therapeutic strategies.
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