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Abstract 
Osteosarcoma (OS) represents a profoundly invasive malignancy of the skeletal system. T cell exhaustion (Tex) is known 
to facilitate immunosuppression and tumor progression, but its role in OS remains unclear. In this study, single-cell RNA 
sequencing data was employed to identify exhausted T cells within the tumor immune microenvironment (TIME) of OS. 
We found that exhausted T cells exhibited substantial infiltration in OS samples. Pseudotime trajectory analysis revealed 
a progressive increase in the expression of various Tex marker genes, including PDCD1, CTLA4, LAG3, ENTPD1, and 
HAVCR2 in OS. GSVA showed that apoptosis, fatty acid metabolism, xenobiotic metabolism, and the interferon pathway 
were significantly activated in exhausted T cells in OS. Subsequently, a prognostic model was constructed using two Tex-
specific genes, MYC and FCGR2B, which exhibited exceptional prognostic accuracy in two independent cohorts. Drug 
sensitivity analysis revealed that OS patients with a low Tex risk were responsive to Dasatinib and Pazopanib. Finally, 
immunohistochemistry verified that MYC and FCGR2B were significantly upregulated in OS tissues compared with adja-
cent tissues. This study investigates the role of Tex within the TIME of OS, and offers novel insights into the mechanisms 
underlying disease progression as well as the potential treatment strategies for OS.
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Bulk RNA-Seq	� Bulk RNA sequencing
CTLA-4	� Cytotoxic T lymphocyte-associated 
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GSVA	� Gene set variation analysis
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IFN	� Interferon
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PD-1	� Programmed cell death-1
PD-L1	� Programmed cell death ligand-1
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scRNA-Seq	� Single-cell RNA sequencing

Tex	� T cell exhaustion
TME	� Tumor microenvironment
tSNE	� T-Distributed Stochastic Neighbour 
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Introduction

Osteosarcoma (OS) is associated with malignant, highly 
aggressive and high heterogeneity tumors, which can seri-
ously endanger the health and physical function of children 
and juveniles [1]. Despite various treatments for OS, includ-
ing surgical resection, chemotherapy, immunotherapy, and 
targeted therapies, it continues to have a poor prognosis [2]. 
The pathophysiology of OS remains elusive; however, sev-
eral studies have demonstrated a strong correlation between 
its pathogenesis and genetic characteristics [3]. Simulta-
neously, the intricate molecular heterogeneity and conse-
quential functional perturbations within the tumor immune 
microenvironment (TIME) facilitate the tumor progression 
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and emergence of chemoradiation resistance [4]. Hence, 
understanding the intricate TIME is important for discover-
ing novel therapeutic targets.

The T cells residing within the TIME play a central role in 
cancer immune surveillance by impeding tumor progression. 
Intracellular pathogens and malignant cells are countered 
and eradicated by the influx of immune cells, most nota-
bly the CD8+ cytotoxic T lymphocytes, which directly kill 
tumor cells, thus forming the cornerstone of cancer immu-
notherapy [5]. A reduction in the number or functionality of 
CD8+ T cells within the host portends a decline in antitumor 
immunity, thereby increasing the risk of neoplastic growth 
and metastasis [6]. However, as the cancer progresses, the 
T cells that infiltrate the TIME may experience a late-stage 
exhaustion due to sustained stimulation by tumor anti-
gens—a phenomenon called T cell exhaustion (Tex), which 
decreases the number or functionality of effector T cells, 
thereby enabling tumor immune evasion and progression 
[7]. Exhausted T cells (ExTs) isolated from advanced tumors 
exhibit the characteristics of tumor-infiltrating lymphocytes: 
they fail to secrete effector cytokines or cytotoxic molecules 
in response to tumor cells that express multiple inhibitory 
receptors [8]. In contrast, exhausted CD8+ T cells display a 
plethora of hallmark features to functional effector cells and 
memory T cells, such as a gradual loss of effector function, 
sustained upregulation of multiple co-inhibitory receptors, 
and changes in epigenetic regulation and metabolism [9]. 
Mounting evidence suggests that co-inhibitory checkpoint 
molecules, including programmed cell death-1 (PD-1), 
cytotoxic T lymphocyte-associated protein-4 (CTLA-4), 
and lymphocyte-activation gene-3 (LAG-3), are involved 
in the development of Tex [10]. Reversal of Tex within the 
TIME may represent a feasible strategy for controlling can-
cer progression. However, the precise contribution of Tex to 
the pathogenesis and progression of OS remains ambiguous, 
and understanding its role clearly will be crucial in iden-
tifying novel therapeutic targets and prognostic biomark-
ers for OS, which may improve clinical management and 
decision-making.

Conventional transcriptomic approaches fail to reliably 
characterize the complex TIME of OS because they investi-
gate overall gene transcription in tumor samples, thus lack-
ing the adequate resolution to identify specific cell types. 
The advent of single-cell genome sequencing has enabled 
the determination of rare cellular subsets and correspond-
ing functional changes in the TIME [11]. In this study, we 
have integrated single-cell and bulk RNA-seq data to explore 
the role of Tex in the TIME of OS. We have also devel-
oped and validated a prognostic predicting model based on 
Tex-associated biomarkers, while predicting target drugs for 
OS patients. These findings shed light on the oncogenesis 
and progression of OS as well as its potential therapeutic 
strategy.

Materials and methods

Datasets utilized for analysis and preprocessing 
of the data

Single-cell RNA sequencing (scRNA-seq) datasets 
GSE169396 and GSE162454 were obtained from the Gene 
Expression Omnibus (GEO) database. GSE169396 har-
bored four health human bone tissues, while GSE162454 
comprised six specimens obtained from osteosarcoma 
(OS) patients. The Seurat package was employed to man-
age both datasets. Additionally, bulk RNA sequencing 
(bulk RNA-seq) data and associated clinical details from 
the TARGET dataset and GSE21257 database were used 
as training and validation sets. The clinical character-
istics of the OS patients from the TARGET dataset and 
GSE21257 database are presented in Table S1. For quality 
control purposes, genes expressed in at least five cells were 
retained, while cells exhibiting either less than 250 genes 
or more than 5000 genes were eliminated. Furthermore, 
cells exhibiting more than 10% mitochondrial reads were 
excluded. The NormalizeData and ScaleData functions 
were applied to standardize and scale the gene expression 
matrix, respectively. The top 3000 highly variable genes 
were identified using the FindVariableFeatures function, 
which served as input for principal component analysis 
(PCA). Batch effects of ten samples were corrected using 
the R package "Harmony". Following this, the FindNeigh-
bors and FindClusters (resolution = 0.2) functions were 
executed to detect cell clusters. Then, the RunTSNE func-
tion was executed to achieve further dimensional reduction 
for cluster visualization. Additionally, T cell expression 
matrix was extracted and reclustered using the FindClus-
ters (resolution = 0.6) function. Subsequently, CD8+ T 
cells were identified via recognized marker genes.

Identification of cell populations and assessment 
of exhaustion in CD8+ T cells

The cell clusters in the TIME were annotated based on 
the well-established cell-specific markers from the pre-
vious literature [12, 13]. The CD8+ T cells were identi-
fied using CD2, CD3D, CD3E, CD3G, CD8A, and CD8B 
markers. The DotPlot function and ggbeeswarm package 
were employed to graphically depict the expression of 
marker genes in each cluster. The prop.table function was 
used to determine the proportions of CD8+ T cell subtypes 
with the stat_compare_means function to analyze the sig-
nificant difference by t test. To calculate the exhaustion 
scores, AddModuleScore function was utilized by tak-
ing the average expression of five exhaustion-associated 
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genes (CTLA4, PDCD1, ENTPD1, LAG3, HAVCR2) 
across all CD8+ T cells of normal bone and OS samples. 
Then, the exhaustion score of each cell was visualized 
in t-distributed Stochastic Neighbor Embedding (tSNE) 
plots. Furthermore, the VlnPlot function was used to 
compare exhaustion scores between normal bone and OS, 
while t test was conducted to determine the significance 
of exhaustion score in two groups.

Pseudotime trajectories analysis CD8+ T cells

The analysis of pseudotime trajectories CD8+ T cells were 
conducted using the Monocle package (version 2.26.0) in R. 
Plot_cell_trajectory function was employed to represent the 
differentiation trajectory. To ascertain the expression lev-
els of exhaustion-associated genes along the trajectory, the 
Plot_genes_in_pseudotime function was utilized. Further-
more, identification of cluster-specific genes was achieved 
through the implementation of the FindAllMarkers function. 
The expression levels of Top 15 genes were then depicted in 
a pseudotime heatmap using the plot_pseudotime_heatmap 
function.

Gene set variation analysis (GSVA) in CD8+ T cell 
subtypes

We procured hallmark gene sets from the Molecular Sig-
natures Database that encapsulate well-defined biological 
states, processes, or tumorigenesis. The differential signa-
tures of cellular pathways in CD8+ T cell subtypes were 
ascertained by employing the GSVA package in R. The 
GSVA heatmap was generated by hepheatmap package.

Identification of Tex‑specific marker genes 
and screening of prognostic genes

Tex-specific markers were identified using the FindAllMark-
ers function, with the heat map of the top ten presented 
through the DoHeatmap function. Candidate genes for our 
prognostic risk model were screened through univariate Cox 
regression, least absolute shrinkage and selection operator 
(LASSO), and multivariate Cox regression analysis based 
on two independent cohorts. The risk score for OS sam-
ples was calculated as Σn i (Coefi × Xi). Then, the patients 
were grouped into high- and low-risk categories according 
to the median risk score. The survival probability of the 
two risk groups was compared through the KM curve, while 
the predictive accuracy of our risk score prognostic model 
was evaluated by the receiver operating characteristic (ROC) 
curve. Finally, univariate and multivariate Cox regression 

analysis were conducted base on the risk score and clinical 
features.

Immunofluorescence

To confirm the expression level of candidate genes, we gath-
ered a total of 10 pairs of paraffin-embedded OS tissues and 
corresponding normal tissues for immunofluorescence and 
immunohistochemical. This research was approved by the 
Institutional Review Board of Xijing Hospital, Fourth Mili-
tary Medical University. And, the informed assent/consent 
was obtained. Sections were subjected to a 20-min treatment 
with 0.3% TritonX-100, followed by a 1-h blockade using 
a 5% BSA blocking solution at ambient temperature. The 
corresponding primary antibody was introduced to the sec-
tions and left to incubate overnight at 4°C. Subsequently, the 
sections underwent incubation with the secondary antibody 
(dilution 1:200) at room temperature for an hour, conducted 
in darkness. Post a 10-min PBS wash, nuclei were stained 
with DAPI. The employed antibodies include the following: 
anti-MYC (dilution 1:100, GB13076, Servicibio, China), 
anti-FCGR2B (dilution 1:500, GB114833-100, Servicibio, 
China), and anti-CD8 (dilution 1:50, GB12066, Servicibio, 
China).

Construction and validation of a nomogram for OS 
patients

We utilized a nomogram to effectively visualize the Cox pro-
portional hazard model, predicting the 3- and 5-year overall 
survival rates of OS patients. Furthermore, we employed 
ROC, calibration, and decision curve to gauge the predictive 
accuracy of the model.

Drug susceptibility prediction

In order to predict drug susceptibility in the two Tex risk 
groups, we employed the "pRRophetic" package. The half-
maximal inhibitory concentrations (IC50s) of the drugs were 
analyzed and presented in a box plot with the Wilcoxon 
signed-rank test.

Immunohistochemistry

Following standard protocol, all tissue sections were de-
waxed and fixed with an antigen. Subsequently, they under-
went blocking and incubation with primary and secondary 
antibodies (MYC, 1:200, Bioss, bs-4963R; FCGR2B, 1:500, 
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Servicebio, GB114833-100). The slides were then developed 
using a DAB kit (CWBIO, CW2035S) and counterstained 
with hematoxylin, before being observed and recorded 
under a microscope. For analysis, we employed the ImageJ 
software.

Statistical analysis

For data analysis, we employed a range of software tools, 
including R (version 4.2.3), SPSS (version 21.0), and Graph-
Pad Prism (version 8). To compare the data of two groups, 
we utilized either the t-test or the Mann–Whitney U test, 
as appropriate. All differences among and between groups 
were considered statistically significant at p values of < 0.05 
(*p < 0.05; **p < 0.01; ***p < 0.001).

Results

Preprocessing of single‑cell RNA sequencing 
(scRNA‑seq) data and annotation of distinct cellular 
subpopulations

To discern the compositions of the cells in the immune 
microenvironment of OS, we conducted scRNA-seq analysis 
on four healthy bone tissues and six primary OS specimens 
obtained from patients who had not undergone neoadjuvant 
chemotherapy. Figure S1 shows the results both pre- and 
post-filtering of cells and features. Following quality control 
procedures, 25,264 features and 58,617 cells remained out of 
the original 33,538 features and 85,212 cells (Figure S2A, 
B). Figure S2C displays the top 3000 variable features 

Fig. 1   Results of cell clustering in OS and healthy bone tissues. A T-SNE plots colored by cell clusters. B The expression patterns of marker 
genes for each cell cluster within the TIME
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identified. Principal component analysis (Figure  S2D) 
was employed to determine the available dimensions, 
with the significant components and their corresponding 
standard deviations illustrated in Figure S3. After success-
fully mitigating the batch effect by the Harmony package 

(Figure S4A), the cell clusters from two different sources 
were effectively integrated (Figure S4B, C). The results of 
t-distributed Stochastic Neighbor Embedding (tSNE) and 
their respective annotations are presented in Fig. 1A. The 
specific marker genes associated with various cell types are 

Fig. 2   Reclusters of CD8+ T cells in OS and healthy bone tissues. A 
UMAP plot shows CD8+ T cell subclusters. B Bee swarm plot shows 
the expression of marker genes in CD8+ T cell subclusters C rela-
tive ratio of each cell cluster in OS and bone tissues. C The Monocle 

3 trajectory plot showing the differentiation of T cell subclusters D 
differences in the infiltration levels of the C3 subpopulation between 
normal bone tissue and tumor. P value was determined by t-test. 
Pseudotime analysis in normal bone tissue (E) and osteosarcoma (F)
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Fig. 3   Evaluation of T cell exhaustion in normal bone tissue and oste-
osarcoma. The expression levels of T cell exhaustion-related genes 
varying with pseudotime trajectory in both normal bone tissue (A) 

and osteosarcoma (B). The exhaustion score in normal bone tissue 
(C) and osteosarcoma (D). Violin (E) and box (F) charts representing 
the exhaustion score in normal bone tissue and osteosarcoma
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outlined in Table S2. Consequently, the cells were classified 
into eight distinct subclusters: osteoclasts, endothelial cells, 
plasmocytes, B cells, osteoblastic cells, NK/T cells, pericyte 
cells, and myeloid cells. The scaled relative expression of 
these specific marker genes and their respective percentages 
of expression are visualized in Fig. 1B.

Identification of CD8+ T cells and pseudotime 
trajectories analysis

To elucidate the exhaustion of CD8+ T cells in OS, we iso-
lated and classified CD8+ T cells into three distinct sub-
types. The tSNE results were split by tissue origin (Fig. 2A). 
The expression patterns of specific marker genes within the 
CD8+ T cell subsets were visually represented using a bee 
swarm plot (Fig. 2B). All three subtypes exhibited posi-
tive expression of CD2, CD3D, CD3E, CD3G, CD8A, and 
CD8B, thereby validating the accuracy of our cellular anno-
tation. The CD8+ T cell subtypes were distributed notably 
differently between normal bone and OS samples, with a 
significant elevation of C3 in the latter (P value = 0.0056; 
Fig.  2C, D). The monocle algorithm evinced a marked 
divergence in the differentiation trajectory of CD8+ T cells 
between normal bone tissue (Fig.  2E) and OS samples 
(Fig. 2F).

CD8+ T cell exhaustion within normal bone tissue 
and OS

The plot_genes_in_pseudotime function was used to discern 
the correlation between the relative gene expression of 13 
Tex-associated genes (extracted from the literature) [14] and 
the pseudotime trajectories in both the normal bone tissue 
(Figure S5A) and OS (Figure S5B) groups. Five genes—
CTLA4, PDCD1, ENTPD1, LAG3, and HAVCR2—were 
upregulated towards the end of the trajectory in OS (Fig. 3A) 
compared with that in normal bone tissue (Fig. 3B). Subse-
quently, we employed a scoring framework based on these 
five Tex-associated genes to compute exhaustion scores for 
both normal bone tissue and OS specimens, which were pro-
jected onto the tSNE plots for the same (Fig. 3C, D). Fur-
thermore, we employed violin plots to highlight the disparity 
in Tex levels between the two groups (Fig. 3E). Remark-
ably, a significant distinction in Tex levels was observed 
between the two groups (P value < 0.01; Fig. 3F), indicating 
a greater prevalence of exhausted CD8+ T cells in OS. The 

three distinct CD8+ T cell subtypes exhibited divergent paths 
along the pseudotime trajectories, with C3 CD8+ T cells 
predominantly occupying the terminal position (Fig. 4A, 
B). Figure 4C, D illustrate the inferred states at different 
points along the pseudotime continuum. Subsequently, the 
FindAllMarkers function was employed to identify cluster-
specific genes within the CD8+ T cell subtypes, and their 
expression patterns were depicted in a pseudotime heatmap 
(Fig. 4E), which delineated that the C3 CD8+ T cell subtype 
encompassed a considerable proportion of cells positioned 
towards the terminus of the trajectory. These results indicate 
that C3 represented an exhausted population of CD8+ T cells 
that was significantly elevated in OS.

Gene set variation analysis (GSVA) of CD8+ T cells 
in OS

We employed GSVA to further investigate the molecular 
signaling pathways involved in CD8+ T cell subtypes iso-
lated from OS samples. The GSVA scores for hallmark path-
ways are recorded in Table S3, and a GSVA heatmap was 
generated to visualize the total hallmark pathways (Fig. 4F). 
We found that apoptosis, fatty acid metabolism, xenobiotic 
metabolism, and interferon (IFN) pathways were highly acti-
vated in the exhausted T cells (ExTs) cluster of OS samples. 
These results provide critical insights into the molecular 
mechanisms that contribute to Tex and ultimately support 
the proliferation, invasion, and metastasis of OS cells.

Screening of Tex‑specific prognostic genes 
and construction of the prognostic model

We identified a set of Tex-specific genes using the Find-
AllMarkers () function (Fig. 5A, Table S4), and screened 
prognostic genes in two independent cohorts using univar-
iate Cox regression analysis. The Venn diagram shows the 
20 promising candidates (Fig. 5B, Table S5). Additional 
screening was conducted using Least Absolute Shrink-
age and Selection Operator followed by multivariate Cox 
regression analysis (Fig. 5C, D), ultimately providing us 
with two genes, MYC and FCGR2B. Double immunofluo-
rescence showed the co-expression of these two genes in 
CD8+ T cells (Fig. 5E). The formula for the Tex risk score 
was defined as 0.569 × MYC—0.937 × FCGR2B. Using 
the model, we stratified patients in the TARGET training 
cohort into low- and high-risk groups, and observed that 
the low-risk group had a longer survival time than the 
high-risk group (Fig. 6A). Kaplan–Meier survival analysis 
revealed a significantly poorer prognosis associated with 
the high-risk group (P value < 0.05; Fig. 6B). The area 
under the curve (AUC) values at 1, 3, and 5 years was 
0.904, 0.718, and 0.651 in the TARGET training cohort, 
respectively (Fig. 6C). These findings indicated that the 

Fig. 4   Pseudotime analysis and GSVA. The pseudotime trajectory 
coloring by cell type in normal bone tissue (A) and osteosarcoma (B). 
The pseudotime trajectory coloring by state in normal bone tissue (C) 
and osteosarcoma (D). E The expression of specific genes in differ-
ent CD8+ T cell subpopulations along the pseudo-time trajectory. F 
The heatmap of GSVA of hallmark pathways between CD8+ T cell 
subpopulations

◂
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Tex risk score accurately predicted the prognosis of OS 
patients, which was validated in the GSE21257 validation 
cohort (Fig. 6D–F). The AUC values in validation cohort 
were 0.776, 0.855, and 0.806 at 1, 3, and 5 years, respec-
tively. Then, we evaluated the clinical prognosis value of 
the Tex risk score by integrating with clinical character-
istics of OS patients in the training cohort. The Tex risk 
score differed significantly between patients in the M0 and 
M1 stages, but did not in gender or age, indicating a higher 
metastatic risk in the high-risk group (Fig. S7A–C). Uni-
variate and multivariate Cox regression analysis revealed 
that the Tex risk score was an independent prognostic indi-
cator for OS patients (Fig. S7D, E).

Construction and validation of a prognostic 
nomogram model

We employed the rms package in R to construct a nomogram 
for predicting patient survival time. Using Cox regression 
based on survival time, status, and five clinical character-
istics, we achieved a C-index of 0.788 (95% confidence 
interval: 0.704–0.872; Fig. 7A). To evaluate the prognostic 
accuracy of our model in the training and validation cohorts, 
we performed calibration, decision, and receiver operating 
characteristic curve analyses. Our calibration and decision 
curves demonstrated excellent predictive ability in both 
cohorts (Figs. 7B, C, S6). Moreover, the AUC for predicting 
3- and 5-year survival were 0.811 and 0.762, respectively, in 
the training cohort, and 0.913 and 0.925 respectively in the 
validation cohort, respectively, demonstrating robust prog-
nostic accuracy (Fig. 7D, E).

Drug susceptibility analysis 
and immunohistochemistry validation

The low-risk group demonstrated markedly lower half-max-
imal inhibitory concentrations for Dasatinib and Pazopanib 
than the high-risk group (Fig. 8A). Furthermore, we used 
immunohistochemistry analysis to confirm the expression 
of MYC and FCGR2B, both of which were significantly 
upregulated in OS tissues relative to adjacent normal tis-
sues (Fig. 8B, C).

Discussion

Tumorigenesis, progression, drug resistance, and immune 
escape are promoted by defective antitumor responses of 
immune cells within the highly heterogeneous and complex 
TIME of OS [15]. T cell exhaustion (Tex) has been demon-
strated to exert immunosuppressive effects in the TIME and 
constrain T cell-based immunotherapies [16]. However, its 
specific role in the context of OS remains unclear. Compre-
hensively understanding Tex within the immune microenvi-
ronment of OS holds the key to overcoming it and enhancing 
clinical checkpoint blockade immunotherapies. Targeting 
Tex has emerged as a promising approach in the field of 
cancer immunotherapy [17]. Because targeting co-inhibitory 
checkpoints like PD-1 and CTLA-4 alone is insufficient to 
fully restore T cell function, identifying other molecules 
involved in Tex is imperative. The advent of single-cell 
sequencing technologies has enabled interpretation of the 
TIME of OS at the resolution of individual cell level. This 
approach facilitates identification of rare subpopulations 
within the TIME and exploration of their pro-tumorigenic 
functions as well as phenotypic plasticity.

In the current study, we performed single-cell clustering 
analysis in the single-cell RNA transcriptome data obtained 
from OS samples and normal bone tissues, and successfully 
identified eight distinct cell types within the integrated data-
set. To unravel the heterogeneity of CD8+ T cells within the 
TIME of OS, a secondary clustering analysis was conducted 
to extract and categorize CD8+ T cells into three distinct 
subtypes in both the OS and healthy bone tissue groups. 
We found a substantially higher infiltration of C3 cluster 
cells in the OS samples. By assessing the expression levels 
of Tex marker genes across all cells, we observed varying 
degrees of Tex in the three CD8+ T cell clusters in OS com-
pared with healthy bone tissue. Enrichment of Tex in the 
TIME has been associated with poor prognosis in various 
tumors. Shen et al. demonstrated that patients with high Tex 
in chronic obstructive airway disease exhibited poorer prog-
nosis, whereas patients with low Tex responded better to 
chemotherapy and immunotherapy [18]. Similarly, the Tex 
risk score was significantly associated with survival prog-
nosis in esophageal adenocarcinoma [19]. Subsequently, we 
conducted pseudotime analysis on CD8+ T cells, revealing 
that the C3 cluster occupied the terminal state in the pseu-
dotime trajectory. This finding confirmed the functional 
exhaustion characteristics of the C3 CD8+ T cell cluster. 
Furthermore, we examined the expression patterns of Tex 
marker genes along the pseudotime trajectory. In comparison 
to healthy bone tissue, we found that the expression of vari-
ous Tex marker genes (PDCD1, CTLA4, LAG3, ENTPD1, 
HAVCR2) gradually increased with pseudotime in OS. 
PD-1, a pivotal co-inhibitory receptor on activated T cells, 

Fig. 5   Identification of the Tex-specific genes associated with the 
prognosis of OS patients. A The heatmap of Tex-specific genes. B 
Venn plot of overlapping genes in prognostic gene and Tex-spe-
cific genes. C, D Lasso regression analysis to further screen candi-
date genes. E Representative micrographs of osteosarcoma sections 
stained by double immunofluorescence showing the co-expression of 
MYC, FCGR2B, and CD8 in CD8+ T cells. Scale bar indicates 20 μm

◂
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interacts with overexpressed programmed cell death ligand 
1 (PD-L1) on cancer cells, tumor-infiltrating lymphocytes, 
and stromal cells, detrimentally affecting the cytotoxicity 
of CD8+ T cells and consequently mediating immunosup-
pressive responses [20]. The upregulation of PD-L1 and 
PD-1 was shown to be correlated with adverse prognosis 
as well as relapse or metastasis in OS patients [21]. During 
tumor treatment, blockade of the PD-1 pathway can reacti-
vate exhausted CD8+ T cells by reprogramming metabolism, 
promoting proliferation, and enhancing the expression of 
effector molecules [22]. However, in comparison to other 
tumors, OS is associated with low PD-L1 expression, poor 
immune infiltration, and limited response to checkpoint 
blockade [23]. CTLA-4 is an inhibitory receptor predomi-
nantly expressed on T cells that binds to CD80/CD86 on 
antigen-presenting cells, leading to impaired T cell function. 
In vivo studies have demonstrated that OS patients exhibit 
enhanced anti-tumor activity of cytotoxic T cells following 
treatment with CTLA-4 antibodies, revealing the potential 
of CTLA-4 inhibitors in the treatment of OS [24]. LAG-3 
is highly expressed by tumor-infiltrating lymphocytes in 
cancer and represents a non-immunoreceptor inhibitory 
receptor with a tyrosine-based inhibitory motif. It nega-
tively regulates the cell cycle and cellular functions through 
the KIEELE motif [25]. ENTPD1 (CD39) is a cell surface-
expressed enzyme that hydrolyzes extracellular ATP. The 
binding of extracellular ATP to P2X receptors on T cells 
induces cytokine production and proliferation. Therefore, by 
hydrolyzing extracellular ATP, ENTPD1 impairs the func-
tion of effector T cells and mediates Tex [26]. HAVCR2 can 
interact with PD-1 and galectin-9, thereby regulating Tex 
and the efficacy of immunotherapy [27]. In conclusion, we 
ultimately identified five co-inhibitory molecules that medi-
ate Tex in OS, thus providing valuable insights and novel 
immunotherapy targets.

The functional alterations to CD8+ T cell subpopulations 
in OS were investigated using GSVA. Apoptosis, fatty acid 
metabolism, xenobiotic metabolism, and the IFN pathway 
were found to be significantly activated in ExTs in OS. The 
microenvironment of OS is primarily hypoxic and acidic. 
Tumor cells predominantly depend on aerobic glycolysis 
and fatty acid metabolism to meet their energy demands, 
a metabolic strategy shared by highly efficient effector T 
cells [28]. Consequently, the competition for glucose as 
well as other fuel sources, such as fatty acids and oxygen, 
may detrimentally affect the proliferation and activation of 
effector T cells, culminating in a state of exhaustion within 

the TIME. Simultaneously, the immunosuppressive meta-
bolic by-products generated by the tumor itself may impede 
the functionality of T cells. The PD-1 signaling pathway 
is intricately connected to T cell metabolic pathways, and 
the impact of PD-1 blockade on the metabolism of ExTs 
has been investigated. The PD-1 signaling pathway inhib-
its the activation of protein kinase B, thereby suppressing 
the activity of mammalian target of rapamycin and even-
tually inhibiting T cell glycolysis [29]. Blocking the PD-1 
signaling pathway reactivates the synthetic metabolism of 
ExTs and enhances glucose uptake in a mammalian target of 
rapamycin-dependent manner, which may contribute to the 
improvement of tumor-infiltrating lymphocyte function and 
tumor regression [30]. These findings suggest that cellular 
metabolic reprogramming may represent a crucial strategy 
for Tex reversal during immunotherapy. We also noted a 
pronounced activation of the IFN pathway in ExTs in OS. 
IFN-α/β are crucial pro-inflammatory cytokines that exhibit 
dual roles in tumors. They can suppress tumor growth by 
inducing anti-tumor activity within the immune system and 
activating innate immune cells [31]. The IFN-α/β signaling 
pathway is indispensable for T cell development and the 
generation of effector and memory T cells [32]. However, 
during cancer, IFN-α/β levels may rise, inducing the expres-
sion of PD-L1, a negative regulator of the immune system 
[33]. IFN-α/β can also promote the functional exhaustion of 
activated T cells through Fas/FasL-mediated T cell death 
[34]. Highly activated IFN-α/β signaling can also promote 
the terminal exhaustion of functional T cells by interfering 
with the transcription factor T cell factor-1, thus antagoniz-
ing the reservoir of progenitor ExTs [35]. Targeting these 
molecules or their corresponding receptors represents a 
promising strategy to reverse the impact of the tumor micro-
environment on T cell function.

To uncover the prognostic role of Tex in OS, we assessed 
the prognostic value of Tex-specific genes using two inde-
pendent OS bulk RNA-seq datasets. Subsequently, two Tex-
specific biomarkers (MYC and FCGR2B) were selected to 
construct a Tex risk model. MYC, an oncogene encoding a 
nuclear phosphoprotein, plays a role in cell cycle progres-
sion, apoptosis, and cellular transformation. Amplification 
of this gene is frequently observed in many human cancers 
[36]. Previous studies have demonstrated that c-Myc is nec-
essary for the S100A9-induced upregulation of PD-1/PD-L1 
[37]. The overexpression of MYC induces the expression of 
CD47 and PD-L1 in tumor cells, allowing them to evade 
immune surveillance. Therapies aimed at inhibiting MYC 
expression and activity may potentially restore immune 
responses against human cancers [38]. The hypoxic state of 
the tumor microenvironment induces mitochondrial defects 
and promotes Tex in the TIME via the MYC regulatory 
pathway [39]. FCGR2B, a low-affinity receptor in the Fc 
region of the immunoglobulin gamma complex, is known 

Fig. 6   Evaluation and validation of the prognostic model based on 
Tex-specific genes in both the training and validation cohorts. Risk 
plot distribution (A), KM curve (B), and ROC curve (C) in the 
training cohort. Risk plot distribution (D), KM curve (E), and time-
dependent ROC curve (F) in the validation cohort

◂
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Fig. 7   A clinical prognostic nomogram based on Tex-related signa-
tures. A A prognostic nomogram to predict 3- and 5-years survival 
in OS patients. Calibration curve of the nomogram at 3 and 5 years in 

both the training (B) and validation (C) cohorts. Receiver operating 
characteristic curve of the nomogram at 3 and 5 years for the training 
(D) and validation (E) datasets
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to participate in the phagocytosis of immune complexes. 
Previously, FCGR2B was believed to be expressed exclu-
sively on B cells and innate immune cells, but recent studies 
have demonstrated a significant upregulation of FCGR2B on 
tumor-infiltrating effector CD8+ T cells, suggesting that it 
may serve as a novel T cell checkpoint in anti-tumor immu-
nity [40]. Morris et al. discovered that genetic defects in 
FCGR2B can enhance the tumor-infiltrating CD8+ T cell 
response and cause the tumor volume to decrease [41]. 
The Tex risk model constructed using MYC and FCGR2B 
accurately predicted patient prognosis in both the training 
and validation cohorts. Furthermore, individuals with OS 
who exhibit a low risk of Tex demonstrated heightened 

responsiveness to tyrosine kinase inhibitors like Dasatinib 
and Pazopanib. Protein tyrosine kinases are instrumental 
mediators of signal transduction, facilitating phospho-
transfer onto tyrosine residues. The aberrant expression of 
tyrosine kinases is intricately associated with invasiveness, 
metastasis, and angiogenesis of tumors [42]. Consequently, 
diverse tyrosine kinase inhibitors have been used to treat 
various solid malignancies, significantly enhancing the sur-
vival and quality of life of patients [43]. Hence, we posit that 
the Tex risk score carries promising potential to predict the 
effectiveness of targeted therapeutic interventions.

To the best of our knowledge, this is the first investigation 
of the role of Tex in the TIME of OS patients. Nonetheless, 

Fig. 8   Drugs sensitivity analysis and validation of candidate genes by 
IHC. A Drugs sensitivity analysis in different risk groups. B, C The 
expression levels of candidate genes in osteosarcoma and adjacent 

tissue using immunohistochemistry. The scale bar in the IHC images 
represents 100 µm. Statistical significance is denoted by *p < 0.05, 
**p < 0.01, and ***p < 0.001
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we must acknowledge certain limitations of this study. 
Firstly, the inherent heterogeneity among OS patients may 
limit the generalizability of the findings obtained through 
single-cell RNA-seq studies. These results must be validated 
in large-scale cohorts to ensure their broader applicability. 
Secondly, the limited number of single-cell OS samples 
resulted in a relatively small population of ExTs, which 
restricts the depth of our understanding regarding their pre-
cise functions within the TIME of OS. Finally, the molecular 
mechanisms that promote Tex in the TIME of OS via MYC 
and FCGR2B necessitate further investigation in the future.

Conclusions

This study explored the role of T cell exhaustion in the 
immune microenvironment of OS. The single-cell sequenc-
ing data revealed a notable increase in functionally exhausted 
T cells within OS samples, accompanied by the upregulation 
of exhaustion marker genes, such as PDCD1, CTLA4, LAG3, 
ENTPD1, and HAVCR2. Simultaneously, we observed a 
heightened activation of apoptosis, fatty acid metabolism, 
xenobiotic metabolism, and the IFN pathway within the 
ExTs population in OS samples. Finally, we developed a 
prognostic model based on two Tex-related signatures that 
accurately predicted the clinical outcomes of OS patients. 
These findings offer novel perspectives for clinical decision-
making and the formulation of treatment strategies in the 
context of OS.
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