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Abstract
The use of treatments, such as programmed death protein 1 (PD1) or cytotoxic T lymphocyte-associated antigen 4 (CTLA-
4) antibodies, that loosen the natural checks upon immune cell activity to enhance cancer killing have shifted clinical 
practice and outcomes for the better. Accordingly, the number of antibodies and engineered proteins that interact with the 
ligand–receptor components of immune checkpoints continue to increase along with their use. It is tempting to view these 
molecular pathways simply from an immune inhibitory perspective. But this should be resisted. Checkpoint molecules can 
have other cardinal functions relevant to the development and use of blocking moieties. Cell receptor CD47 is an example 
of this. CD47 is found on the surface of all human cells. Within the checkpoint paradigm, non-immune cell CD47 signals 
through immune cell surface signal regulatory protein alpha (SIRPα) to limit the activity of the latter, the so-called trans 
signal. Even so, CD47 interacts with other cell surface and soluble molecules to regulate biogas and redox signaling, mito-
chondria and metabolism, self-renewal factors and multipotency, and blood flow. Further, the pedigree of checkpoint CD47 
is more intricate than supposed. High-affinity interaction with soluble thrombospondin-1 (TSP1) and low-affinity interaction 
with same-cell SIRPα, the so-called cis signal, and non-SIRPα ectodomains on the cell membrane suggests that multiple 
immune checkpoints converge at and through CD47. Appreciation of this may provide latitude for pathway-specific target-
ing and intelligent therapeutic effect.
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Introduction

Checkpoint molecules fine-tune immune cells and prevent 
inappropriate activity [1, 2]. This informed the development 
of antibodies that interrupt checkpoint pathways to treat can-
cer 3. In the U.S.A, over 43% of individuals with cancer are 
eligible to receive checkpoint blocking molecules [4], which 
will increase as new agents arrive in the clinic. While stimu-
lating attack of cancer cells, checkpoint blocking antibodies 

were permissive of immune cell injury toward non-cancer 
cells [5, 6] and associated with adverse events [7] including 
insulin-dependent diabetes. The cell surface receptor CD47 
is a checkpoint molecule, and companies are developing 
CD47 blocking antibodies with clinical trials proceeding 
[8, 9]. CD47 has several natural ligands including secreted 
thrombospondin-1 (TSP1) [10] and cell membrane signal 
regulatory protein-alpha (SIRPα) [8]. Through interacting 
with CD47, both ligands restrain immune cells and fos-
ter self-tolerance. TSP1 binds with high affinity to CD47 
[11] to suppress T [12], natural killer [13], and dendritic 
cells [14]. SIRPα binds CD47 with less affinity to restrain 
phagocytosis [15]. Development of CD47 and SIRPα-
binding molecules [16] focused on interrupting the binding 
between macrophage-displayed SIRPα and non-immune 
cell-displayed CD47. However, the binding interactions of 
this trio of molecules are only partly characterized. Current 
CD47 and SIRPα-blocking agents remain untested in rela-
tion to the interaction of TSP1 with CD47, the less stud-
ied interaction of TSP1 with SIRPα [17] and in regard to 
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same-cell cis CD47-SIRPα. Of relevance, loss of the SIRPα 
ectodomain, and thus cis signaling, altered inflammation in 
non-immune human cells [18]. Further, human islet endo-
crine cells, including beta cells, displayed cell surface CD47 
but did not display cell surface SIRPα [19], as had been 
presumed [20]. Put simply, human islet endocrine cells lack 
cis CD47-SIRPα signaling, a finding with possible impli-
cations in view of the increased use of CD47 and SIRPα 
checkpoint blockers. Adding another layer to this narrative, 
CD47 was linked to metabolism and glucose homeostasis 
[21]. These findings occasioned the present appraisal of the 
TSP1-CD47-SIRPα triad (Fig. 1) to understand the possible 
impact of intersecting these checkpoints.

Thrombospondin‑1

TSP1 is the soluble ligand of the interactome and a trim-
eric ~ 450 kDa protein secreted by most human cells [22]. It 
occurs in bodily fluids such as cerebral spinal [23] and plural 
fluid [24], blood [25], urine [26], and saliva [27] among 
others. It is also found preformed in platelet alpha granules 
[28]. Thus, the analysis of soluble TSP1 in body fluids may 
be complicated by platelet activation. TSP1 modulates cell 
activity through binding with cell surface receptors includ-
ing integrins [29], CD36 [30], CD47 [11], and SIRPα [17] 
and through regulation of growth factors and extracellular 
matrix [31]. Interestingly, EC retention of TSP1 occurred 
via the CD47-binding C-terminus of the protein [32], which 
begs the question if matrix-bound TSP1 can signal through 
cell surface CD47. Picomolar concentrations of TSP1-acti-
vated CD47 [33], suggesting that this interaction dominates 
under most conditions. In fact, several TSP1-CD36-medi-
ated signals required cross talk with CD47 [34]. The same 

may be true for certain integrins [35]. Following secretion, 
TSP1 is scavenged through cell surface internalization [36] 
and extracellular protease degradation [37]. Additional par-
acrine effects might be mediated by exosomes which were 
found decorated with cell surface TSP1, CD47, and SIRPα 
[38]. In health, TSP1 is found at low non-signaling concen-
trations (100 ng/ml and less) but is increased with acute and 
chronic stress, including aging, where it is largely, although 
not wholly [39], deleterious [31].

Ligand–receptor interactions

As noted, the secreted protein TSP1 binds with high affinity 
to CD47 (~ KD of 12 pmol) [11] and to SIRPα [17], although 
in the latter interaction binding affinities and domain speci-
ficity remain to be solved. In fact, exogenous TSP1 blocks 
CD47 binding to SIRPα. These data were obtained using 
human protein and cells, an important point as species-
specific posttranslational modification of the CD47 ectodo-
main is essential for TSP1 binding[40]. The human antibody 
B6H12 blocked TSP1 binding to CD47 and CD47 binding 
to SIRPα [11]. This is perhaps important, since at least one 
clinical CD47 checkpoint antibody was inspired by B6H12 
[41]. TSP1 is increased by elevated glucose [42], inflamma-
tion [43], in experimental [44] and clinical type 1 diabetes 
[45, 46], and with aging [21]. To wit, aged cells support 
increased TSP1 binding to CD47 through increased clus-
tering of cell membrane CD47 [47]. This finding speaks 
to the trimeric structure of TSP1 which theoretically per-
mits a single TSP1 to engage several CD47 simultaneously 
[48]. Of interest here, fresh human islets secreted substantial 
amounts of soluble TSP1 [19]. And TSP1 expression was 
increased by chemotherapy [49] and radiation [50]. Thus, 

Fig. 1   TSP1-CD47-SIRPα immune checkpoints. CD47 is at the 
center of multiple immune inhibitory checkpoints: (1) TSP1-CD47 
checks T, natural killer and dendritic cells, and perhaps macrophages. 
(2) Trans CD47-SIRPα checks macrophage phagocytosis. (3) Cis 
CD47-SIRPα limits inflammation wherever both occur on the same 
cell. (4) Cis CD47-αMβ2 and cis CD47-VEGFR-2, labeled other cis 
CD47, check macrophages and T cells, respectively. Acting through 
cell surface CD47 or SIRPα, the pictured pathways are inhibi-
tory in immune cells. Not pictured are TSP1-SIRPα and ‘reverse’ 

SIRPα-CD47 signaling [110], which have not been assessed within 
the checkpoint paradigm. Regarding intracellular effects, SIRPα pro-
motes phosphorylation of SHP1 and SHP2 to quell immune cells 
[111]. However, SHP1 [112] and SHP2 [113] are activated by other 
than SIRPα, facts not parsed out in relation to the interactome. Cyto-
plasmic transmission of the TSP1-CD47 signal is via integrins [114], 
heterotrimeric G proteins [115], and probably other cell surface mole-
cules. The meager cytoplasmic domain of CD47 encourages this [10]
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the TSP1-CD47-SIRPα interactome links the endocrine, 
checkpoint, and cancer worlds.

CD47 is found on all human cells including thymocytes, 
T and B cells, dendritic cells (DCs), natural killer cells 
(NKs), monocytes, erythrocytes, and platelets [10]. CD47 
is also displayed on cancer cells, and increased expression 
was associated with worse outcome [51]. Cell membrane 
SIRPα binds CD47 weakly (KD of ~ 0.5 to 8.0 uM) [52, 53]. 
Variation in experimental KD notwithstanding, there appears 
to be no latitude in this for optimum effect. Either too much 
or too little CD47-SIRPα binding increased immune cell 
activity and allo-rejection [54]. In canonical trans signaling, 
immune cell displayed SIRPα [52], on binding non-immune 
cell CD47, suppressed macrophage phagocytosis. The sep-
aration between the cell-spanning ectodomains is roughly 
14 nm, close to the distance of an immune synapsis [52]. 
Crystal structure analysis indicated that the distal IgV por-
tions of the ectodomains effected trans binding [55]. Con-
sistent with the specificity of the interaction, known SIRPα 
polymorphisms are outside of the trans binding area [55]. 
And like TSP1 binding CD47, posttranslation ectodomain 
modifications impacted SIRPα binding to CD47 [56]. How-
ever, some human cell types, such as renal tubular epithelial 
cells [17] and lung alveolar cells [18], among others, simul-
taneously display CD47 and SIRPα on their cell membrane 
permitting lateral cis interaction and signaling. The SIRPα 
ectodomain displays two CD47-binding sites [57], one distal 
and one lateral, although whether this is material to cis or 
trans signaling requires additional study. Immunoprecipita-
tion data found SIRPα dimerization in certain immune cells, 
but this was not likely part of the trans CD47–SIRPα inter-
action [58] consistent with crystal structure evidence of a 1:1 
interaction between the ectodomains [55]. Still, the kinet-
ics of the cis CD47–SIRPα interaction has not been fully 
revealed and could vary secondary to competition between 
the ectodomains.

Cis CD47 signaling extends beyond its interaction with 
same-cell SIRPα. CD47 acted in a cis fashion with vascular 
endothelial growth factor receptor two (VEGFR-2) to maxi-
mize the pro-angiogenic signal of VEGF [59]. TSP1 and the 
C-terminus domain interfered with the CD47-VEGFR-2 cis 
interaction. Cis CD47-αMβ2-integrin regulated macrophage 
inflammation [60], although whether TSP1 impacts this is 
unknown. As well, cis CD47-α2β1 integrin signaling regu-
lated T-cell adhesion [61]. More to the point, CD47-blocking 
agents could alter any cis CD47 interaction.

As alluded to, a ligand–receptor interaction between TSP1 
and SIRPα was revealed [17]. TSP1, but not the C-terminus 
domain, bound to SIRPα, co-immunoprecipitated with 
SIRPα, and at low concentrations, activated SIRPα and its 
downstream Src homology-2 (SH2) domain containing pro-
tein phosphatase SHP1, but not SHP2 [17]. Additionally, a 
SIRPα-specific blocking antibody abolished TSP1-mediated 

SIRPα signaling, whereas antisense knockdown or antibody 
blockade of CD47 did not. However, the implications of this 
for immune cells await further investigation.

Oxidative stress is a feature of cancer and a consequence 
of chemotherapy and radiation [62]. CD47 is sensitive to 
oxidation [63] which may alter trans and cis ligand–recep-
tor binding. For example, high glucose-mediated oxidative 
stress enforced CD47-SIRPα binding [64]. It is fair to spec-
ulate that diabetes-associated oxidative stress will impact 
the binding and activity of CD47 and SIRPα checkpoint 
blockers.

Immune and inflammatory implications

The TSP1-CD47 checkpoint suppresses most immune 
cells including T cells [65], NKs [13], DCs [14], and mac-
rophages (Fig. 2). The CD47 binding domain of TSP1, but 
not the SIRPα ectodomain, stimulated human T-cell apop-
tosis [66]. An oligonucleotide CD47 translation blocker par-
tially decreased total CD47 protein and increased CD8-pos-
itive T-cell killing in radiated tumors [67]. Among T cells, 
the suppressive effect of TSP1 was partly secondary to the 
inhibition of IL-2 mRNA expression and biogas hydrogen 
sulfide [68]. This expands upon the known inhibitory effect 
that TSP1-CD47 has on vascular biogas nitric oxide [33, 
69]. And in CD47-null mice, CD4- and CD8-positive T cells 
were increased [70]. Interestingly, TSP1-treated human T 
cells showed increased expression of programmed death-
ligand 1 (PD-L1) [71] suggesting that TSP1 may co-opt 
other checkpoints to limit immune activity further.

In human NKs, TSP1 limited transforming growth fac-
tor beta (TGF-β)-driven proliferation [72], a process likely 
involving CD47 [73]. NKs express CD47-SIRPα, which 
limits cell killing [74]. In line with this, SIRPα-null NKs 
showed increased cell killing[74]. Interruption of NK cell 
TSP1-CD47 signaling improved cell homing and increased 
granzyme B and interferon-γ levels [13]. Although CD47-
null NKs had under some circumstances less capacity, con-
sistent with the role CD47 has in metabolic regulation.

TSP1 inhibited human DC activation and cytokine pro-
duction which was restored by a CD47-blocking antibody 
[14]. Exhibiting the nuanced effects of TSP1, the CD47-
binding C-terminus forced DC tolerance induction, whereas 
the heparin-binding N-terminus promoted phagocytosis 
[75]. Here too, a CD47-blocking antibody undid tolerance. 
TSP1-CD47 signaling decreased human DC differentiation 
while circulating levels of TSP1 correlated with decreased 
immune cell response [76]. In this situation, inhibitory SHP1 
was activated, suggesting an overlap between TSP1-CD47 
and CD47-SIRPα.

Monocytes produced more anti-inflammatory factors in 
the presence of TSP1, but this involved CD36, an alternative 
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TSP1 receptor [77]. However, the possibility for CD36-
CD47 cross talk [78] was not tested. Inflammatory mac-
rophage adhesion was decreased by antibody blockade of 
TSP1-CD47 [79]. Consistent with these findings, TSP1-null 
macrophages showed better phagocytosis of sheep red blood 
cells [80]. Further, trans CD47-SIRPα decreased human 
macrophage phagocytosis [81]. Independent of CD47, the 
N-terminal domain of TSP1 increased macrophage acti-
vation and superoxide production [82]. Whether N- and 
C-terminus TSP1 signaling simultaneously act upon cells 
is unknown.

Upending this, tissues [83] and vital organs [84] lacking 
CD47 fared better than CD47-expressing tissues and organs 
when transplanted into SIRPα-replete locations. These find-
ings question the primacy of CD47-SIRPα as a checkpoint 
and delineator of self.

The implications of cis CD47-SIRPα signaling for 
immune cells, especially in correspondence with trans sign-
aling, is daunting to sort out (Fig. 2). This is not surpris-
ing since there are practical barriers to testing cis signaling 
when the same molecules also interact in a trans manner. 
Macrophage cis CD47-SIRPα is a low-affinity interaction 
(~ KD 1.6 to 2 µM) and acts, separate from trans signaling, 
as a suppressant of phagocytosis [85]. Loss of cis signaling 
by elimination of macrophage cell surface CD47 increased 

phagocytosis and correlated with less SIRPα phosphoryla-
tion. The effect was enhanced when CD47 was blocked on 
target non-immune cells [85]. Acute CD47 suppression 
did not alter same-cell SIRPα levels. But this should be 
determined in somatic human CD47-null T cells, which are 
employed in the study of these interactions, as compensa-
tory changes might be found. Cis CD47-SIRPα signaling 
was also demonstrated in human epithelial cells [18], albeit 
from the direction of SIRPα. Loss of functional SIRPα ecto-
domain in CD47 expressing human lung alveolar epithelial 
cells increased inflammatory JAK/STAT activity suggest-
ing cis CD47-SIRPα limits inflammation in non-immune 
cells. This was found true for THP-1 human monocytes as 
well [18]. Thus, loss of same-cell CD47 or SIRPα increases 
inflammation. SIRPα dimerization was shown in neutrophils 
[58], but whether this alters trans or cis interactions with 
CD47 is unknown. It was proposed that cis SIRPα might 
sequester CD47, rendering non-immune cells ‘CD47 low’ 
as seen by SIRPα-expressing immune cells [85]. Extending 
this, cis CD47 on immune cells might sequester SIRPα away 
from the trans interaction. One might wonder if cis-driven 
lowering of available CD47 on non-immune cells or avail-
able SIRPα on immune cells lowers the overall trans signal.

Together these data suggest co-stimulatory roles for TSP1, 
CD47, and SIRPα. We conceptualize co-stimulatory to 

Fig. 2   Re-thinking CD47 targeting checkpoint inhibition for cancer 
immunotherapy. A The conventional ‘don’t eat me’ signal mediated 
by the ‘forward’ negative effect in trans of macrophage-displayed 
CD47. This signal is postulated to be interfered with by clinical 
blocking anti-CD47 antibodies. The potential ‘reverse’ effect of mac-
rophage CD47 on tumor-expressing SIRPα is unknown. The TSP1-
CD47-SIRPα interactome effect on adaptive immunity is ill-defined. 

B Current data support a predominantly negative effect on T cells 
in cis, which may represent a natural mechanism of homeostasis to 
maintain self-tolerance. It could be reinforced by acting in trans, 
resulting in an additional tumor escape mechanism. And data sug-
gest that TSP1 interferes with CD47 binding to SIRPα presumably in 
trans and cis. MΦ, macrophage; TCR, T cell receptor; MHC, major 
histocompatibility complex; Ag, antigen; mAb, monoclonal antibody
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include enhancement or suppression of inflammation. Other 
ligand–receptor pathways such as CD6 showed co-stimulatory 
effects in T cells based on the binding of ligands CD166 [86] 
and CD318 [87]. Nonetheless, CD6 was successfully targeted 
with the immunomodulatory antibody itolizumab [88]. This 
encourages efforts to optimize therapeutic agents against 
TSP1, CD47, and SIRPα.

Interactome pathway disruption

Antibodies to checkpoint CD47 are being tested in numerous 
trials [89]. The most clinically advanced of these is mag-
rolimab [90]. The CD47 antibody B6H12 was produced 
by immunizing mice with RGD-binding human placental 
protein [91] and was a muse for the development of mag-
rolimab [41]. B6H12 blocked RGD binding and immune 
cell activation [91]. This is important, as TSP1 contains an 
RGD sequence in its CD47-binding C-terminus [92]. Con-
sequently, magrolimab may block TSP1 binding to CD47. 
One might surmise that magrolimab also interferes with cis 
CD47-SIRPα (Fig. 2).

Magrolimab binding was tested in rat lymphoblast YB2/0 
cells transfected with human CD47. However, rodent cells 
do not carry out human-specific posttranslational protein 
modifications that are important for ligand binding [40]. 
The binding affinity of magrolimab to monomeric human 
CD47 was estimated to be a KD 8 nM [41], much less than 
that of TSP1. Magrolimab binding to SIRPα was tested 
with ELISA and plate-bound protein [41]. Details on sev-
eral clinical CD47 and SIRPα-blocking molecules that are 
in or completed trial or that are in development are found 
in Table 1. Overall, binding information is incomplete. It 
is fair to say that the therapeutic interruption of checkpoint 
CD47 remains focused upon trans SIRPα. Analysis of cis 
SIRPα, soluble TSP1, and other cis CD47-interacting ecto-
domains is warranted. Similar recommendations apply to 
SIRPα-targeting molecules.

The CD47 ectodomain is also a therapeutic target for pep-
tides [93] and small molecules [94]. Even these agents may 
overlap trans and cis CD47-SIRPα, TSP1, and other same-
cell CD47 interactions. Screening assays [95] and protocols 
that encompass the multiple interactions would be useful 
in the development of CD47- and SIRPα-binding agents. 
Acute knockdown techniques and existent somatic mutant 
CD47-null cells [96] may help discriminate between trans 
and cis CD47-SIRPα [85].

Perspectives and interesting questions

Clinical results suggest that this is reasonable to target CD47. 
But this will likely come with side effects. CD47 on non-
immune cells such as red blood cells and platelets soak up 

CD47 blockers leading to anemia and thrombocytopenia 
[97]. Because of this, CD47 blockers must be given in large 
amounts. And CD47 blockers might interfere with blood 
banking techniques used in cross-matching [98]. Complica-
tions from other therapeutic checkpoint molecules are mostly 
secondary to inflammation and immune injury [99]. Such 
occurrences may eventually be seen in individuals adminis-
tered CD47- and SIRPα-targeting agents, especially if used in 
combination with other checkpoint blockers. Pertinent to this, 
humanized diabetic mice administered magrolimab lost CD47-
overexpressing islet-like grafts and metabolic control [100]. 
Human islet endocrine cells were found not to have SIRPA 
mRNA or to display cell surface SIRPα protein, even after 
exposure to diabetes-associated cytokines [19]. It is unknown 
if the lack of SIRPα is a feature of human endocrine cell types 
in general and if this deficit sensitizes or protects endocrine 
cells from CD47 or SIRPα checkpoint blockers. Hypotheti-
cally, the lack of SIRPα on islet endocrine cells could increase 
available CD47 to increase the trans CD47-SIRPα signal as 
further protection from autoimmune injury.

Other means are available to turn down CD47-SIRPα 
signaling. For example, a translation blocking oligonucleo-
tide to CD47 mRNA partially lowered total protein, and in 
combination with radiation, increased T-cell-mediated kill-
ing of cancer [67, 101]. While assumed at the time, it is 
unclear if such an approach decreased cell surface CD47 
expression. Alternatively, CRISPR/Cas9 lowered cell sur-
face CD47 and increased phagocytosis [85]. Be that as it 
may, use of any method targeting TSP1, CD47, and SIRPα 
should be complemented by the characterization of cell sur-
face molecule copy number (Bmax). And if it is the case that 
certain knockdown approaches do not substantially alter cell 
surface CD47 expression, this opens the door for other pos-
sible mechanisms of action.

Taking a reverse position, overexpression of cell mem-
brane CD47 [102] was employed to provide a defense 
against immune cells. Decorating non-animate surfaces with 
CD47 was also tried [103]. In view of the other homeostatic 
mechanisms that CD47 impinges upon [10], this strategy 
may not be benign. For instance, TSP1-CD47 signaling pro-
motes aging in human cells and tissues [104] and animals 
[31, 105], and limits the Yamanaka self-renewal transcrip-
tion factors in human cells [106]. In fact, CD47-null cells 
grown in serum-free medium de-differentiation [107]. Thus, 
forced CD47 expression may prematurely drive stem cells 
out of the cell cycle and into senescence [108].

Conclusion

The TSP1-CD47-SIRPα interactome is a multi-tier check 
on immune cells. Agents that attempt to intervene on one 
of these will probably alter or undo other interactome 
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signals. This suggests opportunity to refine the approach 
to targeting these molecules. Further, checkpoint blocker-
sensitive islet endocrine cells are devoid of SIRPα. This 
occasions the question if this is a protective adaptation. 
Like beta cells, thyroid cells are derived from endo-
derm109. A closer look at SIRPα in other endocrine 
organs should prove rewarding.
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Name Source Origin Isotype Blocks Kinetics cis/trans

Magrolimab1 Gilead Humanized IgG4 CD47-SIRP 4.4E−11 M ? / + 
AO-1762 Arch Oncology Humanized IgG2 CD47-SIRP ? ? / + 
AO-104 Arch Oncology Humanized IgG4 CD47-SIRP ? ? / + 
CC900023 Celgene Humanized IgG4 CD47-SIRP ? ? / + 
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HX-009 Waterstone Hanxbio Bi-specific ? CD47 x PD-1 ? ?
IMC-002 Immune-Onco Thera-

peutics
? ? ? ? ?

AK1176 Akeso Biopharma ? ? CD47-SIRP 1.5E−10 M ? / + 
STI-66437 Sorrento Therapeutics Fully human IgG4 CD47-SIRP 7.6 E−10 M ? / + 
TKKTLRT-SIRPαFc8 Immune-Onco Thera-

peutics
Collagen-SIRPαFc ? CD47 1.4E−9 M ? / ?
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