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Abstract
Mouse tumour models are extensively used as a pre-clinical research tool in the field of oncology, playing an important role 
in anticancer drugs discovery. Accordingly, in cancer genomics research, the demand for next-generation sequencing (NGS) 
is increasing, and consequently, the need for data analysis pipelines is likewise growing. Most NGS data analysis solutions 
to date do not support mouse data or require highly specific configuration for their use. Here, we present a genome analysis 
pipeline for mouse tumour NGS data including the whole-genome sequence (WGS) data analysis flow for somatic variant 
discovery, and the RNA-seq data flow for differential expression, functional analysis and neoantigen prediction. The pipe-
line is based on standards and best practices and integrates mouse genome references and annotations. In a recent study, the 
pipeline was applied to demonstrate the efficacy of low dose 6-thioguanine (6TG) treatment on low-mutation melanoma in 
a pre-clinical mouse model. Here, we further this study and describe in detail the pipeline and the results obtained in terms 
of tumour mutational burden (TMB) and number of predicted neoantigens, and correlate these with 6TG effects on tumour 
volume. Our pipeline was expanded to include a neoantigen analysis, resulting in neopeptide prediction and MHC class I 
antigen presentation evaluation. We observed that the number of predicted neoepitopes were more accurate indicators of 
tumour immune control than TMB. In conclusion, this study demonstrates the usability of the proposed pipeline, and sug-
gests it could be an essential robust genome analysis platform for future mouse genomic analysis.

Keywords  Mouse genome analysis pipeline · Mouse tumour models · 6-Thioguanine (6TG) treatment · Immune-checkpoint 
inhibitors (ICI) · Neoantigen analysis · Tumour mutational burden

Introduction

The use of mouse tumour models constitutes the most 
widely used pre-clinical research tool in oncology [1], hav-
ing an important role in the discovery and development of 

anticancer drugs [2]. A critical novel approach from cancer 
treatment is immunotherapy, where the host immune sys-
tem is boost to destroy cancer cells. Understanding how the 
immune system interacts with tumours is therefore crucial 
for developing personalised immunotherapies and cancer 
treatments. Cancer genomics research has been revolution-
ised by the advances in next-generation sequencing (NGS). Kjeld Schmiegelow, Daniela De Zio and Morten Nielsen jointly 

initiated and supervised this work.

 *	 Patricio Yankilevich 
	 pyankilevich@ibioba-mpsp-conicet.gov.ar

 *	 Morten Nielsen 
	 morni@dtu.dk

1	 Bioinformatics Core Facility, Instituto de Investigación 
en Biomedicina de Buenos Aires (IBioBA) - CONICET - 
Partner Institute of the Max Planck Society, Buenos Aires, 
Argentina

2	 Melanoma Research Team, Danish Cancer Institute, 
Copenhagen, Denmark

3	 Department of Pediatrics and Adolescent Medicine, 
Copenhagen University Hospital - Rigshospitalet, 
Copenhagen, Denmark

4	 Department of Cancer and Inflammation Research, Institute 
of Molecular Medicine, University of Southern Denmark, 
Odense, Denmark

5	 Department of Health Technology, Section 
for Bioinformatics, Technical University of Denmark, 
Lyngby, Denmark

http://orcid.org/0000-0002-9606-1072
http://orcid.org/0000-0002-1090-9029
http://orcid.org/0000-0002-0829-4993
http://orcid.org/0000-0002-9454-402X
http://orcid.org/0000-0001-7885-4311
http://crossmark.crossref.org/dialog/?doi=10.1007/s00262-023-03610-4&domain=pdf


	 Cancer Immunology, Immunotherapy (2024) 73:2222  Page 2 of 10

With costs constantly dropping, the demand for sequencing 
of mouse cancers is increasing, as well as the need for robust 
analysis pipelines [3]. The development of most analytical 
tools and bioinformatics pipelines to analyse sequencing 
data, to date, have focussed on humans and hence do not 
account for species-specific differences in genome structures 
and experimental setups; and have so far not been systemati-
cally validated in the mouse context [3]. The genome analy-
sis toolkit (GATK) is the gold standard in germline variant 
discovery. It was originally developed for human genetics, 
and only recently its scope has been expanding to include 
other organisms and somatic variant calling [4]. The GATK 
team is actively working on expanding access to other spe-
cies, but the development and validation of new, robust, and 
reliable tools is not an easy process. The functional annotator 
tool in GATK, Funcotator, for instance, does not currently 
support non-human genomes. Although GATK was origi-
nally designed for human genome research, its best practices 
can be adapted to the analysis of non-human organisms. A 
critical challenge in developing a robust tumour genome 
analysis pipeline is to choose the appropriate analysis meth-
ods for somatic variant discovery and biomarker identifica-
tion, but also the correct file formats, genome references and 
annotations. In this study, we propose a genome analysis 
pipeline designed specifically for mouse tumours. The pipe-
line encompasses three main components: a data analysis 
workflow for somatic variant discovery using whole-genome 
sequencing (WGS) data, a workflow for differential expres-
sion analysis using RNA-sequencing (RNA-seq) data, and 
a workflow for neoepitope prediction through neoantigen 
analysis. Neoepitopes are the MHC (major histocompatibil-
ity complex) presented targets for immune responses against 
cancer. The pipeline is based on standards and best practices, 
and is configured to integrate mouse references and annota-
tions. All the file formats and genome references used, and 
all tools, methods, algorithms and packages included in our 
pipeline are current standards on NGS data analysis, and 
were quantitatively evaluated in regard to accuracy, preci-
sion, and reliability [5–8].

The thiopurine drugs are purine antimetabolites widely 
used in the treatment of haematological cancers, autoim-
mune disorders, and organ transplant recipients. The thio-
purine thioguanine, also known as 6-thioguanine (6TG), is 
used to treat acute myeloid leukaemia, acute lymphocytic 
leukaemia, and chronic myeloid leukaemia [9]. Thiopurines 
are converted into thioguanine nucleotides that are incorpo-
rated into DNA in competition with normal guanine induc-
ing mutations through single nucleotide mismatching [10]. 
We recently applied the pipeline to show that the treatment 
with low dosage of 6TG of low-mutation melanoma in a 
pre-clinical mouse model is highly effective in reactivating 
T cells to attack cancer and mildly increases the tumour 
mutational burden (TMB) [11]. Moreover, the combination 

of 6TG with the immune-checkpoint inhibitors (ICI), which 
block the interaction between the inhibitory receptors on T 
cells and their ligands, enhances the response to ICI therapy 
[11]. Here, we describe the pipeline applied in the study and 
further the results by analysing the potential for MHC class 
I antigen presentation of the identified tumour mutational 
space, and investigate of how this space correlates to tumour 
control.

Materials and methods

All laboratory in vitro and in vivo experiments and assays 
performed in the context of this project are described in 
Nazerai et al. [11]. The materials and methods described 
include mice, mice monitoring-endpoints, cell preparation 
and proliferation, DNA content analysis, DNA-TG levels’ 
mass spectrometry, syngeneic melanoma model, histologi-
cal analysis, in vivo T cell depletion, flow cytometry, and 
antibodies among other techniques. The following sections 
describe materials and methods for tumour sequencing and 
genome analysis and interpretation.

All pipelines were implemented on Computerome, the 
Danish National Computer for Life Sciences (https://​www.​
compu​terome.​dk/). This supercomputer has a High-Perfor-
mance Computing (HPC) solution that provides a secure 
and powerful computer cluster where data can be analysed 
and stored.

DNA extraction, whole‑genome sequencing and 
RNA‑sequencing

Tumour fractions were preserved in RNAlater Stabiliza-
tion Solution (Thermo Fisher Scientific), according to 
the instructions. DNA extracted from Control-Yumm and 
6TG-Yumm tumours as well as control YUMM cell lines 
using Qiagen’s DNeasy Blood and Tissue Kit were used for 
Whole-Genome Sequencing. After sample quality control 
and library preparation, sequencing was performed using the 
Illumina Novaseq 6000 platform.

Genome analysis pipeline—WGS data flow

FastQC v0.11.9 was used to perform quality control checks 
on fastq files containing raw sequence data from tumour 
samples. The fastq files were aligned to the C57BL/6 J 
GRCm38 (mm10) mouse reference genome using the BWA-
MEM algorithm from the Burrows–Wheeler Aligner tool 
v.0.7.17 [12]. Picard-tools v.2.26.106 and GATK v.4.2.5.0 
[13] were used for BAM pre-processing. Somatic single 
nucleotide variants and indels were identified using the 
GATK’s Mutect2 [14] configured to run in somatic (tumour 
control) mode. The BAM file obtained from the alignment of 

https://www.computerome.dk/
https://www.computerome.dk/
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non-treated Yumm cells WGS data was used as control. The 
identified somatic variants were annotated with ANNOVAR 
v.2019oct24 [15], using the mouse mm10 reference genes 
from UCSC as reference. Finally, the R package Maftools 
v.2.8.05 [16] was used to create a Mutation Annotation For-
mat (MAF) file per sample and calculate the TMB, along 
with other statistics and graph plotting. The association 
between TMB and tumour volume was calculated by using 
the Pearson correlation coefficient, and p value obtained 
using exact permutation testing.

Genome analysis pipeline—RNA‑seq data flow

The RNA-seq fastq files were mapped using the STAR 
aligner v2.7.9a. [17]. The mouse genome build GRCm38.68 
and the UCSC mm10 RefGene annotations were used as 
references. Samtools v1.14 [18] was used to index BAM 
files. Reads per gene were quantified using the STAR 
quantMode. Further filtering, normalisation and identifica-
tion of differentially expressed genes were done with the 
R package DESeq2 v.1.32.0 [19]. Functional analysis was 
performed with GSEA v4.2.3 [20] and the gene set collec-
tions in the mouse Molecular Signature database (MSigDB) 
v2022.1.Mm, which includes 15,918 gene sets divided into 
6 major collections, and several sub-collections. Gene set 
enrichments were tested running GSEA configured with dif-
ferent permutation type parameters (phenotypes and gene 
sets). Older gene sets from the database for pathway analysis 
in mouse Gene Set Knowledgebase (GSKB) from July 2013 
(http://​ge-​lab.​org/#/​data) were also tested.

Genome analysis pipeline—Neoantigen analysis 
flow

Tumour somatic mutation profiles (VCF file) and tumour 
gene expression data from every tumour sample were 

processed with MuPeXI v1.1.3 [21, 22] to obtain all unique 
mutated peptides (neopeptides) and, by calling NetMH-
Cpan v4.0 [23], identify which are the neopeptides most 
likely to serve as neoepitopes. MuPeXI was configured with 
GRCm38 (mm10) mouse reference genome, and NetMHC-
pan MHC mouse alleles were configured with H-2-Kb and 
H-2-Db. The list of predicted neoepitopes was obtained by 
filtering the potential neopeptides with best binding affinity 
score (MHCrank < 5) and existing gene expression (expres-
sion level > 0). The association between the number of 
predicted neoepitopes and tumour volume was calculated 
by using the Pearson correlation coefficient, and p value 
obtained using exact permutation testing.

Results

Design and development of the genome analysis 
pipeline

In our previous study, 6TG was used to induce ran-
dom mutations with the aim of increasing the number 
of neoantigens presented by tumour cells and improv-
ing the activation of the adaptive immune system [11]. 
Here, Yumm cells [24] were cultured in the presence or 
not of 6TG for a week. Hereafter, the pre-treated Yumm 
cells were injected subcutaneously into the right flank 
of immunocompetent C57BL/6N mice. We set out dif-
ferent in vivo experiments to monitor the progression 
of tumours [11]. To evaluate the mutational load in the 
murine tumours upon 6TG treatment, we performed WGS 
and RNA-seq of Control-Yumm derived tumours (control) 
and 6TG-Yumm derived tumours (6TG treated) bearing 
mice (Fig. 1). We used the GRCm38/mm10 mouse refer-
ence genome as C57BL/6 was the strain used to generate 
the mouse tumour model [11]. To compare and analyse 

Fig. 1   Schematic representation of the experimental design. Syngeneic melanoma tumours from control and treated samples were sequenced to 
study the 6TG effects by means of the mouse tumour genome analysis pipeline

http://ge-lab.org/#/data
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the genetic profile and TMB of both groups, we devel-
oped the presented pipeline, and set out to monitor the 
in vivo progression of both groups of tumours.

Our pipeline was implemented on Computerome 
(https://​www.​compu​terome.​dk/), the Danish National 
Computer for Life Science, and can be easily re-imple-
mented on any Linux workstation. The pipeline includes 
i) WGS data analysis flow for mouse tumour somatic vari-
ant discovery (Fig. 2), ii) RNA-seq data analysis flow for 
gene expression analysis, and iii) neoantigen analysis 
flow for neopeptide prediction and MHC antigen presen-
tation evaluation (Fig. 3). Although most of the methods 
included in our pipeline do not allow for parallel execu-
tion, the high-performance computing capabilities of 
Computerome let us run multiple workflows in parallel; 
hence making the analysis of multiple samples far more 
time efficient.

WGS data analysis in 6TG‑treated Yumm melanoma 
model

To study the TMB, which is defined as the number of 
somatic non-synonymous mutations per megabase (mut/Mb) 
of coding regions of a tumour genome, in the mouse tumours 
upon 6TG treatment, we extracted DNA from tumours at the 
endpoint time and performed WGS. We applied the mouse 
tumour WGS somatic variant discovery workflow to analyse 
raw fastq data files from 6TG-Yumm and Control-Yumm 
tumours samples. The WGS workflow takes ~ 7 days to con-
clude, being the alignment and the variant calling the more 
time-consuming tasks. After pre-processing the sample fastq 
files, somatic variants were identified with GATK Mutect2 
set to tumour-normal mode using the non-treated control 
Yumm cells as normal. Then, we used the maftools R pack-
age to obtain statistics on variants and TMB. The resulting 
information is shown in Table 1.

Fig. 2   Mouse tumour WGS somatic variant discovery pipeline. Data 
pre-processing involves DNA reads alignment to reference (BWA), 
duplicates removal (Picard) and recalibration to know polymorphic 
sites (GATK). Somatic variant discovery involves somatic variant 

identification (GATK), filtering (GATK) and annotation (ANNO-
VAR). Final statistics and visualisation are performed with Maftools, 
visual inspection of findings is performed with IGV

https://www.computerome.dk/
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The WGS sequencing data analysis statistics revealed 
that the somatic variants median in Control-Yumm tumours 
was 14,049 compared to a median value of 19,926 found in 
6TG-Yumm tumours, representing an increase of 41% in the 
number of variants. Although the number of variants was 
higher in 6TG-Yumm tumours, other statistics on mutation 
types and mutation allele frequencies showed no significant 
changes (data not shown). Accordingly, the median number 
of affected genes was increased by 25% in the 6TG-Yumm 
tumours. The monitoring of the in vivo progression of 
tumours and the TMB obtained showed that tumours with 
higher TMB had improved tumour control evaluated by the 
tumour volumes [11]. Investigating the relation between 

TMB and tumour volume, an overall negative correlation 
was apparent (Fig. 4). However, a clear outlier sample was 
identified (Control-Yumm 6) with highly abnormal tumour 
volume. Investigating the raw data for this sample revealed 
that this tumour volume resulted from the measurement of 
two tumours that developed adjacent to each other, thus 
suggesting that the volume was overestimated. Excluding 
this sample from the analysis, the correlation between TMB 
and the tumour volume was increased from − 0.30 to − 0.62 
(p value < 0.005). The median TMB of Control-Yumm 
tumours was 3.34 mut/Mb; whereas, the median TMB of 
6TG-Yumm tumours was 4.21 mut/Mb, representing a 26% 
increase. These results are consistent with earlier clinical 

Fig. 3   Mouse tumour RNA-seq data analysis and neoantigen predic-
tion pipeline. RNA-seq data processing involves RNA reads align-
ment to reference and quantification (STAR). Differentially expressed 

genes were identified with DESeq2, and gene sets functional analysis 
were performed with GSEA. Finally, the neoantigen analysis includes 
neopeptide prediction and MHC binding analysis (MuPeXI)
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research linking increased TMB to higher neoantigen levels 
and improved tumour control [25].

RNA‑seq data analysis in 6TG‑treated Yumm 
melanoma model

We processed Control-Yumm and 6TG-Yumm tumours 
RNA-seq data with the STAR aligner and then used the 
DESeq2 R package for gene expression analysis. Genes 
with no or very little expression (total read counts < 50) 
were filtered out, and read counts were normalised. The 

DESeq2 fitted statistical model found no genes differen-
tially expressed (adjusted p value < 0.05) for 6TG-Yumm 
vs Control-Yumm condition. To further acknowledge the 
changes in gene expression, we calculated the sample 
distance matrix and PCA plots of all samples (Fig. 5). 
The clustering and the PCA plot showed similar results 
with Control-Yumm and 6TG-Yumm samples intermixed, 
as samples of different phenotypes display very similar 
expression profiles. These results suggest that the 6TG 
effect may cause no significant changes in gene expression 
of treated samples.

Fig. 4   Tumour volume as a 
function of the TMB in each 
sample. Tumour volumes were 
collected at day 28 post injec-
tion. The identified outlier is 
highlighted in red

Fig. 5   DESeq2 sample distance heatmap and PCA plot. On the left, 
the distance matrix and the automatic clustering results show gene 
expression profiles from different groups (Control and 6TG) are not 

clustered. On the right, the PCA plot show group gene expression 
profiles are not clustered
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After processing all samples, we generated a gene expres-
sion matrix to perform functional analysis. Genes with low-
counts were filtered prior to performing the gene set enrich-
ment analysis (GSEA). The final expression dataset includes 
15,998 genes. Enrichment analysis was performed on the 
mouse gene set collections from the Molecular Signatures 
Database (MSigDB v2022.1.Mm), and gene set database for 
pathway analysis in mouse from the Gene Set Knowledge-
base (GSKB). These curated collections include positional, 
ontology, regulatory target genes, pathways and other gene 
sets. The GSEA analysis with permutation type parameter 
set on phenotype showed no statistically enriched gene sets 
(FDR < 25%) when comparing 6TG-Yumm expression to 
Control-Yumm expression, though a small number of gene 
sets were significantly enriched at nominal p value < 1% 
(data not shown). Although no statistically significant gene 
sets were found between the two phenotypes, as expected 
from the DESeq2 results, we ran a different second GSEA 
analysis with the parameter permutation type set to gene set, 
and not to phenotypes. In this way, by comparing among 
gene sets and not phenotypes, we were able to identify sev-
eral important modulated pathways in 6TG-Yumm samples 
with FDR < 25% and nominal p value < 1%. The inflamma-
tory response, immune receptor activity, myeloid leukocyte 
activation, cytokine activity and chemokine activity gene 
sets were among the most differentiated [11]. Cytokines and 
chemokines play critical roles in modulating the recruitment 
of T cells and the overall cellular composition of the tumour 
microenvironment [26].

Neoantigens analysis in 6TG‑treated Yumm 
melanoma model

The neoantigen analysis flow includes neopeptide discov-
ery and MHC antigen presentation evaluation, which are 
important components in most vaccine and cancer research 
pipelines. The tumour neopeptide discovery and posterior 
neoepitope filtering were performed with MuPeXI. The 
number of tumour potential neopeptides and predicted 
neoepitopes are shown in Table 1 along with the tumour 
volumes collected at day 28 post injection.

3.4. The in vivo experiments presented in Nazerai et al. 
showed an enhanced immune response as well as a lower 
volume of the 6TG treated tumours [11]. Excluding the 
outlier sample Control-Yumm 6, the median volume of the 
Control-Yumm tumours is 535 mm3 while the median vol-
ume of the 6TG-Yumm tumours is 264 mm3, representing 
a decrease in size of 51% (Table 1). The Control-Yumm 
tumours median of neoepitopes was predicted in 439 pep-
tides while the median of 6TG-Yumm tumours was pre-
dicted in 624 peptides, representing an increase of 42% in 
the total number of predicted neoepitopes (Table 1). Fur-
ther, the overall correlation between the tumour volume and 
number of predicted neoepitopes was found to be − 0.65 (p 
value < 0.005) (Fig. 6), a slight increase compared to the cor-
relation found using the TMB. Considering this and that the 
median TMB of Control-Yumm tumours was 3.34 and the 
median TMB of 6TG-Yumm tumours was 4.21, which repre-
sent an increase of 26%, we can postulate that the amount of 
predicted neoepitopes is a more accurate estimator of tumour 
immune control compared to TMB.

All together our results indicate that 6TG indirectly 
increases the levels of neoantigens presented by tumour 
cells which results in an improved tumour control. Our 

Fig. 6   Tumour volume as a 
function of the number of 
predicted neoepitopes in each 
sample. Tumour volumes were 
collected at day 28 post injec-
tion. The identified outlier is 
highlighted in red
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strategy of performing in vitro and in vivo experiments 
combined with the development of a genome analysis 
pipeline for mouse tumours allowed for carrying out a 
detailed characterisation of the 6TG effects on tumour 
cells, and let us implement a robust genome analysis plat-
form for future mouse genomic analysis.

Discussion

In this study, we present a genome analysis pipeline for 
mouse tumours developed following the best practices. The 
WGS data analysis flow for somatic variant discovery, the 
RNA-seq data flow for differential expression analysis, and 
the neoantigen analysis are all based on standards, and can 
be easily replicated in other Linux workstations. The turna-
round times of WGS data analysis pipelines are usually long 
and runtimes are measured in days of processing. This is due 
to the massive amounts of data that needs to be processed 
added to the fact that most analysis algorithms cannot be 
used in parallel or with distributed computing yet.

With the use of the presented state-of-the-art mouse 
genome analysis pipeline and the in  vitro and in  vivo 
experiments we were able to demonstrate that treatment of 
Yumm cells with 6TG can markedly enhance the immune 
response in our pre-clinical melanoma model and promote 
the efficacy of ICI therapy [11]. The WGS/RNA-seq data 
analysis and in vivo experimental results showed that the 
applied dose the 6TG is sufficient to increase the TMB, the 
levels of neoepitopes, and improve the immune response. 
The RNA-seq data analysis found no statistically signifi-
cant differentially expressed genes between 6TG treated and 
control phenotypes, but the functional analysis comparing 
the different gene sets identified some important immuno-
genic pathways modulated by 6TG treatment. Our findings 
are promising and provide proof of concept for the clinical 
use of low doses of 6TG in addition to the use of mercap-
topurine and ICI therapies for malignancies with low TMB 
that are unresponsive to conventional therapies. In light of 
our results, we are currently conducting a phase I/II clinical 
research to investigate the potential of thiopurine treatment 
in increasing the proportion of otherwise treatment-resistant 
cancer patients who may derive therapeutic benefits from 
ICI therapy (clinicaltrials.gov: NCT05276284).
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