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Abstract
Background Serum lipids have been identified to be used as prognostic biomarkers in several types of cancer. The primary 
objective of this study was to evaluate the prognostic value of serum lipids in metastatic colorectal cancer (mCRC) patients 
received anti-PD-1 therapy.
Methods Pretreatment and the alteration of serum lipids, including apolipoprotein B (ApoB), apolipoprotein A-I (ApoA-I), 
cholesterol (CHO), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C) and triglyc-
eride (TG) after 2 courses of anti-PD1 therapy, were collected. Kaplan–Meier survival and cox regression analysis were 
performed to identify the prognostic values on overall survival (OS). Finally, those significant predictors from multivariate 
analysis were used to construct a nomogram for the prediction of prognosis.
Results Baseline ApoB, CHO, HDL-C, LDL-C and early changes of ApoB, ApoA-I, HDL-C were statistically significant 
in the ROC analysis, showing good discriminatory ability in terms of OS. In multivariate analysis, treatment lines, lung 
metastasis, baseline HDL-C (low vs. high, HR, 6.30; 95% CI 1.82–21.80; P = 0.004) and early changes in HDL-C (reduction 
vs. elevation, HR, 4.59, 95% CI 1.20–17.63; P = 0.026) independently predicted OS. The area under the time-dependent 
ROC curve at 1 year, 2 years and 3 years consistently demonstrated the satisfactory accuracy and predictive value of the 
nomogram (AUC: 0.88, 0.85, 0.84).
Conclusion Overall, high level at baseline and an early elevation of HDL-C are correlated with better outcomes in mCRC 
patients treated with anti-PD1 therapy. The constructed nomogram indicated that the factors are strong predictive markers 
for response and prognosis to anti-PD-1 therapy in metastatic colorectal cancer.

Keywords Metastatic colorectal cancer (mCRC) · Anti-PD1 therapy · High-density lipoprotein (HDL-C) · Overall survival 
(OS) · Nomogram

Introduction

Colorectal cancer (CRC) is the third most frequent malig-
nancy in both men and women worldwide [1] and ranks 
second in terms of mortality, causing 880,000 deaths in 2018 
[2]. Programmed death 1 (PD-1) blockade has clinical ben-
efit in microsatellite-instability-high (MSI-H) or mismatch-
repair-deficient (dMMR) tumors after previous therapy 
[3–5]. The single drug anti-PD1 in the NCCN guidelines is a 
first-line treatment for MSI-H/dMMR patients, and the treat-
ment plan of immunotherapy combined with antiangiogenic 
drugs is also an important posterior therapy for microsatel-
lite stability (MSS) CRC patients, the median progression 
survival period is more than 6 months [6]. It is important to 
note that the efficacy of immunotherapy varies from person 
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to person. Practical and reliable prognostic predictors are 
desperately needed to differentiate metastatic colorectal 
cancer (mCRC) patients who are most likely to benefit from 
PD-1 inhibitors.

Currently, increasing evidence has shown that serum 
lipids are also correlated with the prevalence and behaviors 
of various tumors, especially those of the digestive system, 
including GC, pancreatic cancer, and colorectal cancer 
[7–9]. Furthermore, studies have also demonstrated that 
serum lipids may be a promising marker for predicting the 
efficacy of ICI therapy in solid tumors, including non-small 
cell lung cancer [10, 11], melanoma and renal cell carcinoma 
[12]. It has been demonstrated in mouse models that chemo- 
and immunotherapies can be co-loaded into synthetic HDL 
(sHDL), delivered locally to the tumor, and can be used 
to improve survival outcomes significantly compared to 
chemotherapy alone [13]. Yet, it is unknown if baseline and 
fluctuations of lipid levels in mCRC patients undergoing 
anti-PD1 therapy can predict prognosis of mCRC.

The aim of our study was to investigate the potential role 
of baseline and dynamic change of serum lipids levels in the 
prognosis of mCRC patients treated with anti-PD1 therapy.

Methods

Patient selection

157 mCRC patients (89 patients with mCRC at initial diag-
nosis and 29 patients with postoperative recurrence) who 
received anti-PD-1 therapy (monotherapy or combined with 
other therapies) at Sun Yat-sen University Cancer Center 
between January 2019 and October 2022 were enrolled in 
this retrospective study. Patients lacking baseline serum 
lipids, the alteration of lipids data after 2 cycles of anti-PD-1 
therapy, or taking antihyperlipidemic medications during 
immunotherapy were excluded from the present analysis. All 
the patients in this study were treated with the dosage and 
treatment interval of drugs according to the guidelines rec-
ommended and appropriately adjusted for the basic charac-
teristics. The biopsy tissues or surgical specimens of patients 
were used to proceed the genetic testing. The study was 
approved by Sun Yat-sen University Cancer Center Institu-
tional Review Board. Written informed consent for partici-
pation was waived by the Institutional Review Board due to 
the retrospective nature of the study (SL-B2023-128-01).

Data collection

Clinical data, including age, gender, Eastern Cooperative 
Oncology Group (ECOG) performance status (PS), smoking 
status, primary tumor location, distant metastasis and Micro-
satellite status, were documented. In addition, the following 

data of serum lipid profiles at different time points (base-
line, 2 cycles after anti-PD1 therapy) were also collected: 
apolipoprotein B (ApoB), apolipoprotein A-I (ApoA-I), 
total cholesterol (CHO), high-density lipoprotein cholesterol 
(HDL-C), low-density lipoprotein cholesterol (LDL-C) and 
triglyceride (TG).

Outcomes

Tumor assessment was regularly conducted by CT/MR scans 
after every 2 cycles of treatment or every 2 months after the 
completion of therapy. Patient response to anti-PD1 therapy 
was assessed, based on response evaluation criteria in solid 
tumor version 1.1 (RECIST 1.1). The primary endpoint 
was overall survival (OS) defined as the time from initia-
tion of anti-PD-1 therapy to death from any causes. Patients 
who had not progressed or did not die were censored at the 
time of the last follow up. Objective response rate (ORR) 
was defined as the proportion of patients with a complete 
response (CR) or partial response > 6 months. Disease con-
trol rate (DCR) was defined as the proportion of patients 
with a complete or partial response or duration of stable 
disease (SD) ≥ 6 weeks.

Statistical analysis

Receiver operating characteristic (ROC) curve analysis was 
performed to analyze the area under the ROC curve (AUC), 
and the Youden index was used to identify the optimal cut-
off values for baseline and the alteration of serum lipids. 
Based on the cut-off value, patients were divided into differ-
ent groups for further analysis. The correlation of baseline 
serum lipids and clinical variables was analyzed using the 
Pearson correlation. Paired-sample t-tests were performed to 
the comparison of the baseline serum lipids levels and lipids 
alteration levels after anti-PD1 therapy. Survival analysis, 
determining the association between serum lipids and over-
all survival (OS), was conducted using the Kaplan–Meier 
method and the differences were compared using the log-
rank test. Association between baseline characteristics and 
treatment outcomes was investigated using univariate and 
multivariate Cox proportional hazards regression analysis. A 
two-sided P value of < 0.05 was used to define the statistical 
significance. All statistical analyses were conducted using 
SPSS 25 (IBM, Armonk, NY, USA) and R version 3.3.3. 
(R Foundation for Statistical Computing, Vienna, Austria).

Nomogram establishing

Those significant predictors observed in multivariate Cox 
model (P < 0.05) were determined as the independently 
prognostic factors and then used to construct a nomo-
gram. Time-dependent receiver operating characteristic 
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(ROC) curves at 1-, 2-, 3-year OS were performed, and 
the area under the curve (AUC) was calculated to evalu-
ate the predictive value of the nomogram. The prediction 
probability and the observed result frequency were com-
pared through the calibration curve. Based on the nomo-
gram, we calculated each patient’s sum points and find 
out a best cut-off using the “surv_cutpoint” function in 
the “survminer” R package, patients was the stratified the 
risk into low and high group.

Results

Patient characteristics at baseline

Of the 157 mCRC patients who treated with anti-PD1 ther-
apy (monotherapy or combined with other therapies; anti-
PD-1 including Pembrolizumab, Tirelizumab, Nivolumab, 
Camrelizumab and Teripulimab) in Sun Yat-sen University 
Cancer Center between January 2019 and October 2022, a 
total of 108 patients met eligibility and were then included 
in the present study. Patient ages at the anti-PD1 therapy 
initiation ranged from 24 to 85 years (median 59 years). 
Among the 108 patients included in the study, 65 (60.2%) 
were males, 60 (55.6%) had ECOG PS of 0, 78 (72.2%) 
had lung metastasis and 78 (72.2%) had liver metastasis at 
baseline. Patients who with primary tumors located in colon 
accounted for 86.1% (n = 93). Regarding the microsatellite 
status, 67 (62.0%) patients had the status of microsatellite 
stability (MSS) or microsatellite instability-low (MSI-L), 
and other 41 (38.0%) patients were microsatellite instabil-
ity-high (MSI-H). The baseline clinical characteristics of 
the patients are summarized in Table 1. At the last follow-
up (January 8, 2023), 43 (39.8%) patients died, 6 patients 
lost to follow up and 59 patients remained alive. For the 
best response, 5 patients (4.6%) achieved CR; 28 (25.9%) 
achieved PR; 49 (45.4%) achieved SD and 26 (24.1%) had 
PD. The objective response rate (ORR) was 30.6% (33 of 
108 patients), and the disease control rate (DCR) was 75.9%.

Correlation analysis of baseline serum lipids level 
with clinical characteristics

At baseline, the mean (range) levels of baseline 
ApoB, ApoA-I, CHO, HDL-C, LDL-C and TG were 
1.01 (0.43–1.90)  g/L, 1.32 (0.67–2.14)  g/L, 5.08 
(2.07–8.07)  mmol/L, 1.28 (0.52–2.31)  mol/L, 3.30 
(1.08–6.49) mol/L and 1.26 (0.45–4.07) mmol/L, respec-
tively (Supplementary Table S1). The statistical analysis 
showed that the baseline ApoB was significantly corre-
lated with age (R = − 0.21, P = 0.029), ECOG-PS (R = 0.26, 
P = 0.008), primary tumor location (R = 0.30, P = 0.001), 
Microsatellite status (R = − 0.27, P = 0.004) and liver 

metastasis (R = 0.28, P = 0.004). In addition, baseline ApoA-
I (R = − 0.37, P < 0.001) and HDL-C (R = − 0.31, P = 0.001) 
were negatively correlated with gender. Also, baseline CHO 
and LDL-C levels were correlated with primary tumor 

Table 1  Patient characteristics at baseline

Abbreviations: ECOG Eastern Cooperative Oncology Group, MSS 
microsatellite stability, MSI-L microsatellite instability-low, MSI-H 
microsatellite instability-high

No. of patients 
(N = 108)

Percentage (%)

Age, years
Median (range) 59 (24–85)
 < 59 76 70.4
 ≥ 59 32 29.6
Gender
Male 65 60.2
Female 43 39.8
ECOG PS
0 60 55.6
1 47 43.5
2 1 0.9
Smoker
Yes 22 20.4
No 86 79.6
Location of primary tumor
Colon 93 86.1
Rectum 15 13.9
Lung metastasis
Yes 78 72.2
No 30 27.8
Liver metastasis
Yes 78 72.2
No 30 27.8
Microsatellite status
MSS/MSI-L 67 62.0
MSI-H 41 38.0
Treatment stage
First-line 54 50
Second-line 11 10.2
Third-or-higher-line 43 39.8
Treatment type
Single-agent immunotherapy 25 23.1
Immunotherapy + chemotherapy 13 12.0
Immunotherapy + targeted therapy 50 46.3
Immunotherapy + chemother-

apy + targeted therapy
20 18.5

Cardiovascular disease
Hypertension 11 10.2
Coronary heart disease 2 1.9
Endocrine disease
Diabetes 9 8.3
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location, Microsatellite status and liver metastasis. While 
baseline TG level was not correlated with clinical charac-
teristics (Supplementary Table S2).

Optimal cut‑offs of serum lipids levels for OS 
stratification using ROC analysis

Using death from any cause as the end point, ROC analy-
sis was performed to identify the optimal cut-off point of 
serum lipids levels with the highest sensitivity and speci-
ficity. As for baseline lipids levels, results showed that the 
area under the curve (AUC) for baseline ApoB was 0.631 
(P = 0.022), 0.694 for CHO (P = 0.001), 0.674 for HDL-C 
(P = 0.002) and 0.662 for LDL-C (P = 0.005) (Fig. 1A). The 
optimal cut-off values of baseline lipids were 1.20 g/L for 
ApoB, 5.30 mmol/L for CHO, 1.19 mmol/L for HDL-C 
and 3.76 mmol/L for LDL-C, respectively (Supplemen-
tary Table S3), while baseline ApoA-I (P = 0.223) and TG 
(P = 0.165) were not statistically significant in the ROC 
analysis.

Moreover, for the alteration of lipids levels after anti-PD1 
therapy, AUC for the alteration of ApoB level was 0.613 
(P = 0.048), based on a -0.005 g/L cut-off; 0.806 for ApoA-I 
alteration (P < 0.0001, cut-off 0.06 g/L); 0.769 for HDL-C 
alteration (P < 0.0001, cut-off − 0.025 mmol/L) (Fig. 1B; 
Supplementary Table S3). However, the alteration of CHO 
(P = 0.498), LDL-C (P = 0.512) and TG (P = 0.103) was not 
statistically significant in the ROC analysis.

The prognostic values of serum lipids levels 
at baseline for survival outcomes

Based on the optimal cut-off values using ROC analysis 
above, patients were separately divided into two groups (low 
lipids level group and high lipids level group). The associa-
tion of different groups of baseline lipids levels with treat-
ment outcomes was further analyzed. For the best response, 

ORR in patients with high levels of ApoB at baseline was 
38.5%, which was significantly higher than those with 
low baseline ApoB (10%) (P = 0.004). Similar results had 
showed that patients with high baseline CHO (ORR: 31.8% 
vs. 4.2%; P = 0.001), HDL-C (ORR: 33.7% vs.0; P = 0.028) 
and LDL-C (ORR: 39.5% vs. 3.7%; P < 0.001) had a better 
ORR that those with low serum lipids at baseline.

Next, we performed the Kaplan–Meier survival analy-
sis to evaluate the predictive values of serum lipids for 
PFS. Results showed that patients with low baseline ApoB 
(P < 0.0001), CHO (P < 0.0001), HDL-C (P = 0.012), 
LDL-C (P < 0.0001) had significantly shorter PFS than 
patients in the group of high serum lipids (Supplementary 
Figure S1). Moreover, Kaplan–Meier survival analysis 
and log-rank test showed that patients with low baseline 
ApoB had significantly worse OS than those with high 
baseline ApoB [median OS, 10.47 months vs. not-reached; 
HR = 3.95, (95% CI 2.17–7.20), P < 0.0001; Fig. 2A]. Sim-
ilar results were observed that patients with low baseline 
CHO [median OS, 10.47 vs. 26.90 months; HR = 2.49, (95% 
CI 1.34–4.64), P = 0.004; Fig. 2B], low baseline HDL-C 
[median OS, 8.63 vs. 25.87 months; HR = 3.83, (95% CI 
1.75–8.35), P < 0.001; Fig. 2C] and low baseline LDL-C 
[median OS, 12.37 months vs. not-reached; HR = 2.73, (95% 
CI 1.49–4.99), P = 0.001; Fig. 2D] had significantly worse 
OS.

The prognostic values of the alteration of serum 
lipids levels after anti‑PD1 therapy for survival 
outcomes

The mean (range) levels of ApoB, ApoA-I, CHO, HDL-
C, LDL-C and TG after 2 cycles of anti-PD1 treatment 
were 0.97 (0.35–1.90)  g/L, 1.36 (0.38–2.22)  g/L, 5.01 
(1.94–12.05)  mmol/L, 1.29 (0.32–2.15)  mol/L, 3.18 
(1.13–10.18) mol/L and 1.44 (0.51–6.10) mmol/L, respec-
tively (Supplementary Table  S1).The mean ± standard 

Fig. 1  Receiver operating curve analysis of overall survival according to baseline lipids levels (A) and the alteration of lipids levels (B). 
ApoB = apolipoprotein B. ApoA-I = apolipoprotein A-I. CHO = cholesterol. HDL-C = high-density lipoprotein cholesterol
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deviation (SD) of alteration in the levels of ApoB, 
ApoA-I, CHO, HDL-C, LDL-C and TG after 2 courses 
of anti-PD1 therapy (comparing to baseline levels) were 
− 0.04 ± 0.21 g/L, 0.03 ± 0.31 g/L, − 0.07 ± 1.09 mmol/L, 
0.01 ± 0.34  mmol/L, − 0.12 ± 1.00  mmol/L and 
0.18 ± 0.72 mmol/L, respectively (Supplementary Table S1). 
Based on the optimal cut-off values of the alteration of 
serum lipids levels using ROC analysis, patients were fur-
ther categorized into two groups (reduction of lipids level 
group and elevation of lipids level group). ORR in patients 
with elevation levels of ApoA-I after anti-PD-1 therapy 
was 43.5%, which was significantly higher than those with 
reduction of ApoA-I (21.0%) (P = 0.012). Also, a better 
ORR was observed in the group of patients with the eleva-
tion of HDL-C (ORR: 41.0% vs. 17.0%; P = 0.007). While, 
there was no statistical difference in ORR between the two 
groups of ApoB.

Meanwhile, we analyzed the correlation between the 
alteration of lipids and PFS. Results showed that patients 
with a reduction of ApoA-I (P < 0.0001) and HDL-C 
(P < 0.0001) after anti-PD-1 treatment had significantly 
shorter PFS than patients with an elevation of serum lipids 
(Supplementary Figure S2). Also, Kaplan–Meier survival 
analysis indicated that patients with a reduction of ApoB 

after two cycles of anti-PD1 treatment had prolonged OS 
than patients with an elevation of ApoB [HR = 0.41, (95% 
CI 0.22–0.78), P = 0.006; Fig. 3A]. Conversely, patients with 
a reduction of ApoA-I [HR = 6.36, (95% CI 2.68–15.12), 
P < 0.0001; Fig. 3B], and a reduction of HDL-C [HR = 4.26, 
(95% CI 2.19–8.13), P < 0.0001; Fig. 3C] had a significantly 
worse OS.

Univariate and multivariate Cox regression analyses 
of OS

Furthermore, univariate analysis based on the main charac-
teristics indicated that factors associated with inferior OS 
included ECOG PS of 1 or 2 (P < 0.001), LDH (P = 0.024), 
treatment lines (P < 0.001), lung metastasis (P < 0.001) and 
liver metastasis (P = 0.006). We further included those sig-
nificant clinicopathological parameters in univariate analysis 
into the multivariate model. Multivariate analysis revealed 
that treatment lines (First line vs. Second line and beyond, 
HR, 0.33; 95% CI 0.12–0.93; P = 0.037) and lung metastasis 
(yes vs. no, HR, 2.31; 95% CI 1.03–5.14; P = 0.041) had 
the prognostic value for OS. Moreover, as for the baseline 
and alteration of serum lipids levels, multivariate analysis 
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indicated that baseline low HDL-C (low vs. high, HR, 
6.30; 95% CI 1.82–21.80; P = 0.004) as well as the reduc-
tion of HDL-C (reduction vs. elevation, HR, 4.59, 95% CI 
1.20–17.63; P = 0.026) after 2 courses of anti-PD1 therapy 
independently predicted inferior OS (Table 2).

Predictive capacity of a combined baseline HDL‑C 
and the early changes of HDL‑C

For additional verification, we further stratified patients 
into four groups (baseline HDL-C low/high and the altera-
tion of HDL-C reduction/elevation). The combination 
of both prognostic factors improved risk stratification for 
OS (P < 0.0001). Kaplan–Meier survival analysis showed 
that patients with both baseline low HDL-C as well as a 
reduction of HDL-C had the worst survival outcome (n = 2, 
median OS = 3.40 months). Patients who had either adverse 
prognostic feature (baseline low HDL-C or early reduc-
tion of HDL-C) had intermediate survival. As expected, 
we found that patients with both baseline high HDL-C and 
an elevation of HDL-C after anti-PD1 therapy (n = 53) had 
the best survival outcomes, with a not-reached median OS 
(Fig. 4), further verifying the prognostic value of HDL-C.

Prognostic nomogram for prediction of OS

The significant variables from the multivariate Cox analysis, 
including treatment lines, lung metastasis, baseline HDL-C 
and alteration of HDL-C were used to establish a prognos-
tic nomogram for OS. Each factor corresponds to a specific 
point by drawing a line straight up to the score axis, and the 
total points were calculated by adding up the scores of all 
the factors. The probability of survival was demonstrated by 
making a vertical line from the total score axis to intersect 
the survival probability axis of 1, 2, and 3 years (Fig. 5). 
The area under the time-dependent ROC curve at 1 year, 
2 years and 3 years consistently demonstrated the satisfac-
tory accuracy and predictive value of the nomogram (AUC: 
0.88, 0.85, 0.84) (Fig. 6A). The calibration plot showed sat-
isfactory consistency between the nomogram-predicted OS 
and actual survival outcomes (Supplementary Figure S3). 
Based on the constructed nomogram, 100 was the best cutoff 
value for the total points (Supplementary Figure S4). All the 
patients were then divided into high-risk group (> 100) and 
low-risk group (≤ 100), based on the cutoff value. A remark-
able difference in OS was observed that patients at the high-
risk group had significantly poorer survival outcomes than 
patients at the low-risk group (P < 0.0001) (Fig. 6B).
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Table 2  Predictive factors 
for OS by univariate and 
multivariate analysis

Abbreviations: OS overall survival, ECOG PS Eastern Cooperative Oncology Group performance status, 
LDH lactate dehydrogenase, ApoB apolipoprotein B, ApoA-I apolipoprotein A-I, CHO Cholesterol, HDL-C 
high-density lipoprotein cholesterol, LDL-C low-density lipoprotein cholesterol, TG Triglyceride, HR haz-
ard ratio, CI Confidence interval
Φ Values in boldface indicate P values < 0.05

Univariate analyses Multivariate analyses
HR(95%CI)
P  valueΦ

HR(95%CI)
P  valueΦ

Gender Male versus female 0.79(0.43–1.45)
0.447

Age (years)  < 59 versus ≥ 59 1.00(0.52–1.91)
0.991

ECOG PS 1–2 versus 0 3.72(1.91–7.26)
 < 0.001

1.19(0.43–3.26)
0.737

Smoker Yes versus no 1.22(0.60–2.50)
0.578

LDH Low versus high 0.49(0.26–0.91)
0.024

1.89(0.75–4.74)
0.174

Treatment lines 1st versus ≥ 2nd 0.15(0.07–0.32)
 < 0.001

0.33(0.12–0.93)
0.037

Lung metastasis Yes versus no 5.49(2.86–10.54)
 < 0.001

2.31(1.03–5.14)
0.041

Liver metastasis Yes versus no 15.80(2.17–114.77)
0.006

6.76(0.86–52.97)
0.069

ApoB baseline Low versus high 3.95(2.17–7.20)
 < 0.001

2.26(0.79–6.48)
0.130

CHO baseline Low versus High 2.49(1.34–4.64)
0.004

1.57(0.34–7.23)
0.562

HDL-C baseline Low versus high 3.83(1.75–8.35)
 < 0.001

6.30(1.82–21.80)
0.004

LDL-C baseline Low versus high 2.73(1.49–4.99)
0.001

0.33(0.07–1.68)
0.183

ApoB alteration Reduction versus elevation 0.41(0.22–0.78)
0.006

1.78(0.64–4.92)
0.268

ApoA-I alteration Reduction versus elevation 6.36(2.68–15.12)
 < 0.001

1.22(0.26–5.67)
0.804

HDL-C alteration Reduction versus elevation 4.26(2.19–8.13)
 < 0.001

4.59(1.20–17.63)
0.026

Fig. 4  Kaplan–Meier survival 
curves for OS according to 
the combination with baseline 
HDL-C and the alteration of 
HDL-C
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Discussion

Approximately 25% of colorectal cancer patients are found 
to be in stage IV, and another 25–50% of early-stage patients 
go on to develop metastatic disease [14–17]. Patients with 
advanced stage IV had much worse prognoses than those 
with early stage, and the 5-year survival rate of stage IV 
disease drops to about 10% [18, 19]. Nevertheless, serum 
lipids are increasingly recognized to play an important role 
in the tumor initiation and progression, which had been 
supported as predictive and prognostic markers for cancer 
patients receiving ICI therapy. A better understanding of the 
association of CRC and lipids will not only give insight into 
its pathogenesis, but is also important for the development 
of novel biomarkers and therapeutic strategies.

It is widely known that the accumulation of excess cho-
lesterol is a general characteristic of tumor tissues [20]. 
Furthermore, tumor cells are equipped to weaken inflam-
matory activity of T cells and macrophages by promoting 
free cholesterol efflux, resulting in an increase in the pro-
portion of T regulatory cells (Tregs) [21]. Previous studies 
have considered that the failure of anti-tumor immunity is 
caused by energy metabolism [22, 23]. It’s acknowledged 
that in the tumor microenvironment (TME) immune cells 
compete fiercely for proliferation due to an inadequate vas-
cular exchange by limiting nutrients [24]. As essential fuel 
and metabolic components, lipids could allow anti-tumor 
immune cells to survive in a harsh TME established by can-
cer cells. Therefore, the elevation of serum lipids may com-
pensate for the lipid deficiency in immune cells in the tumor 
microenvironment. Previous studies have demonstrated that 
lipid-deficient immune cell activity in the tumor microenvi-
ronment can potentially be restored by the addition of exog-
enous lipids, thereby enhancing antitumor activity [25, 26].

Based on these findings, we sought to explore the 
role of serum lipids in the prognosis of mCRC patients 
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Fig. 5  Nomogram for predicting the probability of 1-, 2- and 3-year OS in mCRC patients after anti-PD1 therapy

Fig. 6  A The prognostic accuracy of the nomogram was verified by 
using time-dependent ROC curves and AUCs at 1 year, 2 years, and 3 
years. B Kaplan–Meier curve for OS with risk stratification
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with anti-PD-1-based therapy. Our results indicated 
that patients with high level of HDL-C at baseline had 
a prolonged overall survival than those with low level of 
HDL-C. Meanwhile, patients with an increased HDL-C 
after 2 cycles of anti-PD-1 treatment had more favorable 
outcomes, demonstrating the prognostic value of HDL-C 
in mCRC patients undergoing immunotherapy. HDL-C 
accounts for about 20% of total plasma cholesterol, and it 
was nicknamed the “Vascular Wall Cleaner”. Several stud-
ies have shown a negative association between HDL-C and 
cancer incidence [27, 28], with the inclusion of colorectal 
cancer [29]. A significant negative correlation between 
HDL and Treg levels has been observed in humans by 
extensively observing changes in HDL-C levels and lipo-
protein composition in immune diseases [30, 31], Moreo-
ver, research shows that HDL can influence the activity of 
monocyte/macrophages, DCs, and lymphocytes mainly by 
modulating cholesterol content in lipid rafts and receptor 
activity, as well as by influencing immune cell activation.

However, this study has some limitations. First, due 
to the retrospective design of the study, the number of 
patients was limited and conducting research only in one 
center. Further prospective studies are needed to confirm 
our findings. Secondly, some of patients in this cohort 
received combination treatment, confounding factors were 
inevasible. Finally, HDL-C may be affected by multiple 
factors, such as dietary structure, steroid therapy or other 
stress triggers, which were not evaluated in this study.

Conclusion

In conclusion, our findings demonstrated that a high 
level of HDL-C at baseline or an increased HDL-C after 
2 cycles of treatment predict better survival outcome of 
mCRC patients undergoing anti-PD1 therapy. Our study 
constructed a nomogram based on the treatment lines, lung 
metastasis, baseline HDL-C and the alteration of HDL-C 
after immunotherapy, showing that the factors are strong 
predictive markers for response and prognosis to anti PD-1 
therapy in metastatic colorectal cancer. This parameter 
may serve as a novel effective marker and therefore assist-
ing in treatment regimen selection.
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