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Abstract
Recently, a breakthrough immunotherapeutic strategy of chimeric antigen receptor (CAR) T-cells has been introduced to 
hematooncology. However, to apply this novel treatment in solid cancers, one must identify suitable molecular targets in the 
tumors of choice. CEACAM family proteins are involved in the progression of a range of malignancies, including pancreatic 
and breast cancers, and pose attractive targets for anticancer therapies. In this work, we used a new CEACAM-targeted 2A3 
single-domain antibody-based chimeric antigen receptor T-cells to evaluate their antitumor properties in vitro and in animal 
models. Originally, 2A3 antibody was reported to target CEACAM6 molecule; however, our in vitro co-incubation experi-
ments showed activation and high cytotoxicity of 2A3-CAR T-cells against CEACAM5 and/or CEACAM6 high human 
cell lines, suggesting cross-reactivity of this antibody. Moreover, 2A3-CAR T-cells tested in vivo in the BxPC-3 xenograft 
model demonstrated high efficacy against pancreatic cancer xenografts in both early and late intervention treatment regimens. 
Our results for the first time show an enhanced targeting toward CEACAM5 and CEACAM6 molecules by the new 2A3 
sdAb-based CAR T-cells. The results strongly support the further development of 2A3-CAR T-cells as a potential treatment 
strategy against CEACAM5/6-overexpressing cancers.

Keywords  Nanobodies · Cancer microenvironment · Immune checkpoints · Cancer biomarker · CEACAM5/6 · CAR 
T-cells

Introduction

Following successes in difficult-to-treat diseases such as 
malignant melanoma and lung cancer, checkpoint-targeted 
immunotherapy has been attempted in a range of solid can-
cers, including pancreatic ductal adenocarcinoma (PDAC) 
[1], refractory estrogen receptor (ER)-positive [2] and 

human epidermal growth factor receptor 2 (HER2)-positive 
breast cancers [2, 3]. Unfortunately, single-agent targeting 
of the classical immune checkpoints such as cytotoxic T-cell 
antigen 4 (CTLA-4) or the programmed death-receptor 1 
(PD-1)/PD-L1 axis has produced little to no benefit for pan-
creatic cancer patients or endocrine-resistant breast cancer 
[2] and has been only moderately improved by combination 
approaches [1]. Nevertheless, multiple lines of evidence sug-
gest that these malignancies occur in an immunosuppressive Iga Jancewicz and Magdalena Śmiech have equally contributed to 
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microenvironment [4], which is an obstacle to immunothera-
peutic approaches [5]. Possibly, alternative immune check-
points play an immunosuppressive role in these cancers. 
Among others, it has been suggested that members of the 
carcinoembryonic antigen-related cell adhesion molecule 
(CEACAM) family of proteins have immunoregulatory 
properties, making them potential targets for anticancer ther-
apies. One potentially useful therapeutic agent, therefore, is 
the CEACAM-targeting 2A3 single-domain antibody (sdAb; 
also referred to as a VHH or nanobody) [6]. Previously, only 
CEACAM6 was described as the target of the 2A3 sdAb; 
however, the peptide sequence NRIGYSWYKG, identified 
as a potential epitope for the 2A3 sdAb [6], is highly similar 
between several members of the CEACAM protein family 
(please refer to Supp. Fig. S1). This implies a potentially 
broader spectrum of CEACAM proteins targeted by the 2A3 
sdAb. We address this subject in the current work.

In addition to checkpoint inhibitors, a parallel line of 
anticancer immunotherapies are the adoptive approaches 
with the use of genetically modified immune effector cells. 
A prime example of such is T-cells expressing a chimeric 
antigen receptor capable of antibody-like recognition of the 
target plus T-cell receptor (TCR)-like activation and co-
stimulation of the T-cell (CAR T-cells, reviewed in [7]). 
The most prominent breakthrough has been the use of CAR 
T-cell-based therapies to treat hematological malignancies, 
with several anti-CD19 and anti-B-cell maturation antigen 
(BCMA) strategies currently approved by the FDA. Fol-
lowing these successes in hematooncology, there have been 
multiple attempts to introduce CAR T-based strategies in 
the field of solid tumors [8]. One of the obstacles to such an 
approach is the scarcity of suitable cancer-associated targets. 
Another problem is that strong immunosuppression within 
some tumors may deactivate tumor-infiltrating CAR T-cells 
[9]. A solution for both of these problems might be to tar-
get the cancer-associated molecules that render the cancer 
cells resistant to cell-mediated cytotoxicity, i.e., the immune 
checkpoints. Indeed, PD-L1-targeting CAR T/NK-cells have 
recently been reported to be directly cytotoxic and also 
immunomodulatory in several solid tumor models in vitro 
and in vivo [10, 11]. However, the role of the PD-1/PD-L1 
axis does not seem to play a dominant role in malignacies 
such as pancreatic cancer and ER-positive/HER2-positive 
mammary tumors. Instead, such a role could be proposed for 
CEACAM family molecules [12]. Therefore, in the current 
work, we present the investigation of the antitumor efficacy 
of T-cells bearing a novel CEACAM-targeted 2A3 sdAb-
based CAR in PDAC or breast cancer models in vitro and 
in vivo.

Materials and methods

2A3‑CAR plasmid generation and lentivirus 
production

The 2A3 antibody [6, 13] sequence (Supplementary Fig. 
S2) along with CD28 and CD3ζ signaling domains was 
subcloned into a lentiviral plasmid with the CMV promoter 
(referred to as 2A3-CAR). For the in vitro experiments, len-
tiviruses were produced in 293FT cell line (Thermo Fisher 
Scientific). Cells were transfected with the pPACKH1 
Lentivector Packaging mix (System Biosciences) and 
lentiviral vector according to the user manual using Lipo-
fectamine2000 (Thermo Fisher Scientific) or NanoFect 
transfection reagent NF100 (Alstem, Richmond, CA, USA). 
The virus particles were collected 48 and 72 h after trans-
fection using the Lenti-X Concentrator (TaKaRa, Kusatsu, 
Japan) according to manufacturer instructions or by centrifu-
gation at 112,000 × g for 60 min at 4 °C (ProMab Biotech-
nologies, Inc. Richmond, CA, USA). The functional titers of 
the virus were determined by FACS analysis of CAR occur-
rence on cell membrane using anticamelid VHH Cocktail 
antibody (A02017, GeneScript, Piscataway Township, NJ, 
USA).

Cell lines

BxPC-3 and Capan-1 cell lines were purchased from 
the ATCC (Manassas, VA, USA). MIA PaCa-2, MCF7, 
SK-BR-3 and MDA-MB-231 cell lines were in possession 
of 4Cell Therapies S.A. and were authenticated by Eurofins 
Genomics (Ebersberg, Germany). Capan-1 cells were cul-
tured in IMDM, 20% FBS and 1× pen/strep (Biowest) on 
collagen I (Merck, Darmstadt, Germany)-coated plates. The 
BxPC-3 cell line was cultured with RPMI 1640 with 10% 
FBS and 1 × pen/strep (Biowest). The SK-BR-3 cell line was 
cultured in McCoy’s 5a supplemented with 20% FBS and 
1 × pen/strep (Biowest). All other cell lines were cultured 
in DMEM high glucose supplemented with 10% FBS and 
1 × pen/strep (Biowest).

Stable cell line generation

MDA-MB-231 overexpressing CEACAM5 or CEACAM6 
stable cell lines were generated using viral particles gen-
erated with the commercially available plasmids pLenti-
GIII-CMV-CEACAM5 and pLenti-GIII-CMV-CEACAM6 
(cat. No.: 15816061 and 15,817,061; ABM Goods, Rich-
mond, Canada). Empty plasmid was used as a mock con-
trol. The CEACAM6 knockout MCF7 cell line was gener-
ated using a CRISPR/Cas9-based kit from Origene (cat. 
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No.: KN402454; Rockville, MD, USA). Provided gRNA 
target sequences were: GTG​AGC​AGG​ACC​TCC​TTC​
CA and ACA​GGA​AAG​TCA​CAC​TAA​AC. Transfection 
of the MCF7 cell line was performed according to the 
manufacturer's protocol using Lipofectamine 2000. After 
transduction or transfection, respectively, cell lines were 
treated similarly as follows. Puromycin 2 µg/mL (POL-
AURA, Poznań, Poland) was added to the culture medium 
48 h after modification. Cells were diluted to obtain single 
colonies and then analyzed for the level of CEACAM5 
and/or CEACAM6 protein by flow cytometry. At least two 
clones for each stable cell lines were cultured for further 
experiments.

T‑cell isolation, transduction and expansion

Peripheral blood mononuclear cells (PBMC) were isolated 
from human peripheral blood buffy coats obtained from the 
Regional Center for Blood Donation and Blood Treatment in 
Warsaw or from whole blood obtained in the Stanford Hos-
pital Blood Center, Stanford according to an IRB-approved 
protocol (#13942). PBMC were isolated using Ficoll® 
Paque Plus (GE Healthcare, Chicago, IL, USA) according 
to the standard protocol. Then cells were suspended at 106 
cells/mL in AIM V Medium (Thermo Fisher Scientific), 
10% FBS (Biowest) and 300 U/mL recombinant human 
IL-2 (rhIL-2; PeproTech, Cranbury, NJ, USA). Dynabeads™ 
Human T-Activator CD3/CD28 Kit (Thermo Fisher Scien-
tific) was used for T-cell activation and expansion according 
to the manufacturer’s protocol. After 24 and 48 h, lentivi-
ruses were added to the culture in 1 virion per cell ratio in 
the presence of 5 µg/mL DEAE-dextran (Merck). We used 
mock control T-cells transduced with lentivector coding 
scrambled sequence and unmodified control with untrans-
duced T-cells. As the T-cells proliferated over the next 2–3 
weeks, fresh medium supplemented with 300 U/mL rIL-2 
was added to the culture every 2–3 days to maintain cell 
density at 1–3 × 106 cells/mL.

Co‑culture

To evaluate the activity of 2A3-CAR T-cells to target cells, 
CAR T-cells were expanded for at least 10 days before use. 
Target cancer cell lines were seeded near confluency and 
cultured for 24 h. T-cells were then added to the tumor cell 
lines using an effector-to-target (E-to-T) ratio of 3:1 for pan-
creatic cancer cell lines, 5:1 for breast cancer cell lines and 
10:1 for transduction-derived stable cell lines, as had been 
optimized earlier (data not shown). Cells were co-cultured 
in AIM V Medium (Thermo Fisher Scientific), 10% FBS and 
1 × pen/strep (Biowest) for up to 48 h.

In vitro cytotoxicity (RTCA method)

Cell viability was assessed using the real-time cell ana-
lyzer (RTCA; Agilent, Santa Clara, CA, USA). Co-culture 
was performed as described in the chapter Co-culture on 
96-well E-plates (Agilent). Cells were co-cultured for 24 
h. Each experiment was performed at least twice in techni-
cal duplicates.

Cytokine secretion assay (ELISA method)

Media supernatants collected after co-culture were 
analyzed by ELISA for human IFN-γ levels using 
the Uncoated ELISA Kit from Thermo Fisher Scien-
tific according to manufacturer’s instructions (Cat. no: 
88-7316-88). Each experiment was performed at least 
three times in technical duplicates.

Flow cytometry

Flow cytometry was used to measure CAR expression 
on T-cells, CAR T-cells degranulation after co-culture 
with tumor cells and CEACAM family protein levels on 
cell lines’ surfaces. Briefly, 0.5 × 106 cells per test were 
washed, resuspended in 100 µL of FACS Staining buffer 
(0.5% BSA, 2 mM EDTA in 1 × PBS; Merck) and incu-
bated with the appropriate antibody for 30 min at 4°C. 
After fixation in 1% paraformaldehyde (Merck) in PBS at 
room temperature for 15 min, cells were washed and resus-
pended in 200 µL of FACS Staining Buffer for analysis. 
Each probe was analyzed at least as technical duplicates. 
List of antibodies can be found in Supplementary Table 1.

BxPC‑3 xenograft tumor growth in vivo

All in  vivo experiments were performed according to 
IACUC protocol (#SA-003). CIEA NOG (NOD.Cg-Prk-
dcscid Il2rgtm1Sug/JicTac) female mice, 5 weeks of age 
(obtained from Taconic Bioscience, Hudson, NY, USA) 
were used. Pancreatic BxPC-3 cancer cells (2 × 106 cells/
mouse) were injected subcutaneously into hind flanks 
on day 0. PBS (data not shown), unmodified T-cells or 
2A3-CAR T-cells were injected (107 cells/mouse; 5 mice 
per group) intravenously into mouse tail veins on days 1, 8 
and 15 for the early intervention model. For the late inter-
vention model, PBS (data not shown), T-cells or 2A3-CAR 
T-cells were injected when tumor volumes reached 100 
mm3 (day 12) and on days 20 and 26. Tumor sizes were 
measured with calipers twice per week and tumor vol-
umes were calculated using the following formula: 
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(length × width2)/2. At the end of the study, surviving mice 
were killed and tumors were excised and photographed.

Bioinformatic analysis

Protein BLAST analysis was performed using blastp default 
settings restricted to Homo sapiens species [14]. Amino acid 
sequence alignment was done using Clustal Omega [15] and 
analyzed using Jalview [16].

Statistical analysis

Data were analyzed and plotted with GraphPad Prism 9 (San 
Diego, CA, USA). Comparisons between multiple groups 
were performed by one- or two-way ANOVA followed by 
Dunnett’s multiple comparisons test. Comparisons between 
two groups were made using t-test. The p-value < 0.05 was 
considered statistically significant.

Results

Generation of 2A3‑CAR lentiviral vector and CAR 
expression in T‑cells

In this study, we have generated a novel chimeric antigen 
receptor comprising the 2A3 camelid sdAb along with 
CD28-CD3ζ signaling modules (Fig. 1a). As exemplified 
in Fig. 1b, CAR expression was detected in approx. 90% of 
the transduced T-cell population, independent of the buffy 
coat donor.

Cytotoxicity and activation of 2A3‑CAR T‑cells in 
vitro

Six cancer cell lines were used to evaluate the interac-
tions of 2A3-CAR T-cells with target cells: three pancre-
atic cancer cell lines (BxPC-3, Capan-1 and MIA PaCa-2) 
and three breast cancer cell lines (MCF7, SK-BR-3 and 
MDA-MB-231).

Firstly, as shown in Fig. 2, we performed flow cytometric 
evaluation of the cell surface abundance of the CEACAM 
proteins with identified homology (Suppl. Fig. S1) to the 
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Fig. 1   Expression of 2A3-CAR on transduced T-cells. a Modular 
diagram of the 2A3-CAR structure; b isotype control antibody on 
CAR expressing T-cells, 2A3-CAR detection on T-cells transduced 
with mock control lentivirus, 2A3-CAR detection on T-cells trans-
duced with CAR lentivirus. Cells were stained with anti-CD3 [APC] 

(y-axis) and anticamelid VHH antibody [FITC] or isotype control 
(x-axis) to evaluate the percentage of cells expressing the 2A3 VHH 
antibody domain. Data are shown for one representative replicate. 
sdAb—single-domain antibody; TM—transmembrane domain
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Fig. 2   Flow cytometry analysis of CEACAM family protein abun-
dance on cell surface. Analyzed cell lines differ in protein levels of 
analyzed CEACAM family proteins. The table presents unified data 
of protein abundance. Symbols of positiveness:−: < 3% positive 
cells, +: 4–25% positive cells, + +: 26–50% positive cells, +  +  +: 
51–75% positive cells, +  +  +  +: 76–100% positive cells. Gating strat-
egy is presented in Supplementary Fig. S3
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published target epitope for 2A3 antibody. The analyzed 
cell lines differed in the pattern of CEACAM family protein 
abundance. CEACAM3, CEACAM5 and CEACAM7 were 
detected in all cell lines, however, with variable/low percent-
age of expression. Importantly, CEACAM6 was not detected 
on MIA PaCa-2 and MDA-MB-231 cell lines. CEACAM1 
was the least abundant protein, present only on the surface 
of the BxPC-3 and Capan-1 cell lines.

Subsequently, cell lines were co-cultured with 2A3-CAR 
T-cells, mock T-cells or unmodified T-cells to assess the 
cytotoxic effects mediated by 2A3-CAR. We observed a 
potent cytotoxic effect of 2A3-CAR T-cells on almost all cell 
lines analyzed, with the exception of the MDA-MB-231 cell 
line. The data obtained from the ELISA for IFN-γ supported 
this observation. We observed significant increases in IFN-γ 
concentrations in the culture supernatants from cancer cells 
co-cultured with 2A3-CAR T-cells for almost all analyzed 
cell lines, except for MDA-MB-231 cell line (Fig. 3). No 
T-cell activation was observed when mock control T-cells, 

and unmodified T-cells were co-cultured with tumor cell 
lines.

We also tested degranulation of T-cells by assessing the 
CD107a levels on T-cell membranes after co-culture with 
the target cells. Again, co-culture of 2A3-CAR T-cells with 
almost all tumor cells, except for the MDA-MB-231 cell 
line, resulted in a trend toward increased CD107a expression 
on the T-cell surface (Fig. 3).

Cytotoxicity of 2A3‑CAR correlates with CEACAM5 
and CEACAM6 abundance

Considering the fact that 2A3-CAR T-cells exerted cytotox-
icity toward all but one of the cell lines studied, including 
the CEACAM6-negative MIA PaCa-2 cell line, we decided 
to reconsider the specificity of the 2A3-CAR. Based on the 
data from Baral et al. [6], we performed a BLAST analysis 
and sequence alignment to determine whether the epitope 
identified for the 2A3 antibody might be present in other 

Fig. 3   Cytotoxic activity, IFN-γ secretion and surface CD107a 
expression of 2A3-CAR T-cells against tumor cells in  vitro. Cyto-
toxic effect observed in real time on RTCA instrument. Orange 
line—anti-CEACAM6 CAR T-cells; green line—control mock 
T-cells; purple linie—untransduced T-cells; blue line—tumor cell 
line cells without T-cells; red line—cytotoxity positive control, 
cells treated with 0.1% Triton X-100. The RTCA experiment was 
repeated in duplicates four times. Representative data from one bio-
logical replicate are shown. Statistical analysis of RTCA experiment 
has been performed for the time point of 20 h after initiation of co-
culture. T-test comparing CAR T-cells to other groups showed sig-

nificant differences between CAR T-cells and all other groups, except 
MDA-MB-231 cell line. The data have been shown in Supplementary 
Table  2. IFN-γ levels in the supernatant collected after co-culture 
were determined by ELISA. Statistical analysis of ELISA and flow 
cytometry data was performed using two-way ANOVA followed by 
Dunnett’s multiple comparisons test. CD107a cell surface abundance 
was determined by Flow Cytometry and evaluated for statistical sig-
nificance using ANOVA followed by Dunnett’s multiple comparisons 
test. Gating strategy is shown in Supplementary Figure S4. NV—
untransduced T-cells, mock—mock control T-cells, CAR T—2A3-
CAR T-cells. ***p < 0.001, **p < 0.01, *p < 0.05
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proteins. The result suggested that seven (out of ten) con-
secutive C-terminal amino acids (GYSWYKG) in the pro-
posed epitope sequence are identical in four CEACAM fam-
ily proteins, i.e., CEACAM1, CEACAM3, CEACAM5 and 
CEACAM6 (Suppl. Fig. S1). For CEACAM7, six out of ten 
amino acids are identical with CEACAM6 in the sequence 
analyzed (Suppl. Fig. S1).

Such high sequence homology between CEACAM family 
proteins suggests the similar cytotoxic effects of 2A3-CAR T 
against the mentioned family members of CEACAM. How-
ever, interestingly, the study shows that the cytotoxic effects 
of 2A3-CAR T-cells are statistically significantly correlated 
with cell surface abundance of CEACAM5 and CEACAM6 
only (Fig. 4). Therefore, we decided to explore further the 
possibility that the 2A3 sdAb is cross-reactive (bi-specific).

2A3‑CAR T‑cells are cytotoxic against a MCF7 cell 
line derivative with CEACAM6 knockout

To test the hypothesis that 2A3-CAR can recognize pro-
teins other than CEACAM6, we generated a CEACAM6 
knockout version of the MCF7 cell line (MCF7-C6ko) and 
performed the RTCA experiment with 2A3-CAR T-cells. 
Of note, one of the two CAECAM6-targeted sgRNAs used 
initially caused lethal effects each time; therefore, two 
clones obtained using only one sgRNA were used for the 
experiments. Conspicuously, 2A3-CAR T-cells exerted 
cytotoxic effects against the MCF7-C6ko cell line that were 

more potent than the effect of mock T-cells or untrans-
duced T-cells (Fig. 5). However, the killing process of the 
MCF7-C6ko cell line was less dynamic than in the case of 
the MCF7 wild-type cell line. This suggests that activating 
2A3-CAR T-cells does not depend on CEACAM6 alone; 
however, CEACAM6 is still a valid, albeit not unique, target 
for the 2A3-CAR.

2A3‑CAR T‑cells are cytotoxic against MDA‑MB‑231 
cell line derivatives with overexpression 
of either CEACAM5 or CEACAM6 protein

To further investigate the possibility of enhanced targeting 
by 2A3-CAR, we generated MDA-MB-231 cell line deriva-
tives overexpressing either CEACAM5 or CEACAM6 
proteins (Fig. 6a) and then analyzed the cytotoxicity of 
2A3-CAR T-cells against these cell lines. We observed sig-
nificant cytotoxic effects of 2A3-CAR T-cells against both 
MDA-MB-231 cell lines overexpressing either CEACAM5 
(CEACAM5ox) or CEACAM6 (CEACAM6ox) proteins 
(Fig. 6b), as compared to mock T-cells or untransduced 
T-cells. In the case of the MDA-MB-231 control cell line, 
the cytotoxic effect was similar to that of the mock T-cells, 
suggesting that the effects of 2A3-CAR T-cells against 
CEACAM5ox and CEACAM6ox cell lines indeed depend 
on the overexpressed proteins. Importantly, the effect on 
MDA-MB-231 CEACAM6ox was approximately six times 
stronger than on MDA-MB-231 CEACAM5ox at the 12 and 
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Fig. 4   Correlation of CEACAM family protein abundance and cyto-
toxic effects against a panel of cell lines measured by RTCA method. 
We observed statistically significant correlations only for CEACAM5 
and CEACAM6 proteins. Protein abundance is presented as the per-

centage of positive cells in flow cytometry experiment. Each point on 
one graph represents mean values of two experiments of flow cytom-
etry and three experiments of RTCA for different cell line included in 
the study
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24 h time points, even though levels of overexpression of 
CEACAM5 and CEACAM6 were similar (Fig. 6c). This 
again suggests that CEACAM6 should be considered a pri-
mary target for the 2A3 sdAb, and CEACAM5 may act as 
an auxiliary, but nevertheless also valid, target. All cytotox-
icity experiments were performed on two clones of MDA-
MB-231 overexpressing cell lines. Data from additional 
clones are presented in Supplementary Fig. S5.

Antitumor efficacy of 2A3‑CAR T‑cells in the BxPC‑3 
xenograft model

Having established the efficacy of 2A3-CAR T-cells in vitro, 
we investigated the antitumor effects of these cells in the 
BxPC-3 xenograft model using both early and late interven-
tion treatment regimens. As shown in Fig. 7a, treatment with 
2A3-CAR T-cells significantly decreased the growth of all 
BxPC-3 xenografts (statistical analysis performed on day 30 
data shows p < 0.0003 for control T-cells vs CAR T-cells) in 
early intervention regimen. In one mouse, a complete regres-
sion of tumor mass was observed (Fig. 7a). As early inter-
vention treatment is not a realistic clinical scenario, a late 
intervention model was used. Injection of 2A3-CAR T-cells 
resulted either in control or regression of the tumors (statis-
tical analysis performed on day 34 data shows p < 0.02 for 
control T-cells vs CAR T-cells; Fig. 7b). Also, in this part of 
the study complete regressions were observed in two of the 
CAR T-treated mice. Thus, 2A3-CAR T-cells showed high 
efficacy even against established tumors. No generalized 
toxicities were observed in the study (based on body weight 
measurements, data not shown). Altogether, the presented 
data clearly indicate the in vivo effectiveness of 2A3-CAR 
T-cells in a human pancreatic xenograft model.

Discussion

The CEACAM family encoding genes are differentially 
expressed in numerous tissues and cell types in health and 
disease. Primarily, the role identified for CEACAMs is their 
involvement in intercellular adhesion and signal transduc-
tion [17]. However, it is currently well recognized that 
CEACAMs mediate complex biological functions and can 
play a significant role in cancer development and progres-
sion [18]. Among the CEACAM proteins, CEACAM5 is a 
well-known biomarker and indicator of recurrence in cancer 
patients and an established candidate for targeted experimen-
tal anticancer immunotherapies, e.g., using antibody–drug 
conjugates [19] or CAR T-cells [20].

In addition, CEACAM6 is abundantly overexpressed in a 
high proportion of cancers [21, 22]. It is a marker associated 
with cellular invasiveness and an unfavorable prognosis [23]. 
Deregulated expression of CEACAM6 directly affects the 
biology of cancer cells, e.g., by decreasing differentiation, 
inhibiting anoikis [24] or indirect increase in the metastatic 
potential [25]. Other consequences of aberrant CEACAM6 
expression in cancer cells include increased proliferation 
and chemoresistance [22]. Importantly, high expression of 
CEACAM6 is also associated with immune suppression 
and low cytolytic T-cell activity in cancers [22]. This sug-
gested that CEACAM6 may function as a negative immune 
checkpoint in cancer. Indeed, studies from colorectal cancer 
models have shown that CEACAM6 mediates inhibition of 
T-cell activation that is not redundant with the PD-1/PD-L1 
axis [26]. A similar observation has also been reported 
in multiple myeloma, where binding and cross-linking of 
CEACAM6 by cytotoxic T-cells inhibited their activation 
and resulted in T-cell unresponsiveness [27]. Interestingly, 
in breast cancer, CEACAM6 status has been shown to be 
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Fig. 5   Cytotoxic effect of 2A3-CAR T-cells on a CEACAM6 knock-
out MCF7 cell line (MCF7-C6ko). a Flow cytometry data confirm-
ing knockout of CEACAM6 in the MCF7 cell line. b Cytotoxic effect 
observed in real time on RTCA instrument on MCF7 wild-type (WT) 
and knockout cell lines. Orange line—anti-CEACAM6 CAR T-cells; 
green line—control mock T-cells; purple line—untransduced T-cells; 
blue line—tumor cell line cells without T-cells, red line—cytotox-

ity positive control (i.e., cells treated with 0.1% Triton X-100). The 
RTCA experiment was repeated in duplicates two times. Statistical 
analysis of RTCA experiment has been performed for the time point 
of 24 h after initiation of co-culture. T-test comparing CAR T-cells to 
other groups showed nonsignificant differences between CAR T-cells 
and all other groups. The data have been shown in Supplementary 
Table 3
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higher in both ER-positive tamoxifen-resistant breast can-
cer and HER-positive trastuzumab-resistant breast cancer 
than in treatment-responsive disease [21, 28], suggesting 
CEACAM6 as a potential target for the subsequent lines 
of therapy.

Because of its recognized role in cancer development 
and progression, CEACAM6 has become an attractive 

therapeutic or theragnostic target in a number of malignan-
cies [13, 29, 30]. This line of investigation has been sup-
ported by in vitro observations that genetic downregulation 
of CEACAM6 results in decreased cellular invasiveness 
[23], reduction in the anoikis resistance and suppression of 
metastatic potential in cancer cells [31]. Following these 
reports, a number of anti-CEACAM6 antibodies, including 
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BAY1834942 [26] and 2A3 [13], or antibody conjugates 
have been developed for clinical use. An interesting exam-
ple of the latter is L-DOS47, in which a camelid anti-
CEACAM6 antibody (AFAIKL2) is conjugated to urease 
[32]. Currently, a Phase 1/2 clinical trial is being conducted 
to evaluate the safety and tolerability of escalating doses 
of L-DOS47 in combination with doxorubicin, as well as 
preliminary antitumor activity in patients with previously 
treated advanced pancreatic cancer (ClinicalTrials.gov 
Identifier: NCT04203641). A Phase 1 clinical trial utiliz-
ing BAY1834942 in advanced solid tumors is also ongo-
ing (NCT03596372). Interestingly, BAY1834942 when 
used in tumor cell/T-cell co-culture systems increased the 
production of T-cell cytokines and effector molecules (e.g., 
IFN-γ, TNFα, IL-2, granzyme B) and resulted in improved 
tumor cell killing, which indicates that this antibody may 
be a novel immune checkpoint inhibitor [26]. Nevertheless, 
the complexity of the immunosuppressive landscape in pan-
creatic and breast cancers raises questions about the effi-
cacy of antibody-mediated targeting of CEACAM6 in these 
malignancies. This approach might not directly eliminate 
the cancer or cancer adjacent cells, as redundancy of other 
checkpoints could be expected. This would allow the tumor 
either to stay primarily resistant to the therapeutic strategy 
or to circumvent the blockade over time, as is most likely the 
case with antibody-mediated PD-1/PD-L1 checkpoint block-
ade. The solution may be the combination of CEACAM6 
targeting with adoptive cytotoxic therapies, such as anti-
CEACAM6 chimeric antigen receptor (CAR) T-cells [33]. 
CAR T-cells would physically eliminate CEACAM6-posi-
tive cells within the tumor burden. To validate this notion, 
hereby we applied this approach in the current study using 
the previously described anti-CEACAM6 2A3 llama single-
domain antibody (sdAb, VHH) as a targeting domain in the 
new CAR presented.

Our work has demonstrated for the first time the enhanced 
targeting capabilities of the 2A3 sdAb, as we describe a 
cross-reactive targeting of primarily CEACAM6 mole-
cule with an auxiliary targeting of a homologous protein, 
CEACAM5. Due to the high sequence homology, other 
CEACAM molecules, i.e., CEACAM1, CEACAM3 and 
CEACAM7, were also considered as potential targets for 
the 2A3-CAR T; however, our study did not confirm those 
assumptions. Nevertheless, the results of cross-reactive (i.e., 
CEACAM5/6) targeting of CEACAM family molecules by 
2A3 sdAb raise hope for expanding the potential applica-
tions of 2A3-CAR T-cells against a wide range of tumors. 
Indeed, both CEACAM5 and CEACAM6 molecules have 
been reported to be highly overexpressed in multiple types of 
cancer [34]. This notion is further supported by the publica-
tions to date describing the generation and use of the NEO-
201 antibody (IgG1 monoclonal antibody targeting variants 
of CEACAM5/6; reviewed in [35]). Of note, although both 
2A3 and NEO-201 are CEACAM-targeting, the binding pat-
tern seems to differ between these two antibodies, as NEO-
201 does not bind SK-BR-3 cells [36], whereas we report 
significant interactions of 2A3-CAR T-cells with SK-BR-3 
cell line (Fig. 3). The potential indications for the use of each 
of these antibodies will also differ, highlighting the novelty 
of the current report.

Notably, in the majority of cases the cross-reactivity of 
an CAR-mounted targeting domain is an undesired phenom-
enon. However, in the case for the 2A3 sdAb in our pro-
ject, we do find beneficial the fact that this antibody targets 
an epitope conserved both in CEACAM6 and CEACAM5 
proteins. This ensures more potent overall actions against 
CEACAM5/6 positive cells, even if one of these targets is 
missing on a percentage of cancer cells due to heterogeneity 
of the tumor. Obviously, this cross-reactivity potentially also 
increases the on-target, off-tumor toxicities of the 2A3 bear-
ing CAR T-cell. This, however, can be alleviated by using, 
e.g., logical gating strategies (as reviewed in [37]) or intra-
tumoral/loco-regional implantation of the 2A3-CAR T-cells. 
Notably, the latter strategy has already been safely attempted 
for anti-CEACAM5-CAR T-cells in clinical settings [38].

Additionally, 2A3 is an sdAb and is therefore expected 
to have significant physicochemical advantages over single-
chain variable fragment (scFv) structures derived from 
antibodies such as NEO-201 for the purposes of CAR con-
struction. These advantages include a reduced tendency to 
aggregate on the T-cell surface, which prevents premature 
T-cell activation and exhaustion, or the fact that the long 
CDR3 of sdAbs enables them to bind particular epitopes 
that are out of reach of conventional mAbs (reviewed in 
[39]). Therefore, our results substantiate further assess-
ment of 2A3-CAR T-cells in the preclinical settings against 
CEACAM5/6-overexpressing cancers with parallel evalua-
tion of the safety of such strategy, especially to address such 

Fig. 6   Cytotoxicity of 2A3-CAR T-cells against MDA-MB-231 cell 
line derivatives with CEACAM5 or CEACAM6 overexpression. 
a Flow cytometry data confirming overexpression of CEACAM5 
or CEACAM6 in the MDA-MB-231 cell line. b Cytotoxic effect 
observed in real time on an RTCA instrument on MDA-MB-231 con-
trol and overexpressing cell lines. Orange line—2A3-CAR T-cells; 
green line—control mock T-cells; purple line—untransduced T-cells; 
blue line—tumor cell line cells without T-cells; red line—cytotox-
ity positive control (i.e., cells treated with 0.1% Triton X-100). The 
RTCA experiment was repeated in duplicates three times. Represent-
ative data from one biological replicate are shown. Statistical analysis 
of RTCA experiment has been performed for the time point of 24 h 
after initiation of co-culture. T-test comparing CAR T-cells to other 
groups showed significant differences between CAR T-cells and all 
other groups. The data have been shown in Supplementary Table 4. 
c Boxplots show the cytotoxic effect of 2A3-CAR T-cells on tumor 
cell lines as fold change compared to mock T-cells 0, 12 and 24 h 
post-start of the co-culture. Data from three repetitions in technical 
duplicates, analyzed by ANOVA followed by Dunnett’s post hoc test. 
****p < 0.0001, ***p < 0.001, **p < 0.01, *p < 0.05
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issue as tissue penetration and bystander effect of 2A3-CAR 
T-cells or evaluate their effectiveness in the orthotopic 
settings.

An important issue to be taken into consideration dur-
ing prospective preclinical safety tests of 2A3-CAR T-cells 
is the fact that rodents do not express a CEACAM6 (i.e., 
the most pronounced target for this CAR) analogue [40]. 
Therefore, testing CEACAM6-targeted therapies in regular 
mouse systems can only provide information on the efficacy 
of the given strategy, but should not be directly interpreted in 
terms of off-tumor, on-target toxicities. For this reason, the 
CEABAC transgenic mouse strain [41] or higher mammals, 
such as dogs or monkeys, must be used. The importance 
of this issue is underscored by the distribution pattern of 
CEACAM6 expression in healthy human tissues [42] such 
as lung, gastrointestinal tract or bone marrow. However, 
CEACAM6 expression in healthy tissues tends to be 1–2 
log lower than expression in malignant cells [42], which 
decreases the overall risk for off-tumor toxicities. Should any 
significant toxicities be detected in non-rodent mammals, 
they can be potentially controlled, for example, by induc-
ible expression of CAR, lower affinity CAR, or by using the 
transient expression electroporation method instead of the 
viral vector-based transduction of effector cells.

Another interesting aspect related to the targeting of 
CEACAM5/6 by CAR T-cells is the potential effects of 
this therapy on tumor-associated neutrophils, as these cells 
express high levels of CEACAM6 [43]. Indeed, some reports 
suggest that tumor-associated neutrophils that accumulate 
in, e.g., pancreatic cancers can regulate T-cell-dependent 
immunity [44] and promote metastasis [45]. It is, therefore, 
of great interest to determine whether 2A3-CAR T-cells 
can also target immunosuppressive elements of the cancer 
environment, such as neutrophils, in addition to the direct 
cytotoxic effect against malignant cells. Due to the lack of 
CEACAM6 in mice, the most appropriate experimental 
models may be the 3D co-culture in vitro models of tumor 
microenvironment [46] and humanized mouse models [47].

Conclusions

In summary, our work contributes to the investiga-
tion toward establishing whether CEACAM-targeting 
2A3-CAR T-cells can potentially be used as an effective 

immunotherapeutic agent against CEACAM5/6-express-
ing human malignancies, such as pancreatic or mammary 
cancers. In preclinical settings, our results indicate that 
camelid single-domain-based 2A3-CAR T-cells exert a 
potent direct cytotoxicity against human pancreatic and 
breast cancer cells. It remains to be investigated whether 
targeting CEACAM5/6 by CAR T-cells can provide an 
additional benefit to cancer therapy by acting on the con-
stituents of the immunosuppressive elements of the tumor-
associated microenvironment. It is also crucial to inves-
tigate potential on-target off-tumor cytotoxicity, as this is 
still the most important concern, regarding possible use of 
2A3 sdAb-based CAR T-cells in humans. Our study sug-
gests that the prospective clinical relevance of 2A3-CAR 
T-cell-based therapy in various malignancies including 
highly aggressive pancreatic cancer or breast cancer is 
worth further evaluation.
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