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Abstract
Bone marrow mesenchymal stromal cells (MSCs) have been described as potent regulators of T-cell function, though whether 
they could impede the effectiveness of immunotherapy against acute myeloid leukemia (AML) is still under investigation. 
We examine whether they could interfere with the activity of leukemia-specific clonal cytotoxic T-lymphocytes (CTLs) and 
chimeric antigen receptor (CAR) T cells, as well as whether the immunomodulatory properties of MSCs could be associated 
with the induction of T-cell senescence. Co-cultures of leukemia-associated Wilm’s tumor protein 1 (WT1) and tyrosine-
protein kinase transmembrane receptor 1 (ROR1)-reactive CTLs and of CD123-redirected switchable CAR T cells were 
prepared in the presence of MSCs and assessed for cytotoxic potential, cytokine secretion, and expansion. T-cell senescence 
within functional memory sub-compartments was investigated for the senescence-associated phenotype  CD28−CD57+ using 
unmodified peripheral blood mononuclear cells. We describe inhibition of expansion of AML-redirected switchable CAR 
T cells by MSCs via indoleamine 2,3-dioxygenase 1 (IDO-1) activity, as well as reduction of interferon gamma (IFNγ) and 
interleukin-2 (IL-2) release. In addition, MSCs interfered with the secretory potential of leukemia-associated WT1- and 
ROR1-targeting CTL clones, inhibiting the release of IFNγ, tumor necrosis factor alpha, and IL-2. Abrogated T cells were 
shown to retain their cytolytic activity. Moreover, we demonstrate induction of a  CD28loCD27loCD57+KLRG1+ senescent 
T-cell phenotype by MSCs. In summary, we show that MSCs are potent modulators of anti-leukemic T cells, and targeting 
their modes of action would likely be beneficial in a combinatorial approach with AML-directed immunotherapy.
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Introduction

Acute myeloid leukemia (AML) is a form of hematologi-
cal cancer derived from the abnormal expansion of myeloid 
precursor cells, resulting in invasion of the bone marrow and 
ultimately failure of normal hematopoiesis. As it stands, the 
5-year survival rate is less than 30%, underlining a desperate 
need for alternative treatments. Chimeric antigen receptor 
(CAR) T cells are a promising avenue currently in early clin-
ical trials [1]. Initial reports have noted however that while 
several refractory/relapsed AML patients achieve a response 
to CAR T-cell adoption, only a minority achieve complete 

remission and a relevant proportion fail to respond at all, 
highlighting the need for further research into mechanisms 
of resistance [2–4]. In addition to immunosuppressive path-
ways intrinsic to AML blasts, neighboring constituents of 
the bone marrow can provide additional protection. In par-
ticular, a lot of interest has been garnered for resident mes-
enchymal stromal cells (MSCs) which were found to possess 
an impressive immunomodulatory capacity in suppressing 
the proliferation and the inflammatory potential of T cells 
[5]. This along with other properties such as multipotency 
has highlighted the therapeutic potential of MSCs in regen-
erative medicine and the treatment of immune disorders [6].

It follows to ask if MSCs can interfere with the action 
of T-cell-based immunotherapies in the context of hema-
tological malignancy. At the time of writing, few reports Extended author information available on the last page of the article
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have come out addressing this topic. One early report inves-
tigated whether MSCs could ablate the cytotoxic potential of 
T cells specific for the AML antigen Wilm’s tumor protein 
1 (WT1), of which they found no effect [7]. More recently, 
it was reported that infusion of MSCs did not affect CD19 
CAR T-cell activity in acute lymphocytic leukemia xeno-
grafts despite being able to efficiently control inflammation 
in a acute colitis murine model [8]. In contrast, another study 
demonstrated that MSCs could in fact decrease cell lysis 
mediated by several CAR T-cell constructs against multiple 
myeloma [9]. To reconcile these contradictory reports, it is 
apparent that more research in the field is needed.

To gain deeper insight into this issue, firstly, we inves-
tigated the effect of MSCs on the proliferative, secretory, 

and cytotoxic potential of clonal  CD8+ cytotoxic T-lympho-
cytes (CTLs) specific for the leukemia-associated antigens 
WT1 and tyrosine-protein kinase transmembrane receptor 
1 (ROR1) [10, 11], as well a switchable CAR T-cell sys-
tem redirected against the AML marker CD123 currently 
tested in a phase I clinical trial [12–15]. We demonstrate 
that MSCs induce a reduction in T-cell proliferation and 
release of inflammatory cytokines, but without ultimately 
influencing killing potential against AML targets. Secondly, 
aberrant senescent T cells have been identified in circulation 
and within the bone marrow of AML patients [16–18], and 
we demonstrate here that MSCs can induce the senescence-
associated  CD28loCD27loCD57+KLRG1+ phenotype in T 
cells.

Fig. 1  MSCs modulate the inflammatory capabilities of WT1- and 
ROR1-reactive CD8+ T-cell clones without affecting cytotoxicity. a 
Antigen-specific WT1- and ROR1-reactive CTL clones were, respec-
tively, incubated with 51Cr-loaded target T2 cells pulsed with WT1 
peptide or K562 cells pulsed with ROR1 peptide in the presence or 
absence of 1 × 104 allogeneic MSCs from six healthy donors (MSC1-
6) at a E:T:MSC ratio of 10:1:2. Target cells pulsed with irrelevant 
HIV Gag-Pol peptides served as a negative control. Efficacy of 
CTL-mediated lysis of target cells was determined by 51Cr release 

after 4 h as measured by β-counter and is expressed as a percentage 
of maximum lysis with correction for spontaneous release. b Cell 
cultures were prepared as in (a) without 51Cr loading. After 24  h, 
supernatants were collected and assessed for IFNγ concentration via 
ELISA. Data are representative of three independent experiments and 
are presented as the mean of technical triplicates ± SD. Asterisks rep-
resent statistically significant differences compared to the control (* 
p ≤ 0.05; ** p ≤ 0.01; *** p ≤ 0.001; and **** p ≤ 0.0001; n.s. not sig-
nificant)
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Fig. 2  MSCs interfere with the proliferative and inflammatory capa-
bilities of CD123-targeting switchable CAR T cells without affecting 
cytotoxicity. In the apical chamber of the Transwell cell culture sys-
tem,  eGFP+ CAR T cells were redirected with an anti-CD123 target 
module (+ TM, 0.5  nM) against eFluor670-labeled MOLM-13 cells 
in the presence or absence in the basolateral chamber of 7.5 ×  103 
MSCs from three allogeneic healthy donors (MSC1-3) at a E:T:MSC 
ratio of 16:16:3. Cultures without TM (-TM) served as a negative 
control. Additional eFluor670-labeled MOLM-13 cells were added on 
day 2 (1.2 ×  105) and day 5 (variable at a E:T of 1:2). Surviving CAR 
T cells  (PI−eGFP+) and MOLM-13 cells  (PI−eFluor670+) were quan-
tified via flow cytometry at 1, 2, 5, 6, and 7 days of culture. Shown 
are representative results of three independent assays. Data points 
are presented as the mean of technical triplicates ± SD. Asterisks 

represent statistically significant differences (**** p ≤ 0.0001; n.s. 
not significant). a CAR T-cell expansion was assessed as  PI−eGFP+ 
cells/mL over time. b  CD4+ and  CD8+ CAR T-cell populations were 
assessed by flow cytometry on days 0 and 7. Data are presented as the 
ratio of  CD4+/CD8+ fractions in the  DAPI−eFluor670−CD45+eGFP+ 
cell population. c and d Supernatant was collected on days 1, 2, 5, 
6, and 7 and assessed for IFNγ and IL-2 concentration via ELISA. e 
MOLM-13 killing kinetics after the third round of CAR T-cell stimu-
lation on day 5 at a E:T of 1:2. Data points represent cumulative loss 
of target cells relative to the initial population on day 5. Negative 
values indicate MOLM-13 proliferation. f In a separate assay, co-cul-
tures were treated with 0.2-mM NaOH (left) or 0.2-mM 1-MT/NaOH 
(right). CAR T-cell expansion was assessed as DAPI-eGFP + cells/
mL over time
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Methods

Isolation of mesenchymal stromal cells 
and peripheral blood mononuclear cells

MSCs were isolated from bone marrow aspirates of healthy 
donors (EK307082018) and AML patients (EK98032010) 
after informed consent and approval by the local review 
board, as previously described [19]. MSCs were character-
ized based on the criteria set out by the International Society 
for Cellular Therapy [20]. Peripheral blood mononuclear 
cells (PBMCs) were isolated by density gradient centrifu-
gation using Pancoll (PAN-Biotech, Germany) from blood 
donated by healthy volunteers (EK206082008).

PBMC co‑culture

PBMCs and MSCs were co-cultured at a 5:1 or 100:1 
ratio with CD3/CD28 Dynabeads (Gibco, USA) in RPMI: 

Roswell Park Memorial Institute 1640 (Gibco, USA) with 
10% fetal bovine serum (FBS) (Merck, Germany). Prolifera-
tion assays were carried out as previously described [19]. 
The Transwell Permeable Support system with 0.4-μm poly-
carbonate membranes (Corning, USA) was used for non-
contact cultures.

CTL clone co‑culture

CTL clones were generated as described elsewhere [10, 
11]. Matched HLA-A*02:01 T2 target cells were pulsed 
with 20  μg/mL  WT1126 (RMFPNAPYL) or HIV Gag-
Pol896 (ILKEPVHGL) nonamers and HLA-B*07:02 
K562 with  ROR1783 (NPRYPNYMF) or HIV Gag-Pol355 
(GPGHKARVL) nonamers. For cytotoxicity assays, 
100 μCi/mL 51Chromium (Hartmann Analytic, Germany) 
was added. CTLs and target cells were co-cultured with 
MSCs at an E:T:MSC ratio of 10:1:2 in RPMI. Superna-
tant was collected and mixed with Ultima Gold scintillation 

Fig. 3  AML-activated CAR T-cell inflammatory stimuli induce the 
expression of immune checkpoint and lymphocyte adhesion mol-
ecules in MSCs. Co-cultures were prepared as in Fig.  2. a On day 
7, mRNA was isolated from the MSCs from a single donor and 
reverse-transcribed into cDNA libraries. The expression of the indi-
cated genes was assessed by qPCR, and the data are reported as 
expression levels relative to that of GAPDH. b and c On day 7, cells 
were collected and analyzed for cell surface expression of the indi-
cated markers by flow cytometry. Shown are representative results 

of two independent experiments. b Cell surface expression of the 
indicated markers on  DAPI− MSCs of the basolateral chamber. Data 
are presented as the mean % of positive MSCs from biological trip-
licates ± SD. Asterisks represent statistically significant differences 
(*** p ≤ 0.001 and **** p ≤ 0.0001). c Cell surface expression on day 
0 and day 7 of PD-1 on  CD4+ (left) and  CD8+ (right) CAR T cells of 
the apical chamber  (DAPI−eGFP+CD45+). Data are presented as the 
mean % of PD-1 positive CAR T cells
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cocktail (PerkinElmer, USA), and 51Cr release was assessed 
with the MicroBeta 2 (PerkinElmer, USA). Supernatant was 
also collected for cytokine determination.

Switchable CAR T‑cell co‑culture

The switchable CAR T-cell system has been described 
elsewhere [12]. AML blasts were collected from a pri-
mary patient sample derived from a 74-year-old female 
diagnosed with NPM-1 and CEBPA-mutated AML. Phe-
notyping revealed > 90% positivity for CD123 within the 
marrow blast population. The patient had provided written 
consent to the banking of the material and to its use within 
the research project (EK98032010). Target MOLM-13 and 
AML blasts were labeled with eFluor 670 (Thermo Fisher, 
USA) and co-cultured with CAR T cells in the Transwell 
Permeable Support system with MSCs at a E:T:MSC ratio of 
16:16:3 with 0.5-nM target module (TM) in RPMI/Complete 
(RPMI with 10% FBS, 100 μg/ml penicillin/streptomycin, 
1% nonessential amino acids, 2-mM N-acetyl-l-alanyl-l-
glutamine, and 1-mM sodium pyruvate (Biochrom, UK)). 
For indoleamine 2,3-dioxygenase 1 (IDO-1) blocking assays, 
0.2-mM 1-methyl-L-tryptophan (1-MT) (Sigma-Aldrich, 
USA) diluted in 0.2-mM NaOH was added. For cytotoxic-
ity determination, CAR T cells  (PI−eGFP+) and target cells 
 (PI−eFluor670+) were quantified with the MACSQuant X 
(Miltenyi Biotec, Germany). MSC viability was assessed 
with the PE Annexin V Apoptosis Detection Kit (BD, USA). 
Supernatant was collected for cytokine analysis. Fresh 
RPMI/Complete with 0.5-nM TM was added back to the 
cultures after each collection. Cultures were restimulated 
twice with target cells on day 2 and day 4 or 5.

Cytokine assessment

Cytokine concentrations were assessed with commercial 
kits. Human IFNγ ELISA Set and Human IL-2 ELISA Set 
(BD, USA) were measured on the Sunrise spectrophotom-
eter and analyzed with Magellan software (Tecan, Swit-
zerland). Interleukin (IL)-2, IL-17a, tumor necrosis factor 
alpha (TNFα), interferon gamma (IFNγ), soluble Fas ligand 
(sFasL), granzyme A, and perforin were measured with the 
LEGENDplex Human CD8/NK Panel (Biolegend, USA) on 
the MACSQuant X (Miltenyi Biotec, Germany) and ana-
lyzed with Legendplex software (Biolegend, USA).

Gene and cell surface protein expression

For cell surface protein expression, MSCs, PBMCs, and 
CAR T cells were resuspended with fluorochrome-labeled 
antibodies (Supplementary Table 1) and 40 ng/mL DAPI, 
acquired on the LSR II flow cytometers (BD, USA), and 
analyzed with FlowJo software (BD, USA).

For gene expression, RNA was isolated from MSCs with 
TRIzol reagent (Thermo Fisher, USA), and cDNA libraries 
were prepared with RevertAid First Strand cDNA Synthe-
sis Kit (Thermo Scientific, USA). Quantitative polymerase 
chain reaction (qPCR) was performed with the Maxima 
SYBR Green/ROX qPCR Master Mix (Thermo Scientific, 
USA) on the QuantStudio 3 (Applied Biosystems, USA). 
Primers are listed in Supplementary Table 2.

Statistical analyses

Standard deviation (SD) and one-way or two-way ANOVA 
with Bonferroni’s correction for multiple comparisons were 
calculated with Graphpad Prism 6. p values ≤ 0.05 were con-
sidered statistically significant and were further stratified: 
p ≤ 0.05 (*), p ≤ 0.01 (**), p ≤ 0.001 (***), and p ≤ 0.0001 
(****).

Results

MSC‑mediated interference of anti‑leukemic  CD8+ 
T‑cell activity

MSCs from healthy donors were selected for their ability 
to inhibit PBMC proliferation in co-culture (Supplemen-
tary Fig. 1). Next, we evaluated the immunomodulatory 
potential of these MSCs on the cytotoxic capabilities of 
WT1- and ROR1-specific  CD8+ CTL clones, and Fig. 1a 
shows that the MSCs did not significantly affect cytotoxic-
ity of the CTLs against their target cells. MSCs are also 
reported to decrease the release of inflammatory cytokines 
such as IFNγ, TNFα, and IL-2. Despite having no discern-
able effect on cytotoxicity, IFNγ release was significantly 
decreased after 24 h in the presence of MSCs for both CTL 
clones (Fig. 1b). The decrease in IFNγ secretion by ROR1-
reactive CTLs could even be observed as early as 4 h of 
co-culture (Supplementary Fig.  2a), along with other 
cytokines (IL-2 and TNFα). In contrast, MSCs did not 
have a significant effect on the concentrations of the cyto-
toxic effector molecules sFasL, granzyme A, or perforin 
within these same cultures, corroborating the cytotoxicity 
data (Supplementary Fig. 2b).

MSC‑mediated interference of AML‑retargeted 
switchable CAR T‑cell activity

The flow cytometry examination of the immunomodula-
tory potential of MSCs against switchable CAR T cells was 
conducted long term with repeated cytotoxic challenge in 
the Transwell cell culture system; MSCs and CAR T cells 
were thus limited to paracrine interactions. CAR T cells 
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redirected against MOLM-13 cells with the anti-CD123 
TM had significantly inhibited expansion kinetics in MSC 
co-cultures, approaching the minimal growth rate of the 
CAR T cells lacking TM-mediated stimulation (Fig. 2a). 
Intriguingly, the presence of MSCs abrogated the increased 
expansion of  CD4+ CAR T cells compared to their  CD8+ 
counterparts, maintaining a steady  CD4+/CD8+ ratio over 
time similar to the unstimulated cultures (Fig. 2b). MSCs 
also decreased secretion of IFNγ and IL-2 by the CAR T 
cells, as observed previously with the CTL clones (Fig. 2c 
and d). Finally, the cytotoxic capabilities of the CAR T cells 
were studied by measuring the kinetics of MOLM-13 death 
after the third round of cytotoxic challenge. In line with the 
analysis of CTL clones, MSCs did not have an observable 
effect on the killing capacity of the CAR T cells, despite 
inducing overall lower proliferative and cytokine secre-
tion capabilities (Fig. 2e). Similar trends could be observed 
when using patient-derived MSCs and AML blasts (Sup-
plementary Fig. 3). In response to CAR T-cell activity, a 
large increase in gene expression was observed in MSCs 
for IDO-1 (Fig. 3a). To study the contribution of IDO-1 
on suppression of CAR T-cell expansion, co-cultures were 
treated with the IDO-1 inhibitor 1-MT. In response, inhibi-
tion of expansion was almost completely reversed (Fig. 2f). 
To verify that this was not due to toxicity of the treatment, 

MSCs were subsequently assessed for apoptosis and necrosis 
and found to remain viable (Supplementary Fig. 4).

In addition to IDO-1, increase in gene expression in 
response to CAR T-cell activity was observed for the immu-
nosuppressive factor cyclooxygenase 2 (COX-2), immune 
checkpoint ligands programmed cell death ligand 1 (PD-L1) 
and PD-L2, and intercellular adhesion molecule 1 (ICAM-1) 
(Fig. 3a). PD-L1, PD-L2, and ICAM-1, along with vascular 
cell adhesion protein 1 (VCAM-1) and lymphocyte function-
associated antigen 3 (LFA-3), were further validated for cells 
surface expression (Fig. 3b). In parallel, programmed cell 
death 1 (PD-1) also increased significantly on the cell sur-
face of CAR T cells over time (Fig. 3c).

Induction of the T‑cell senescence‑associated 
phenotype by MSCs

In addition to PD-1, investigation of co-receptor CD28 
expression on the surface of activated CAR T cells was also 
conducted, revealing MSC-mediated decrease in CD28 
median fluorescence intensity (MFI) (Supplementary Fig. 5). 
Using PBMCs, we investigated whether MSCs could induce 
an enrichment of senescence-associated  CD28− and  CD57+ 
T cells within the global  CD4+ and  CD8+ populations, as 
well as within further sub-compartments of T-cell differen-
tiation and memory as defined by cell surface expression of 
CD45RA, CCR7, and CD45RO. Much like with the CAR 
T cells, MSC-mediated loss of CD28 could be observed on 
T cells within both the  CD4+ and  CD8+ fractions, as well 
as memory subfractions though  CD4+ naïve and  CD8+ ter-
minal effector T cells remained largely unaffected (Fig. 4a). 
When referencing senescent T cells as  CD8+CD28−CD57+ 
[16], we measured average fold changes ranging from 0.9 to 
3.7 compared to the control within the differentiation sub-
populations (Fig. 4b). Supplementary Fig. 6 shows example 
contour plots for CD28 and CD57 cell surface expression 
within the  CD45RA−CCR7+CD45RO+ central memory 
compartment. We further investigated senescence-associ-
ated loss of CD27 and gain KLRG1, which we observed in 
conjunction with the above-mentioned senescence indica-
tors (Fig. 4c and d), with a mean 8.1-fold increase in the 
 CD8+CD28loCD27loCD57+KLRG1+ population in MSC 
co-cultures (Fig.  4d; 4 senescence indicators). Similar 
trends were observed in indirect co-cultures (Supplemen-
tary Fig. 7). Contour plots can be found in Supplementary 
Figs. 8 and 9. We further assessed the surface expression on 
MSCs of the CD28 ligands CD80 and CD86, which were 
negative, as well as HLA-DR which was positive (Supple-
mentary Fig. 10).

Fig. 4  MSCs induce senescence of unmodified T cells, as char-
acterized by loss of CD28 and CD27, and gain of CD57 and 
KLRG1. Healthy donor PBMCs were cultured with or with-
out 5 ×  104 allogeneic MSCs from three healthy donors (MSC1-
3) at a PBMC:MSC ratio of 5:1 and stimulated with anti-CD3/
CD28 antibody-coated beads. After 6  days, cells were harvested 
and analyzed by flow cytometry. T-cell senescence  (CD28lo, 
 CD27lo,  CD57+,  KLRG1+) was assessed within the global  CD4+ 
and  CD8+ T-cell populations (global;  DAPI−CD45+CD4+ and 
 DAPI−CD45+CD8+), as well as within further T-cell mem-
ory subpopulations: naïve (N;  CD45RA+CCR7+CD45RO−), 
stem cell memory (SCM;  CD45RA+CCR7+CD45RO+), central 
memory (CM;  CD45RA−CCR7+CD45RO+), effector memory 
(EM;  CD45RA−CCR7−CD45RO+), and terminal effector (TE; 
 CD45RA+CCR7−CD45RO−). a Above: Fraction size of  CD28hi 
cells within the global and memory stages of  CD4+ (blue) and  CD8+ 
(red) T-cell population in direct MSC co-cultures relative to the con-
trol. Below: Median fluorescence intensity (MFI) of CD28 within 
the global and memory stages of  CD4+ (above) and  CD8+ (below) 
T-cell populations for control (black) MSC co-cultures (green). Data 
are presented as the mean of biological triplicates ± SD. φ indi-
cates lack of sufficient number of events for assessment. b Fraction 
size of  CD28loCD57+ cells within the global and memory stages of 
the  CD8+ T-cell population in direct MSC co-cultures relative to 
the control. Results are representative of three independent experi-
ments. c Fraction size of each senescence marker within the global 
 CD4+ (above) and  CD8+ (below) populations for control (black) and 
MSC co-cultures (red). d Fraction size based on the number of co-
expressed senescence indicators within the global  CD4+ (above) and 
 CD8+ (below) populations for control (black) and MSC co-cultures 
(green). Data are presented as the mean of biological triplicates ± SD

◂
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Discussion

As light is shed onto mechanisms of AML-mediated 
immune escape, a new appreciation has developed regard-
ing the reciprocal interactions within the local tumor micro-
environment in suppressing the host immune response, and 
by extension targeted therapies with antibodies or effector 
immune cells. MSCs are emblematic of this activity with the 
ability to express a wide range of soluble and cell surface 
immune modulating molecules.

Herein, we demonstrated that MSCs significantly abro-
gate the T-cell-mediated release of several inflammatory 
molecules and the proliferative potency of AML-targeting 
T cells, activities which are likely detrimental to sustained, 
long-term immunotherapeutic response [21–24]. Curiously, 
even once activated, the paracrine mechanisms of MSCs 
were found insufficient to prevent directed cytolysis once 
the immunological synapse has formed, confirming previ-
ous findings [7, 25]. As certain MSC-associated molecules 
such as tumor growth factor β reduce both inflammatory 
and cytolytic molecules at the transcriptional level [26], it 
could be postulated that MSCs do not affect secretion events 
per se of granules already present in primed cytotoxic T 
cells. Alternatively, considering IFNγ promotes cytotoxic-
ity [27], it is possible that reduced inflammation levels still 
surpass the threshold for efficient T-cell killing activity. As 
our assays preclude the involvement of direct contact mecha-
nisms such as the PD-1/PD-L1/PD-L2 axis, their role cannot 
be discounted within the AML microenvironment.

Increase in both exhausted and senescent  CD8+ lym-
phocytes has been identified within the peripheral blood 
and bone marrow of AML patients [16–18]. Exhaustion is 
denoted by inhibitory receptors such as PD-1, of which we 
found expression on CAR T cells independently of MSC 
activity, likely the result of priming and sustained stimula-
tion. With regard to senescence, they can be identified by 
gain of KLRG1 and CD57, and loss of CD27 and CD28 
[28]. We observed loss of CD28 and CD27 and gain of 
KLRG1 in MSC co-cultures in both  CD4+ and  CD8+ frac-
tions. Enrichment of  CD8+CD28loCD27loCD57+KLRG1+ 
cells could also be observed, though they remained at a low 
percentage relative to the total  CD8+ population. Curiously, 
the CD28 ligands CD80 and CD86 are not involved due to 
lack of expression on MSCs [29], and rather our non-contact 
cultures imply activity from paracrine mechanisms. It should 
be noted that senescent T cells in AML have been found to 
possess increased IFNγ and TNFα potential, though lower 
IL-2 [18], which differs to what we and many others have 
demonstrated regarding MSC immunosuppression. It is clear 
that more study needs to be carried out to robustly conclude 
if  CD28loCD27loCD57+KLRG1+ T cells under MSC activ-
ity are truly senescent. With regard to specific pathways by 

which MSCs and the AML microenvironment could induce 
the senescence-associated phenotype, tumor cells have been 
shown to induce senescence through mediation of cAMP 
activity within effector T cells [30]. This pathway is poten-
tially shared by MSCs and regulatory T cells (Tregs) via 
T-cell adenylate cyclase activation by extracellular adeno-
sine produced by the CD73-CD39 receptors [31], as well as 
through prostaglandin E2 release mediated by COX-2 [32] 
expressed by both MSCs and myeloid-derived suppressor 
cells. Indeed, Tregs have been demonstrated to induce CD27 
and CD28 loss in both  CD4+ and  CD8+ T cells, along with 
inhibited proliferative capacity [33]. Blocking these path-
ways could potentially reverse the observed induction of the 
 CD28loCD27loCD57+KLRG1+ phenotype.

Finally, we demonstrate that MSCs express a plethora 
of immune modulating factors in response to CAR T-cell 
activity. We show that IDO-1 inhibition almost completely 
reverses MSC-mediated suppression of CAR T-cell expan-
sion, though the contribution of other mechanisms should be 
considered. Indeed, hierarchal clustering of gene expression 
data from AML bone marrow samples of patients receiving 
CD3/CD123 bispecific antibody flotetuzumab demonstrated 
higher immune scores for a number of MSC-associated mod-
ulatory signatures such as IDO1, TGFβ, and PDL2, as well 
a stromal biological signature, in non- and partial respond-
ers in comparison with complete responders [34]. Much 
of the paracrine regulation by MSCs is mediated through 
extracellular vesicles [35], which, in addition to facilitat-
ing the transfer of metabolic and peptidic factors, allow for 
epigenetic gene regulation via micoRNAs. A large number 
of extracellular microRNAs have recently been found to be 
differentially expressed in AML [36], some of which pos-
sess potent immunosuppressive activity. This includes bone 
marrow miR-21 [37], which is also abundantly present in 
MSC exosomes [38]. In addition to inducing T-cell apop-
tosis, AML-derived miR-21 can polarize T cells toward the 
regulatory phenotype very reminiscent of MSC activity [5]. 
These are just some examples that later could be investigated 
in relevant preclinical models to develop a combinatorial 
approach for optimized CAR T-cell therapy.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00262- 023- 03594-1.
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