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Abstract
Blood-based biomarkers of immune checkpoint inhibitors (ICIs) response in patients with nasopharyngeal carcinoma (NPC) 
are lacking, so it is necessary to identify biomarkers to select NPC patients who will benefit most or least from ICIs. The abso-
lute values of lymphocyte subpopulations, biochemical indexes, and blood routine tests were determined before ICIs-based 
treatments in the training cohort (n = 130). Then, the least absolute shrinkage and selection operator (Lasso) Cox regression 
analysis was developed to construct a prediction model. The performances of the prediction model were compared to TNM 
stage, treatment, and Epstein–Barr virus (EBV) DNA using the concordance index (C-index). Progression-free survival (PFS) 
was estimated by Kaplan–Meier (K–M) survival curve. Other 63 patients were used for validation cohort. The novel model 
composed of histologic subtypes,  CD19+ B cells, natural killer (NK) cells, regulatory T cells, red blood cells (RBC), AST/
ALT ratio (SLR), apolipoprotein B (Apo B), and lactic dehydrogenase (LDH). The C-index of this model was 0.784 in the 
training cohort and 0.735 in the validation cohort. K–M survival curve showed patients with high-risk scores had shorter 
PFS compared to the low-risk groups. For predicting immune therapy responses, the receiver operating characteristic (ROC), 
decision curve analysis (DCA), net reclassifcation improvement index (NRI) and integrated discrimination improvement 
index (IDI) of this model showed better predictive ability compared to EBV DNA. In this study, we constructed a novel 
model for prognostic prediction and immunotherapeutic response prediction in NPC patients, which may provide clinical 
assistance in selecting those patients who are likely to gain long-lasting clinical benefits to anti-PD-1 therapy.
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Introduction

Nasopharyngeal carcinoma (NPC) has a unique geographi-
cal distribution, which occurs more frequently in Southern 
China, the Middle East and Southeast Asia [1]. Although 
NPC is a chemosensitive tumor, refractory recurrence 
and/or metastatic nasopharyngeal carcinoma (R/M NPC) 
patients with first-line chemotherapy have a poor progno-
sis [2], with a median overall survival (OS) of 15.7 months 
[3]. Epstein–Barr virus (EBV) infection plays an important 
role in the occurrence and development of NPC [4], and the 
common feature of EBV-positive NPCs is the dense lympho-
cyte infiltration in the tumor stroma and programmed death 
ligand-1 (PD-L1) overexpression in tumor cells, making it 
a potential target for immunotherapy, especially immune 
checkpoint inhibitors (ICIs), such as programmed death-1/
programmed death ligand-1 (PD-1/PD-L1) blockade [5–7].
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The ICIs-based therapy has made a breakthrough and was 
approved for the treatment of refractory R/M NPC in 2021 
in China [8]. Inspired by such a huge success, many clinical 
trials of ICIs alone or plus chemotherapy have been initiated 
in R/M NPC patients. Based on the result of CAPTAIN-1 
[9], the median progression-free survival (PFS) in camreli-
zumab group (9.7 months) was significantly longer than in 
the placebo group (6.9 months). Based on the result of JUPI-
TER-02 [10], a significant improvement in median PFS was 
shown in toripalimab arm (11.7 months) when compared 
with placebo arm (8.0 months). However, only a small sub-
set of R/M NPC patients can obtain a long-lasting clinical 
benefits and biomarkers, especially peripheral blood bio-
markers, to guide anti-PD-1 treatment choices are lacking, 
making it urgent to identify reliable predictive peripheral 
blood biomarkers for prognostic assessment and immuno-
therapy response prediction in NPC patients.

With advances in high-throughput multiplex assays, vari-
ous peripheral blood-based immune predictive biomarkers 
are being identified, such as exosomes [11], cytokines [12, 
13], circulating tumor cells and DNA [14, 15]. Xing et al. 
[16] demonstrated changes in serum PD-L1+ tumor extra-
cellular vesicles (TEVs) levels could be a potential predic-
tive biomarker for responses of ICI-based therapy in NPC 
patients. Peripheral blood testing has the advantage of being 
minimally invasive and accessible to repeat samples and is 
widely used in clinical practice. Recently, plasma EBV DNA 
has been established as an effective marker for NPC diag-
nostic and prognostic monitoring [17, 18]. A study (POLA-
RIS-02) [19] evaluated the efficacy of toripalimab in R/M 
NPC and showed patients with a decrease of 50% or more 
in plasma EBV DNA titer at day 28 had a remarkably better 
objective response rate (ORR) than those with a decrease of 
less than 50%. Wang et al. and Xu et al. [20] suggested that 
longitudinal plasma EBV DNA dynamics monitoring could 
be used as a predictive biomarker in predicting long-term 
outcomes in R/M NPC patients receiving immunotherapy. 
However, the baseline EBV DNA has a poor predictive value 
for immunotherapy of NPC patients. Therefore, the develop-
ment of effective model for NPC immunotherapy prediction 
is of paramount importance.

It has become abundantly clear that the presence, acti-
vation, and stimulation of all lymphoid components of 
the immune system are critical for a successful antitumor 
immune response, including  CD8+ T cells,  CD4+ T cells, 
B cells, natural killer (NK) cells, and so on [21]. Besides, 
it has been reported that the response of ICIs in cancer 
patients is related to the quality and intensity of T cell, NK 
cell, and B cell responses in the tumor microenvironment 
[22] and in peripheral blood [23]. Diehn et al. [24] demon-
strated that fewer circulating CD8 T cells before immuno-
therapy was significantly associated with durable clinical 
benefit in non-small cell lung cancer (NSCLC). However, a 

correlation between peripheral lymphocytes and immuno-
therapy response in NPC has rarely been reported.

To the best of our knowledge, there have been few reports 
on the construction of models that combine absolute counts 
of lymphocyte subpopulations with other peripheral blood 
indicators for prognostic assessment and clinical response 
prediction in R/M NPC patients. In this study, we introduce 
baseline absolute counts of lymphocyte subpopulations in 
peripheral blood and other blood indicators to assess their 
association with prognostic assessment and efficacy predic-
tion in R/M NPC patients. We construct a predictive model 
that is able to predict the prognostic and immunotherapy 
response in R/M NPC patients based on their baseline 
peripheral outcomes, which may provide clinical assistance 
in selecting those patients who are likely to achieve long-
lasting clinical benefits from ICIs-based therapy.

Methods

Patients and data collection

This retrospective study enrolled 193 patients and was 
conducted at Sun Yat-sen University Cancer Center from 
May 2018 to May 2022, and the deadline for follow-up was 
January 2023. For enrolled patients, the inclusion/exclusion 
criteria were as follows: (1) patients had a pathologic con-
firmation of nasopharyngeal diagnosis; (2) patients must be 
identified as stage III/IV and diagnosed with recurrent and/
or metastatic NPC; (3) patients received anti-PD-1 therapy 
(toripalimab, camrelizumab, sintilimab or pembrolizumab) 
and/or plus chemotherapy or radiotherapy; (4) patients 
were followed up with radiographic tumor evaluation every 
1–2 months; (5) lymphocyte subpopulations, biochemical 
indexes, and blood routine test were measured within a week 
before the first immunotherapy; (6) patients who lacked 
any of the blood examination or who had lost to follow-up 
should be excluded.

In this study, patients were randomly divided into train-
ing cohort and validation cohort, and we used the training 
cohort to construct the predictive model and validate the 
model in the validation cohort. Patients were defined using 
response criteria in solid tumors (RECIST) 1.1. based on 
computed tomography (CT) or magnetic resonance imaging 
(MRI) results, their responses to anti-PD-1 treatment were 
evaluated as complete response (CR), partial response (PR), 
stable disease (SD), or progressive disease (PD).

All experimental data and clinical information of 
patients were obtained from the electronic medical record 
system. We collected clinical characteristics (gender, age, 
ECOG, TNM stage, histological type, clinical stage, treat-
ment and outcomes), blood routine test data, plasma EBV 
DNA copy number, and biochemical indexes of patients. 
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Lymphocytes are presumed to be key cells in anti-tumor 
immunity and play a critical role in immunotherapy, there-
fore, lymphocyte subsets  (CD19+,  CD3+,  CD3CD4+, 
 CD3CD8+,  CD3−CD16+CD56+,  CD4CD25+,  CD4+/CD8+, 
 CD8CD25+) were detected by flow cytometry in this study.

Statistical analysis

To develop the prediction model, we employed Lasso Cox 
regression on the training group to identify markers. Data 
that were incomplete were excluded, while comprehensive 
datasets were included in the study. By adjusting the regu-
lation weight λ, Lasso performs shrinkage on all regression 
coefficients toward zero and eliminates the coefficients of 
many irrelevant features by setting them to zero. The for-
mula used for the prediction model is presented below: 
risk score = 

∑n

i
X
i
× Y

i
 (n: number of the inclusion marker, 

X: coefficients, Y: survival-related index). Afterward, we 
compared the performance of the novel prediction model 
with TNM stage, treatment, and EBV DNA by using the 
Harrell concordance index, receiver operating characteris-
tic (ROC) curves and decision curve analysis. We utilized 
the “nomogram” function from the R package to develop a 
nomogram for predicting the 6-month, 1-year, and 2-year 
survival rates of NPC patients. After comparing the actual 
survival rate with the predicted probability of survival, 
calibration curves were used to calibrate the nomogram for 
predicting 6-month, 1-year, and 2-year survival rates. NPC 
patients were classified into low-risk and high-risk groups 
according to the risk score’s optimal cutoff (“survminer” 
R package). The Kaplan–Meier method and log-rank test 
were used to compare the OS of two risk groups. A box plot 
was used to display the variations in each prognostic index 
signature between the high-risk and low-risk groups. San-
key diagrams were created to display how patients moved 
between prognostic risk scores, disease control and survival 
status. Throughout all statistical analyses, variables with a P 
value less than 0.05 were considered to be statistically sig-
nificant. Statistical analysis was conducted using R software 
(version 4.2.1.).

Result

Patients’ characteristics

A total of 193 patients (143 men [74.1%]; 50 women 
[25.9%]; median age 47 years [range 19–75 years]) treated 
with anti-PD-1 antibody (sintilimab, tislelizumab, tori-
palimab, or camrelizumab) from Sun Yat-sen University 
Cancer Center between 2018 and 2022 were included in 
this study, and detailed patient clinical characteristics and 
clinicopathological variables in the training (n = 130) and 

validation (n = 63) cohorts are listed in Table S1. In this 
study, all patients were in the advanced stage (stage III 59 
[30.6%]; stage IV 134 [69.4%]) and underwent recurrence 
and/or metastasis when treated with anti-PD-1 antibody. In 
addition, pseudoprogression typically occurred within the 
first few weeks of ICI-based treatment, so the response to 
immunotherapy in NPC patients was initially assessed at 
4–6 months and continuously updated. Statistical results 
indicated that 38 (29.2%) patients in the training cohort and 
17 (27.0%) patients in the validation cohort showed partial 
response. The number of stable diseases in the training and 
validation cohorts is 70 (53.8%) and 36 (57.1%), respec-
tively, and 32 (training cohort 22 [16.9%]; validation cohort 
10 [15.9%]) patients developed progressive disease.

Construction and evaluation of prediction model

In the training cohort, we used Lasso Cox regression analy-
sis to extract the most relevant predictor variables and con-
structed an 8-prognostic index signature (histological type, 
 CD19+ B cells, NK cells,  CD8+CD25+ regulatory T cells 
[Treg], red blood cells [RBC], aspartate aminotransferase 
[AST]/alanine aminotransferase [ALT] ratio [SLR], apoli-
poprotein B [Apo B], and lactic dehydrogenase [LDH]) 
from 57 baseline levels of peripheral blood-based biomark-
ers. The coefficient profile plot and cross-validation for 
tuning the parameter selection are shown in Fig. 1A, B. 
We develop a formula for the disease progression of each 
patient and calculate the prediction model as follows: risk 
score = (0.4144*histological type) + (− 0.8462*CD19+ 
B cells) + (1.3227*NK cells) + (− 2.7933*CD8+ 
 CD25+ Treg cells) + (− 0.3935*RBC) + (0.1929*ALT/
AST) + (− 0.2713*Apo B) + (0.0015*LDH).

We used the concordance index (C-index) to compare the 
prognostic prediction power of this model with that of EBV 
DNA levels, TNM stage, and treatment. As shown in Table 1 
and Fig. 2A, B, the C-index of this prediction model for PFS 
was 0.784 (95% CI 0.714–0.853), which was the highest 
among the TNM stage (0.545, 95% CI 0.466–0.624), treat-
ment (0.521, 95% CI 0.451–0.591) and EBV DNA (0.560, 
95% CI 0.485–0.675) in training cohort (P < 0.0001). Simi-
lar results could be observed in the validation patient cohort, 
and this prediction model had the highest C-index among 
the TNM stage (0.555, 95% CI 0.452–0.657), treatment 
(0.509, 95% CI 0.399–0.620) and EBV DNA (0.519, 95% 
CI 0.389–0.650).

Nomogram development with a risk score, TNM 
stage, treatment, and EBV‑DNA

Based on the prognostic risk score, EBV DNA levels, 
TNM stage, and treatment, we constructed a nomogram 
for the prognostic prediction in the training (Fig. 3A) and 
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validation (Fig. 3B) cohort. This nomogram allows users 
to predict the probability of 6-month, 1- and 2-year PFS 
according to the combination of covariates for a patient. 

For example, the patient’s risk score is found, and a 
straight line is drawn upward to the “Points” axis to con-
firm the score. Repeat this process for each variable, and 
sum the scores, then place this sum on the “Total Points” 
axis, and find the corresponding PFS to predict the likeli-
hood of six-month, one- and two-year PFS. The calibra-
tion curves of 6-month 1-year, and 2-year survival showed 
ideal consistency between the established nomogram and 
the actual observations in training (Fig. 3C) and validation 
cohort (Fig. 3D).

Risk stratifcation of PFS based on the prediction 
model

Based on the optimal cutoff value of the risk score, the 
patients were subdivided into a high-risk (n = 46) or low-
risk (n = 147) group. The Kaplan–Meier survival curves 
showed that patients with low risk had a longer PFS than 
those with high risk in the training cohort and validation 
cohort (P < 0.0001, Fig.  4A, B). In addition, we ana-
lyzed the differences in the number of RBC, B cells, NK 
cells, Treg cells, apo B, LDH, LSR and histological type 
between the high-risk and low-risk groups. The number 
of RBC (training cohort: P < 0.001, validation cohort: 
P < 0.001), B cells (training cohort: P = 0.002, valida-
tion cohort: P = 0.011) and Treg cells (training cohort: 
P < 0.001, validation cohort: P = 0.042) in high-risk group 
were significantly higher than those in low-risk group 
(Table S2).

Fig. 1  Construction of a prediction model based on the peripheral blood biomarkers. A Prognosis model construction in the development cohort 
by Lasso Cox regression analysis. B Cross-validation of tuning parameter selection in the Lasso Cox regression

Table 1  The C-index of PFS for prediction model, TNM stage, treat-
ment, and EBV DNA

C-index = concordance index; P values are calculated based on nor-
mal approximation using function rcorrp.cens in Hmisc package

Survival prediction C-index 95 CI% P

For training cohort
Prediction model 0.784 0.714–0.853
TNM stage 0.545 0.466–0.624
Treatment 0.521 0.451–0.591
EBV DNA 0.560 0.485–0.675
Prediction model versus TNM 

stage
 < 0.001

Prediction model versus treatment  < 0.001
Prediction model versus EBV 

DNA
 < 0.001

For validation cohort
prediction model 0.735 0.616–0.853
TNM stage 0.555 0.452–0.657
Treatment 0.509 0.399–0.620
EBV DNA 0.519 0.389–0.650
Prediction model versus TNM 

stage
0.002

Prediction model versus treatment 0.015
Prediction model versus EBV 

DNA
0.013
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The performance of the prediction model 
in predicting immunotherapy response

As shown in Table 2, patients were divided into low-risk 
(training cohort: n = 101, validation cohort: n = 46) and 
high-risk (training cohort: n = 101, validation cohort: n = 46) 
based on the optimal cutoff value of risk scores. In order to 
evaluate the accuracy of this prediction model, we analyzed 
the ROC and compared the area under the curve (AUC) with 
EBV DNA that was an effective predictive biomarker. As 
shown in Fig. 5, the prediction model had an AUC of 0.768 
[95% CI 0.686–0.837, standard error (SE) 0.066], which 
was higher than EBV DNA (AUC: 0.609, SE 0.058, 95% CI 
0.519–0.693, P = 0.047) in training cohort (Fig. 5A). A simi-
lar predictive accuracy of the prediction model was obtained 
in the validation cohort (Fig. 5B) (AUC: 0.779, SE 0.074, 
95% CI 0.657–0.874), which was higher than EBV DNA 
(AUC: 0.508, SE 0.102, 95% CI 0.378–0.636, P = 0.037).

In addition, the decision curve analysis (DCA) showed 
that prediction model curve was higher than the EBV 
DNA curve in the training (Fig. 5C) and validation cohort 
(Fig. 5D), which suggested the superior predictive effects in 
this prediction model compared with EBV DNA. Further-
more, we analyzed net reclassification improvement (NRI) 
and integrated discrimination improvement (IDI) to assess 
reclassification performance and improvement in discrimi-
nation of prediction model. As shown in Table 3, the NRI 
and IDI had a great improvement in training (NRI% 78.79, 
P < 0.001; IDI% 16.06, P = 0.003) and validation cohort 
(NRI% 18.11, P = 0.593; IDI% 3.88, P = 0.113). These 
results demonstrated this prediction model had a superior 
potential predictive performance compared with EBV DNA. 
Moreover, Sankey diagrams showed that most of the high-
risk group NPC patients shifted to PD group and had a lower 

level of survival status in the training (Fig. 6A) and valida-
tion cohort (Fig. 6B).

Discussion

Although ICI-based therapies, primarily represented by 
PD-1/PD-L1 inhibitors, significantly improve the overall 
survival in R/M NPC patients, only a few of NPC patients 
can achieve long-term benefits. For ICI-based therapies to 
provide maximum benefit to NPC patients, a number of 
markers that predict the efficacy of immunotherapy have 
been identified over the years, including tumor mutation 
burden (TMB) [25, 26], tumor infiltrating lymphocytes 
(TILs) [27] detection, and PD-L1 expression in tumor tissue 
[28, 29]. However, these biomarkers are difficult to popu-
larize in clinical practice for their inherent limitations. For 
PD-L1 expression, there is spatiotemporal heterogeneity and 
its expression is different in different biopsy sites. As for 
TMB, the gold detection standard is whole exome sequenc-
ing (WES) [30] which is expensive and has a long detection 
cycle [31]. In addition, the efficacy of TILs as predictive 
markers for ICI-based therapies needs further exploration 
and validation by more clinical trials. Peripheral blood 
biomarkers, which have the advantage of being minimally 
invasive and potentially repeatable and sequentially moni-
tored, have been shown to be a potential tool for predicting 
immunotherapy response.

In this study, based on baseline peripheral blood lym-
phocyte subpopulations, biochemical indexes and blood 
routine tests, we utilize Lasso Cox regression to select eight 
predictive indicators [histologic subtypes,  CD19+ B cells, 
NK cells, regulatory T cells, RBC, AST/ALT ratio (SLR), 
Apo B, and LDH] for disease progression prediction of R/M 

Fig. 2  The C-index of PFS for prediction model, TNM stage, treatment, and EBV in the training cohort (A) and validation cohort (B)
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NPC patients treated with anti-PD-1 antibody. We demon-
strate that this prediction model is associated with response 
to anti-PD-1 therapy in R/M NPC patients. Moreover, this 
model is able to predict the progression-free survival in R/M 
NPC patients.

Nine kinds of immune cell subpopulations of peripheral 
blood  (CD19+,  CD3+,  CD3−CD16+CD56+,  CD3+CD4+, 
 CD3+CD8+,  CD4+/CD8+,  CD4+CD25+,  CD8+CD25+, 
CD3CD19CD56) were selected for the development of 

this prediction model. Treg  (CD8+CD25+) cells are able 
to inhibit some immune cells activity and suppress effec-
tive anti-tumor immunity. Therefore, strategies to inhibit or 
deplete Tregs are being explored in cancer immunotherapy 
[32–34]. Some studies [35] have shown that Treg cells are 
infiltrated into tumor tissues, which is often correlated with 
poor prognosis [36]. NK cells are innate lymphocyte popula-
tion with unique ability to rapidly kill infected, transformed, 
allogeneic, or stressed cells without any prior encounter [37, 

Fig. 3  Efficacy prediction of immunotherapy in NPC patients based 
on risk score and EBV DNA. A, B Nomogram predicting the six-
month, one- and two-year PFS in the training cohort (A) and vali-
dation cohort (B). C, D Calibration curves of nomogram for PFS in 
the training cohort (C) and validation cohort (D). T0, radiotherapy 

plus anti-PD-1 treatment; T1, chemotherapy plus anti-PD-1 treat-
ment; T2, radiotherapy and chemotherapy plus anti-PD-1 treatment; 
T3, only anti-PD-1 treatment. E1, EBV DNA <  103; E2, EBV DNA 
 103–104; E3, EBV DNA  104–105; E4, EBV DNA  105–106; E5, EBV 
DNA > 10.6
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38]. Substantial evidence [39–41] supports a crucial role 
for NK cells in predicting anti-PD-1 efficacy and routine 
surveillance against cancer.  CD19+ B cells are involved in 
a variety of immune responses and their dysregulation can 
lead to immune system disorders [42, 43]. They are also 
a target of certain therapies [44, 45], such as CAR-T cell 
therapy for B cell malignancies, where the patient’s own T 
cells are genetically engineered to recognize and kill  CD19+ 
B cells. Besides, a series of studies have found that the num-
ber of  CD8+ T cells or the ratio of  CD8+/CD4+ T cells in the 
tumor microenvironment are correlated with ICIs outcomes 
and serve as positive predictors of immunotherapy [46, 47]. 

Huang et al. [48] brought T lymphocytes subpopulations 
into studies and identified that  CD3−CD16+CD56+ cells, 
 CD3+CD4+ cells and Treg cells were significantly correlated 
with the prognostic of NSCLC patients. Chi et al. [49] con-
structed a prognostic risk score that includes the population 
of immune cells and was able to provide accurate prediction 
of the response in patients with malignant melanoma treated 
with ICI therapy.

LDH is released into the blood when cells are damaged or 
ruptured. Therefore, the level of LDH in the blood is com-
monly used to assess the extent of tissue damage [50]. LDH 
is considered an important and potential biomarker in cancer 
immunotherapy [51–53]. LDH level and SLR were identified 
to be reliable prognostic biomarkers in NPC patients by a 
number of studies. Zhang et al. [54] confirmed that dynamic 
changes of LDH and LSR were correlated with the prognosis 
of R/M NPC. Li et al. [55] identified that baseline high levels 
of serum LDH and ALP were adverse prognostic indicators 
for NPC patients.

In this study, we constructed a prediction model based 
on these eight factors and calculated the risk score for the 
disease progression of each R/M NPC patient. This predic-
tion model is not only able to predict prognosis, but also is 
a useful tool for predicting responses of ICI-based therapies 
in R/M NPC patients. In addition, our prediction model out-
performs TNM stage, treatment, and EBV DNA in terms of 
prognostic efficacy and provides additional prognostic value 

Fig. 4  Kaplan–Meier survival curves for 4-year PFS of R/M NPC patients in the high-risk group and low-risk group in the training (A) and vali-
dation cohorts (B)

Table 2  Response to immunotherapy based on the prediction model

Survival prediction Low High χ2 P

For training cohort (n = 130) n = 101 n = 29
Best overall response-no. (%) 12.134 0.002
Partial response (PR) 33 (32.7) 5 (17.2)
Stable disease (SD) 57 (56.4) 13 (44.8)
Progressive disease (PD) 11 (10.9) 11 (37.9)
For validation cohort (n = 63) n = 46 n = 17
Best overall response-no. (%) 7.603 0.022
Partial response (PR) 15 (32.6) 2 (11.8)
Stable disease (SD) 27 (58.7) 9 (52.9)
Progressive disease (PD) 4 (8.7) 6 (35.3)
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to these existing predictors. Moreover, this predictive model 
with a higher predictive power than EBV DNA. To the best 
of our knowledge, our study is the first to construct a predic-
tion model index based on baseline absolute counts of lym-
phocyte subpopulations to predict the PFS and immunother-
apy responses in R/M NPC patients treated with ICI-based 
therapies. Our findings demonstrate the utility of peripheral 
blood indicators as a predictive tool for identifying R/M 

NPC patients more likely to respond to PD-1 antibodies, 
which could help identify responders and non-responders 
early and avoid unnecessarily prolonged treatment.

However, several limitations in our study should be noted. 
First, this retrospective study was based on a single center, 
which may lead to unavoidable selection bias. Therefore, in 
future research, we plan to make greater efforts to expand 
the sample size and engage in collaborations with multiple 

Fig. 5  The prediction accuracy of the prediction model efficacy in 
R/M NPC patients. ROC curves of the prediction model and EBV 
DNA in the training (A) and validation cohorts (B). Decision curve 
analysis for the prediction model compared with EBV DNA in the 

training (C) and validation cohorts (D). The horizontal black line rep-
resents the net benefit when all NPC patients are considered to have 
no outcome
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hospitals to conduct multicenter studies to further validate 
this model. Second, we did not clarify the molecular mecha-
nisms and associations between these eight indicators and 
the immune microenvironment.

Conclusion

In summary, we proposed a novel prognostic nomogram 
model based on peripheral blood biomarkers and empha-
sized their importance as potential prognostic biomarkers 
for the treatment of NPC with anti-PD-1/PD-L1. As our 
proposed model is valuable tool for assessing NPC patient’s 
eligibility for anti-PD-1 therapy, further investigations are 
needed to evaluate the predictive value of these markers 
in larger multicenter populations and prospective clinical 
studies.
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Table 3  The NRI and IDI were used to assess reclassification perfor-
mance and improvement in discrimination of prediction model

NRI, net reclassification improvement index; IDI, integrated discrimi-
nation improvement index

NRI% P value IDI% P value

Training cohort
Prediction model versus EBV 

DNA
78.79  < 0.001 16.06 0.003

Validation cohort
Prediction model versus EBV 

DNA
18.11 0.593 3.88 0.113

Fig. 6  NPC patients transferred between the risk score, response and survival status in the training (A) and validation cohort (B)
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