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Abstract
Metastatic castration-resistant prostate cancer (mCRPC) is an immunologically cold disease with dismal outcomes. Cryoablation 
destroys cancer tissue, releases tumor-associated antigens and creates a pro-inflammatory microenvironment, while dendritic cells 
(DCs) activate immune responses through processing of antigens. Immunotherapy combinations could enhance the anti-tumor effi-
cacy. This open-label, single-arm, single-center phase I trial determined the safety and tolerability of combining cryoablation and 
autologous immature DC, without and with checkpoint inhibitors. Immune responses and clinical outcomes were evaluated. Patients 
with mCRPC, confirmed metastases and intact prostate gland were included. The first participants underwent prostate cryoablation 
with intratumoral injection of autologous DCs in a 3 + 3 design. In the second part, patients received cryoablation, the highest accept-
able DC dose, and checkpoint inhibition with either ipilimumab or pembrolizumab. Sequentially collected information on adverse 
events, quality of life, blood values and images were analyzed by standard descriptive statistics. Neither dose-limiting toxicities nor 
adverse events > grade 3 were observed in the 18 participants. Results indicate antitumor activity through altered T cell receptor 
repertoires, and 33% durable (> 46 weeks) clinical benefit with median 40.7 months overall survival. Post-treatment pain and fatigue 
were associated with circulating tumor cell (CTC) presence at inclusion, while CTC responses correlated with clinical outcomes. This 
trial demonstrates that cryoimmunotherapy in mCRPC is safe and well tolerated, also for the highest DC dose (2.0 ×  108) combined 
with checkpoint inhibitors. Further studies focusing on the biologic indications of antitumor activity and immune system activation 
could be considered through a phase II trial focusing on treatment responses and immunologic biomarkers.

Keywords Metastatic castration-resistant prostate cancer · Immature dendritic cells · Phase I clinical trial · Cryoablation · 
Immunotherapy · Safety
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LDH  Lactate dehydrogenase
mCRPC  Metastatic castration-resistant prostate cancer
MSI  Microsatellite instability
MSS  Microsatellite stable
OS  Overall survival
PD-1  Programmed cell death protein 1
PFS  Progression-free survival
PSA  Prostate-specific antigen
TCR   T cell receptor
TMB  Tumor mutational burden
Treg  Regulatory T-lymphocyte
VAS  Visual Analogue Scale
95% CI  95% Confidence intervals

Introduction

Mortality rates remain high for patients who develop 
metastatic castration-resistant prostate cancer (mCRPC) 
[1]. For the last 10–15 years, chemotherapy with a tax-
ane, docetaxel, has been the only life-prolonging option 
for these patients. Recently, several new treatments have 
been approved: the anti-androgens, abiraterone and 
enzalutamide, the taxane, cabazitaxel, the poly (ADP-
ribose) polymerase inhibitors, rucaparib and olaparib, 
the immunotherapy, sipuleucel-T, and the alpha-emitter 
radium-223 for men with bone metastases. All agents 
have shown survival benefit for mCRPC in phase III tri-
als, and others are currently under evaluation. Unfortu-
nately, the reported median overall survival (OS) benefit 
associated with these therapies ranges between 3 and 
5 months [2–5].

The immunological checkpoint inhibitor therapies, 
the cytotoxic T-lymphocyte protein 4 (CTLA-4) inhibi-
tor, ipilimumab and programmed cell death protein 1 
(PD-1) inhibitor, pembrolizumab, have demonstrated 
marked effects on progression-free survival (PFS) in 
malignant melanoma, renal cell carcinoma, and can-
cers with DNA repair deficiencies [6, 7]. mCRPC is 
considered an immunologically cold cancer [8]. Not-
withstanding, while previous trials on ipilimumab and 
pembrolizumab treatment in mCRPC patients failed to 
demonstrate clinical benefit [9–11], two recent immune 
checkpoint inhibitor therapy trials indicate clinical 
effects including increased OS among a defined patient 
subset [12, 13].

An essential part of the immune response is mediated by 
dendritic cells (DCs), which are antigen-presenting cells that 
in their immature state recognize and process tumor-associ-
ated antigens. Early-phase trials of DC-based cancer immu-
notherapies have demonstrated the treatment as safe and 
feasible with anti-tumor immune activation, but with lim-
ited clinical responses [14, 15]. Currently, several DC-based 

vaccine trials in prostate cancer are ongoing, including for 
the US Food and Drug Administration-approved sipuleucel-
T [4].

The capacity of malignancies to inactivate DCs and 
effector T cells and evade the circulating antitumor 
immune responses is challenging the development of 
immune-modulating therapies. The T cell subset, regula-
tory T-lymphocyte (Treg), plays a dual role of mediating 
immune tolerance and restricting the antitumor immunity 
[16]. In cancer treatment, medical interventions can induce 
a Treg expansion, which decreases the cytotoxic effects. 
Subclinical doses of the chemotherapeutic drug, cyclo-
phosphamide, deplete the Treg fraction of T cells in tumors 
and appear to restore the anti-tumor effects of the adaptive 
immune system [17].

The heterogeneous expression of molecular targets on 
cells within and between tumors induces different treat-
ment sensitivities and accordingly poses a challenge for tar-
geted therapies. Previously, in vitro matured DCs have been 
trained to destroy mainly tumor cells expressing preselected 
antigens, but additionally generate bystander effects, where 
untreated cells are biologically altered by stress signals from 
directly treated cells to mirror these by exhibiting similar 
effects like reduced cell survival and genomic instability 
[18]. Combination therapies show promise to counteract 
immune evasion and partly overcome the tumor heteroge-
neity, for instance, in renal cell carcinoma and malignant 
melanoma [6, 7].

Cancer cell heterogeneity is one of the most fundamen-
tal problems of cancer therapy. By combining cryoabla-
tion with intratumoral DC injection, cryoimmunotherapy 
(CryoIT) exposes the entire individualized collection of 
tumor-associated antigens to immature DCs (iDCs), which 
consequently are positioned to tackle the cellular hetero-
geneity. Cryoablation is a process where tissue destruction 
is initiated by freezing solid tumors to -40 °C in one or 
several freeze–thaw cycles. Cryoablation has been inves-
tigated in localized, locally recurrent, and metastatic pros-
tate cancer [19, 20]. The destruction of tumoral tissues by 
freezing causes direct cell damage, necrosis and apopto-
sis. Consequently, two important effects are induced: the 
release of tumor-associated antigens that are engulfed by 
iDCs, and the generation of local inflammation with accu-
mulation of proinflammatory cytokines. CryoIT positions 
iDCs in the proinflammatory microenvironment where any 
tumor-associated antigen can be processed by maturing 
DCs, which subsequently migrate to the draining lymph 
nodes to stage a systemic attack on cancer cells. While 
some evidence of potential therapeutic effects of combin-
ing cryoablation with iDC treatment for mCRPC exists 
[21], it has not previously been evaluated in the setting of 
a clinical trial.
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The primary aim of this phase I clinical trial of pre-
treated mCRPC was to examine the safety and tolerability 
of the novel combination of cancer tissue cryoablation and 
intratumoral injection of autologous iDCs with and without 
immunological checkpoint inhibitor enhancement. Second-
ary and explorative endpoints included time to progression, 
survival, and monitoring of immune responses and circulat-
ing tumor cells.

Materials and methods

Participants

Eligible patients had mCRPC with metastases and an East-
ern Cooperative Oncology Group (ECOG) performance 
status of 0–1, adequate organ function, no known hypersen-
sitivity to vaccines or components of the cell therapy, and 
no contraindications to surgery (Supplementary S1B). The 
exclusion criteria contained immunodeficiency, other active 
malignancy, and recent or ongoing anti-tumor treatment. 
Prior radiotherapy and treatment with androgen deprivation 
and androgen receptor targeting drugs were accepted (Sup-
plementary S1C).

Study design and data capture

This phase I open-label interventional study recruited 
patients at Haukeland University Hospital, Bergen, Norway. 
The study consisted of two study parts, investigating the 
safety and tolerability of combining either cryoablation and 
iDC treatment (first part), or cryoablation, iDC treatment 
and immune checkpoint inhibitor therapy (second part), 
illustrated in Fig. 1 and the CONSORT Flow diagram (Sup-
plementary Appendix A). Each part was to include mini-
mum nine mCRPC patients with an intact prostate gland 
and radiologically confirmed metastases. In the first part, 
the dose of intratumorally distributed iDCs was increased 
according to the traditional 3 + 3 design for Phase I cancer 
trials to a predefined maximum dose of 2.0 ×  108 iDCs [22]. 
In the second part, participants were to receive either ipili-
mumab (Supplementary S4) intratumorally in a 3 + 3 design, 
increasing from 0.3 to 0.6 mg/kg if the adverse event (AE) 
profiles allowed, or two intravenous injections of 200 mg 
pembrolizumab (Supplementary S4).

Generally, participants attended 14 study-specific vis-
its from inclusion to 52 weeks after the CryoIT, with a 
follow-up period of 72 months. The CryoIT procedure 
was performed during visit 4 (day 0). Medications, vital 
signs, and results from the physical examinations and rou-
tine laboratory blood analyses were protocolled. Safety 
assessments were performed during all post-treatment 
visits. Imaging was performed concomitantly by MRI 

of the spinal column, pelvic region and prostate gland, 
whole-body PET/CT with F18-fluorodeoxyglucose, and 
radionuclide bone scan with  [99mTc]methyldiphosphonate. 
Radiologic examinations were performed at inclusion, and 
14, 22, and 46 weeks after treatment (Fig. 1, Supplemen-
tary Fig. S2).

Moreover, health-related quality of life (HRQoL) forms, 
visual analog scale (VAS) pain measurements, and blood 
samples were collected as depicted in Fig. 1B. The study 
data were captured in the software WebCRF3 (v.2016–05-
23) [23].

Procedures

Leukapheresis was performed 14 days prior to CryoIT fol-
lowed by monocyte enrichment using the ELUTRATM 
System (Supplementary S2). Autologous iDCs were pro-
duced according to protocol (Supplementary S2).

Cryoablation of the prostate was performed under 
general anesthesia and ultrasound guidance as a cyclic 
freeze–thaw process (Supplementary S3). Directly prior 
to the first freezing cycle, eight core prostate biopsies were 
sampled transrectally. Succeeding cryoablation, the pre-
specified number of viable iDCs was injected intratumor-
ally into the prostate. All patients received cyclophospha-
mide, 300 mg/m2 intravenously three days prior to CryoIT, 
and low oral doses (50–100 mg/day) metronomically every 
other week from week 2 to week 26 post-treatment to 
avoid Treg increases that might diminish incipient immune 
responses (Supplementary S5, Fig. 1).

Assessment of safety and toxicity

AEs were recorded, and their severity graded according 
to the Common Terminology Criteria for Adverse Events 
v3.0. Clinical investigators evaluated the severity and 
relatedness of any registered AEs to the trial participa-
tion, study drug(s) and ablative procedure. Any AEs that 
could be related to trial participation were defined as treat-
ment emergent. Any severe AEs, defined as AEs ≥ grade 3, 
were reported to the sponsor within 48 h. To establish the 
maximum tolerated dose and recommended phase II trial 
dose of iDCs, the toxicity was defined as dose limiting if 
patients experienced any persistent grade 4 toxicity. Maxi-
mum tolerated dose was defined as the dose level below 
which dose limiting toxicities were seen in ≥ 1 of 3 sub-
jects. Given the observed tolerability of DC-based therapy 
in part 1, subjects in part 2 were treated with the highest 
iDC dose. Dose-limiting toxicity of cryoablation plus iDC 
treatment was evaluated separately (n = 9) and combined 
with intratumoral ipilimumab (Bristol-Myers Squibb, 
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ATC-no. L01XC11) (n = 6) or systemic pembrolizumab 
(Merck Sharp&Dohme B.V., ATC-no. L01XC18) (n = 3).

Assessment of response

Radiologic responses were assessed by internal expert 
review. MRI and PET/CT images were evaluated accord-
ing to the RECISTv1.1. criteria [24]. Bone scintigraphies 
were evaluated according to the Prostate Cancer Working 
Group (PCWG)2 criteria [25]. Patients were defined as hav-
ing clinical treatment benefit 22 and 46 weeks after CryoIT 
if they demonstrated complete or partial responses or sus-
tained stable disease. A strict definition of clinical benefit 
was selected, only annotated to patients when all three imag-
ing modalities demonstrated at least stable disease.

Prostate-specific antigen (PSA) levels should change at 
least 25% and display an absolute increase/decrease of 2 ng/
mL to define PSA-related progression or improved disease 
status [20]. PFS and OS were defined from the date of Cry-
oIT until either radiological and/or PSA-based progression, 
death, or the date of last follow-up.

Lactate dehydrogenase (LDH) and alkaline phosphatase 
(ALP), blood-based markers of prostate cancer tumor load 
and skeletal involvement, were measured sequentially at the 
routine laboratory.

Circulating tumor cells (CTCs) were enumerated pre-
treatment and during all follow-up visits using the Cell-
Search® System (Menarini Silicon Biosystems) according to 
the producer's standardized procedure (Supplementary S8). 
CTC responses were grouped as CTCs = 0 or CTCs > 0 inde-
pendent of pre-treatment values. The response was estimated 
for two time points: at first available CTCs measurements 
after the CryoIT, and two weeks after treatment.

Patient-reported outcomes were collected using the Euro-
pean Organization for Research and Treatment of Cancer 
(EORTC) QLQ-C30 questionnaire [26]. HRQoL was ana-
lyzed according to the EORTC scoring manual (Supple-
mentary S6). Associations between HRQoL and CTC pres-
ence were investigated with CTC as a dichotomous variable 
(absence/presence).

Pain was evaluated by VAS pain logs prior to treatment, 
and from week two after CryoIT (Supplementary S6).

Translational outcomes

Flow cytometry analyses of immune cells were conducted 
according to local routine (Supplementary S7) utilizing BD 
FACSCanto II (3 lasers) and BD FACSDiva software v.8.0.1 
(BD Biosciences).

Dedicated uropathologists re-examined the formalin-fixed 
paraffin-embedded (FFPE) primary diagnostic biopsies, 
assigning all samples a histologic subtype and International 
Society of Urological Pathology (ISUP) grade group. Fur-
thermore, FFPE hematoxylin- and eosin-stained slides from 
all eight study biopsies, collected prior to CryoIT from each 
participant, were examined and graded (Supplementary S8).

For each participant, the study biopsy with the most 
tumor tissue and the highest Gleason pattern was selected 
for immunohistochemistry analyses for T cells. The cor-
responding fresh frozen biopsy was selected for the two 
genetic panels and the T-cell receptor (TCR) sequencing 
(Supplementary S8 and S10).

The biopsied tissue was stained for the four MMR pro-
teins: MSH2, MSH6, PMS2 and MLH1, using the platform 
Ventana BenchMark Ultra (Roche, Basel, Switzerland) and 
detection system OptiView (Supplementary S9). MSI was 
diagnosed when minimum one of four MMR proteins was 
unstained in tumor nuclei, while positive staining < 10% 
classified as equivocal.

DNA was isolated from each sample using the Qiagen 
AllPrep DNA/RNA Mini Kit (Qiagen, Hilden, Germany). 
Targeted parallel sequencing for library preparation (Agilent 
SureSelect XT-kit, Agilent) was performed on DNA from 
tumor tissue and matched peripheral blood. For the 360 gene 
panel targeted enrichment was performed using RNA baits 
(SureSelect, Agilent) against the coding regions of 360 can-
cer-related genes [27]. Libraries were sequenced on a MiSeq 
instrument (Illumina, San Diego, California, USA) aiming at 

Fig. 1  Study overview. A Graphical representation of the inclu-
sion period of participants and cancer-directed treatment lines. The 
two cohort parts are separated by the horizontal dashed line. Time 
of inclusion according to year, quartile, and dose of study drugs is 
indicated by colored dots. Cancer-directed treatment received by each 
participant prior to inclusion (to the left of dots) and after disease 
progression during the trial participation period (to the right of dots) 
is listed as letters. A; GnRH agonist (+ initial 4  weeks with bicalu-
tamide), B; GNRH antagonist, C; early chemotherapy (≤ 3  months 
after diagnosis), D; late chemotherapy (> 3 months after diagnosis), 
E; antiandrogen monotherapy (E1; bicalutamide, E2; enzalutamide), 
F; androgen-signaling inhibitor (abiraterone), G; external beam radia-
tion (EBRT) for symptomatic disease, H; EBRT combined with i.v. 
radium-223. B Clinical trial design. Procedures performed as part 
of the CryoIT trial are listed to the left, and the symbols indicate at 
which time points during the trial the participants had each procedure 
done. The vertical dashed line at 0 weeks indicates the time of cryoa-
blation and autologous dendritic cell injection. C Swimmer plot with 
response patterns. Each bar shows the response of one patient. The 0 
on the horizontal axis indicates time of CryoIT treatment. The follow-
up period in months is given along the horizontal axis. The vertical 
line indicates End-of-Trial 72 weeks after CryoIT. Of the 18 patients, 
17 had subsequent progressive disease, and ten died. One participant 
(P14) had stable prostate cancer but developed concomitant malig-
nant melanoma with rapid progression leading to death. This patient 
was only included in the analyses of the safety of the treatment and 
analyses where results were annotated by participant ID. Among the 
patients who were still in follow-up at the time of data cut-off, eight 
had progressed while one still had clinical treatment benefit accord-
ing to the last follow-up of 48 months after treatment. Figure created 
with BioRender.com, i.t. intratumoral injection, i.v. intravenous infu-
sion

◂
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average depths of 200x. Potential MSI was assessed by the 
Promega MSI analysis system (v.1.2, Promega, WI, USA) 
according to the manufacturer’s instructions. The number 
of altered mononucleotide markers classified the tumors 
as MSI-high (2/5), MSI-low (1/5), or microsatellite stable 
(MSS) (0/5).

TCR clonotypes were enumerated according to sequence 
counts. The 200 clonotypes with the highest sequence counts 
two and six weeks after CryoIT were compared separately 
with results from pre-treatment samples. Novel clonotypes 
were those that were undetectable prior to, but detectable 
after the CryoIT. For pre-treatment samples, the maximum 
clonal frequencies were used. Expanded clonotypes were 
pre-treatment clonotypes that expanded > fivefold after treat-
ment. The sum of the frequencies of all identified TCR clo-
notypes in the entire data set defined the clonal space, while 
the clonal space percentage of a clonotype was calculated as 
the percentage of the total number of identified clonotypes.

Data processing and bioinformatics analysis

For the 360 gene panel analyses, raw sequence data were 
aligned to the human reference genome (Build-UCSC 
hg19) using BWA. Somatic single nucleotide variants were 

detected by application of CaVEMan and insertions/dele-
tions were detected using Pindel [28]. All somatic mutations 
were validated by manual inspection in Integrative Genom-
ics Viewer. Allele-specific copy number analysis and esti-
mation of purity and ploidy were performed using FACETS 
[29].

The tumor mutational burden (TMB) analyses were per-
formed by the TSO500 assay (NextSeq platform, Illumina) 
at the Science for Life Laboratory, Uppsala University, 
Sweden, (Supplementary S9) according to the producer´s 
protocol.

Bioinformatic processing of the TCR sequencing results 
was performed by HS Diagnomics (Berlin, Germany). The 
libraries were based on a 2-step PCR system using gene-spe-
cific primers for TRBV and TRBJ. The final TCR sequenc-
ing libraries were pooled and sequenced on Illumina MiSeq 
instruments (Illumina) using 2 × 150 paired-end reads and 
20% PhiX spike. On average, 700,000 reads per library was 
targeted.

Statistical considerations

In this phase I clinical trial, sample sizes were not based 
on statistical methods. The aim of both trial parts was to 

Table 1  Baseline characteristics

Results are given as medians with 1st-3rd interquartile ranges in parentheses, or numbers with percentages 
in parentheses
ECOG = Eastern Cooperative Oncology Group performance status; U/L = units per liter; GnRH = gonado-
tropin-releasing hormone

Patients (n = 18)

Age, years 70 (62–74)
ECOG performance status
 0 16 (89%)
 1 2 (11%)

Time from primary diagnosis, months 30.5 (14.1–49.7)
Metastasis site at inclusion
 Bone 17 (94%)
 Lymph nodes 1 (6%)
 Other 0 (0%)

Body mass index, kg/m2 27 (26–30)
Prostate-specific antigen, ng/mL 8.4 (4.7–39.4)
Alkaline phosphatase, U/L 77 (66–100)
Lactate dehydrogenase, U/L 189 (174–195)
Number of previous therapeutic regiments, n (%)
 1 9 (50%)
 2 4 (22%)
  ≥ 3 5 (28%)

Prior antiandrogen + GnRH agonist or GnRH antagonist therapy 18 (100%)
GnRH agonist (+ initial 4w bicalutamide) 15
GnRH antagonist 3
Prior platinum-based chemotherapy for metastatic disease 9 (50%)
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evaluate the toxicity profile rather than formally to demon-
strate any efficacy endpoints. The database cut-off date was 
April 30, 2021, when all participants had reached 24 months 
of follow-up, and OS data were updated last October 5, 2022.

Descriptive statistics were used to categorize AEs accord-
ing to their nature and severity. Furthermore, descriptive sta-
tistics were applied to demographic data, CTC results, and 
generation of the global HRQoL spider plot and line graphs, 

to demonstrate changes in TCR clonotype counts and lon-
gevity, and to depict percentage changes by waterfall plots.

Unless otherwise stated, all statistical testing between 
groups was made by Fisher’s exact tests, two-sided 
Mann–Whitney U tests, or Kruskal–Wallis tests.

Statistical significance was defined as p < 0.05. Due to the 
small sample size and hypothesis-generating nature of the 
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analyses, results should be interpreted with caution. Adjust-
ments for multiple testing were not performed.

PFS and OS were estimated at database cut-off with 
corresponding 95% confidence intervals estimated by the 
Kaplan–Meier method and independent groups compared 
by log-rank tests. Data analyses were performed either in 
R v.3.6.0 or higher [30], Excel v.16.21 (Microsoft), or IBM 
SPSS Statistics v.26 (IBM Corp.).

Results

Patients and treatment

Between May 2015 and November 2018, 21 patients were 
consented and screened. Eighteen were admitted to the 
trial, as three patients exhibited one exclusion criterion. 
The median follow-up was 38.3 months (interquartile ranges 
(IQR) 14.1–60.9). Baseline characteristics of participants are 
summarized in Table 1.

At diagnosis, the participants demonstrated median Glea-
son score 8, perineural invasion (100%), and vascular inva-
sion (33%) (Supplementary Table S2). All patients had intact 
prostate glands, and were previously treated by at least one 
gonadotropin-releasing hormone (GnRH) analogue (GnRH 
agonists; n = 15, GnRH antagonists; n = 3). Additional prior 
therapy lines are documented in Fig. 1A and Supplementary 
Fig. S1.

Leukapheresis was performed 24 (IQR 20–30) days prior 
to CryoIT. The first three patients received 5 ×  107 autolo-
gous iDCs, the next three 1.0 ×  108 iDCs, and the remaining 
participants 2.0 ×  108 iDCs. Patients 10–12 and 13–15 addi-
tionally received a single dose of ipilimumab 0.3 mg/kg and 

0.6 mg/kg, respectively, injected into the cryoablated pros-
tate tumor following the administration of iDCs. Subjects 
enrolled as numbers 16–18 received 200 mg pembrolizumab 
intravenously on either day 1 (n = 2) or day 77 (n = 1) after 
CryoIT, with a repeat dose after 320/320/356 days (Fig. 1A, 
Supplementary S2B and S4). iDC viability ranged from 
75–99% (median 89.5, IQR 85.3–93.0). The first nine and 
the last nine patients included in the trial differed at baseline 
in median body mass index (p = 0.02), and levels of LDH 
(p = 0.02), hemoglobin (p = 0.04) and leukocytes (p = 0.02). 
Otherwise, all demographic and biomarker measurements 
were comparable between patient groups (Supplementary 
Table S1).

Safety

In total, 73 AEs were reported, whereof 32 were possibly or 
probably associated with participation in the trial. No dose-
limiting toxic effects were recorded. The most frequently 
reported events were mild or moderate urinary tract reac-
tions, administration site reactions, nausea, and influenza-
like and common cold symptoms. Only two grade 3 AEs 
associated with the treatment were reported: one urine 
retention requiring hospitalization and one pelvic osteomy-
elitis requiring protracted intravenous antibiotics before full 
recovery (Table 2). No apparent correlation was observed 
between occurrences of AEs, iDC dose or the addition or 
dose of checkpoint inhibitors. Therefore, all subjects in 
the expansion cohort received the highest dose of 2.0 ×  108 
iDCs.

Response to therapy

At inclusion, 17/18 participants had skeletal lesions vis-
ible on scintigraphy, while 16/18 patients had evaluable 
visceral disease in the form of prostatic tissue tumors. Sev-
eral patients had PET-positive lymph nodes. Long-term 
(> 46 weeks) clinical benefit were achieved by 6/18 (33%) 
participants. Out of 12,  1 patient who progressed was not 
followed radiologically due to rapid disease progression and 
malaise (Fig. 1C), while one patient was diagnosed with 
concomitant metastatic malignant melanoma, leading to 
early death. This patient (P14) was only included in analy-
ses of treatment safety, and per individual CTC enumeration 
and TCR sequencing data (Table 2, Fig. 3). At the time of 
analyses, the median PFS was 10.5 months (95% CI 0–23) 
and OS was 40.7 months (95% CI 13.5-NA) (Fig. 1).

When changes were measured two and six weeks after 
CryoIT, differences were observed between participants who 
had progressed radiologically and those with clinical ben-
efit 22 weeks after treatment (PSA (p = 0.003 and p = 0.002 
after two and six weeks, respectively), LDH (p = 0.01 after 

Fig. 2  Clinical, laboratory and radiological outcomes. A–D Survival 
estimates visualized by Kaplan–Meier curves. Progression was esti-
mated based on radiologic images and PSA changes. The patient 
with concomitant cancer development (P14) was excluded from the 
analyses. A Overall survival in the total cohort (n = 18). B Progres-
sion-free survival (PFS) in the total cohort (n = 18). C PFS in the two 
parts of the trial, the first nine participants in black (First part), and 
the participants included as number 10–18 in gray (Second part). D 
CTC response two weeks after the CryoIT procedure. Grouped as No 
CTC (CTC = 0) or CTC > 0 independent on pre-treatment values. The 
p-values resulting from the comparisons in (C) and (D) are listed in 
the plots. For all four plots, the months of survival after the CryoIT 
are given along the x-axis. Fractions of the total patient cohort are 
listed along the y-axis. The dotted lines indicate the time point when 
50 percent of the cohort had reached the end point. The number of 
patients used for the analyses are shown below the x-axis. The 95% 
confidence intervals are illustrated by a gray area in A and B. E–F 
show waterfall plots illustrating changes from baseline. Changes in 
PSA E and lactate dehydrogenase (LDH) F two weeks after CryoIT 
are shown. The bars indicating patients with progression are blue, and 
those with non-progressive disease at week 14 are yellow. Progres-
sion was defined radiologically and/or based on PSA increases > 25% 
and an absolute increase of 2 ng/mL

◂
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Fig. 3  Changes in circulating tumor cells (CTC) and T cell receptor 
(TCR) clonotypes. A–C CellSearch platform numbers of CTC prior 
to cryoimmunotherapy (CryoIT) in 7.5  ml peripheral blood and in 
the leukapheresis sample are shown along the Y-axis. Weeks pre-
CryoIT (-) and post-CryoIT are shown on the X-axis. Participants 
are grouped according to pre-treatment levels of CTC: A CTC ≥ 5, 
B CTC = 1–4, and (C) No detectable CTC. The vertical dashed line 
shows the time of CryoIT. D–E Frequency of clonotypes over the 
course of the clinical trial up to 30  weeks following CryoIT. Fre-
quency changes to the top 200 largest (number of sequence counts) 
clonotypes at either D two weeks or E six weeks after CryoIT were 
examined. The individual patient graphs show how many (n) of the 
200 largest clonotypes which were either undetectable prior to treat-

ment (red) or > fivefold expanded after the CryoIT (blue). For the pre-
treatment time points, maximum clonal frequencies were used. Time 
in weeks is shown on the x-axis, with 0 indicating time of the CryoIT. 
Plots F and G show the longevity of clonotypes identified in the sam-
ples collected two F and six G weeks after the CryoIT. Pie charts are 
colored according to total number of follow-up time points at which 
the clonotypes in the samples were identified. Zero (blue) indicates 
clonotypes which were not detected in the samples at any of the four 
time points subsequent to either week 2 or 6 post-CryoIT. Group A: 
Clonotypes that were undetectable in all available pre-CryoIT sam-
ples; Group B: Clonotypes which were at least fivefold expanded 
compared to available pre-CryoIT samples
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six weeks)) (Fig. 2D-E, Supplementary S12, Supplementary 
Table S9, Supplementary Fig. S10).

All patients with pre-treatment CTCs showed either tran-
sient CTC decreases which lasted months for several patients 
(pre-treatment CTC ≥ 5/7.5, n = 7), or complete CTC dis-
appearance (pre-treatment CTC 1–4, n = 4). None without 
CTCs prior to CryoIT (n = 7) developed CTCs during fol-
low-up (Fig. 3A-C, Supplementary Table S6).

Two weeks after the intervention, CTC numbers were 
available for 12/18 (67%). The CTC response analyses iden-
tified longer PFS for those with complete disappearance of 
CTCs (p = 0.016, Fig. 2D). When examining CTC responses 
in the first samples taken after the CryoIT (n = 16/18), simi-
lar results were seen (p = 0.0014, Supplementary Fig. S7), 
while those with CTC response = 0 demonstrated longer OS 
(p = 0.016).

Figure 4 illustrates descriptively how the sequentially 
collected HRQoL scores were stable overall for the cohort. 
High PSA (> 10) and presence of CTCs prior to treatment 
were generally associated with worse HRQoL scores over 

time. Furthermore, pre-treatment CTCs associated with 
lower Global Health Status/HRQoL at week 22 (p = 0.03). 
Throughout the study, the VAS pain scores were stably low 
(mean 0.9–2.2) (Supplementary Fig. S3).

Translational outcomes

While higher baseline ALP levels correlated with 
higher tissue expression of Tregs (p = 0.047) and higher 
ratios of  FoxP3+/CD3+cells (p = 0.012) and  FoxP3+/
CD8+cells (p = 0.012) in the immunohistochemistry 
analyses of the tissue biopsies, lower tissue ratios of 
 CD4+/CD3+cells associated with longer OS (p = 0.002) 
(Supplementary Figs. S4, S5, S6, Supplementary 
Tables S3, S4, S5). Treatment-related immunologic 
responses could not be identified by f low cytometry 
analyses.

TCR sequencing of blood samples revealed that the 
median number of novel and > fivefold expanded clonotypes 
was 35.5 (IQR 27.5–63.5) after two weeks, compared to 

Fig. 4  Health-related quality-of-life measurements. Time in weeks 
since trial inclusion (baseline) is illustrated along the x-axis of all 
plots. A Spider diagram illustrating the individual changes in the 
scoring of the Global Health Status/Quality of Life domain (ques-
tions 29–30 in the EORTC-QLQ-C30 questionnaire) over time. For 
each patient, the baseline score is presented next to the patient num-
ber. To the right, the individual pre-treatment (baseline) scores of the 
participants are given. B Line plot illustrating the overall stability of 

the functional and symptom sum scores, as well as the Global Health 
Status/Quality of Life. Numbers (n) indicate how many participants 
completed the EORTC-QLQ-C30 questionnaire at each time point. 
C-D Line plots demonstrating the effect on the Global Health Status/
Quality of Life over time according to C the PSA-levels at baseline, 
and D the dichotomized presence or absence of circulating tumor 
cells (CTC) at baseline. QoL; Quality of Life
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70.5 (IQR 37.0–125.25) six weeks after CryoIT (Fig. 3D-G, 
Supplementary S11, Supplementary Fig. S8). A median of 
28% (IQR 17.55–41.48%) of the 200 most prevalent clo-
notypes was found both two and six weeks after treatment, 
while 36% (IQR 29.09–40.94%) was exclusive to each time 
point (Supplementary Table S7, Supplementary Fig. S9). 

Generally, the expanded clonotypes demonstrated greater 
longevity (≥ 20 weeks) compared to clonotypes undetectable 
prior to treatment (Fig. 3D-G).

While TCR clonotypes found in pre-treatment tumor 
biopsies could be identified among the clones detected in 
blood sampled pre- and post-treatment, less than 1% of the 
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newly identified or expanded clonotypes was detected in the 
biopsy samples (Supplementary Table S8).

Both the custom 360 gene and the TSO500 gene panels 
identified the tumors as MSS with low TMB, and immuno-
histochemical analyses of MSI status by MMR proteins con-
firmed MSS results. Most biopsies demonstrated low tumor 
cell fractions (< 20% cancer cells) (Fig. 5A and Supple-
mentary S10). The TMB spanned 0–1.5 mutations/Mb (360 
custom gene panel) and 0.79–3.93 mutations/Mb (TSO500 
panel) (Fig. 5A). While eight patients demonstrated at least 
one mutated gene, only TP53 was mutated among three sam-
ples, while the remaining twelve involved genes were unique 
to one patient.

Discussion

In this pioneering mCRPC clinical trial, CryoIT was found 
to be safe and tolerable. This is consistent with the well-
defined safety profile of cryoablation in solid tumors [19, 
20, 31]. Furthermore, the maximum tolerated dose was not 
reached at doses of 2.0 ×  108 iDCs, which is in accordance 
with earlier reports stating that DC therapy is well toler-
ated [14, 15]. Urinary retention, previously associated with 
cryotherapy, was the most commonly reported AE. The 
likely cause was local tissue inflammation and subsequent 
edema resulting from cryoablation. No Suspected Unex-
pected Serious Adverse Reactions were registered, and 
most of the observed treatment-related AEs were grade 
1–2. Moreover, the addition of checkpoint inhibitors nei-
ther altered the severity of registered AEs nor induced AEs 

previously reported for ipilimumab and pembrolizumab. 
After 46 weeks, 33% of participants had clinical benefit of 
the treatment according to all radiological evaluations. Most 
trials utilize either a combination of MRI and bone scans, or 
CT imaging. Since this trial commenced, the PCWG pub-
lished updated prostate cancer trials guidelines on how to 
interpret bone lesions[32], but despite existing guidelines, no 
gold standard is yet established for radiological evaluation 
of immunotherapy in prostate cancer [20, 33].

For the total cohort, PFS was 10.5 months while median 
OS was 40.7 months. In this early phase trial, no controls 
were included. In a study including mCRPC patients with 
diverse risk profiles, median PFS were 11.1 months (IQR 
3.7–21.8) versus 8.2 months (3.5–16.6) in the less detrimen-
tal and more disadvantageous group, respectively, while cor-
responding OS were 41.8 (23.4–53.6) and 28.4 (17.9–41.9) 
months [34]. Similar results have been demonstrated in 
other trials [35, 36]. The DC-based vaccine, sipuleucel-T, 
approved by the FDA for asymptomatic or minimally symp-
tomatic mCRPC, has shown OS benefit to patients in three 
double-blind randomized phase III clinical trials. Median 
survival times were 25.8, 25.9, and 19 months for sipuleucel-
T treated patients compared to 21.7, 21.4, and 15.3 months 
for placebo-treated patients [3, 37]. Our trial cohort ranged 
across risk groups, and the survival data are non-inferior to 
placebo cohorts from other trials.

The associations discovered in this trial between CTC 
response and PFS in prostate cancer correspond with pre-
vious findings in phase III trials, where either conversion 
from CTC counts ≥ 5 to CTC < 5 or total disappearance indi-
cated favorable responses to therapy [38–40]. The transient 
decreases in CTC counts seen after the CryoIT in patients 
with high pre-treatment CTC (≥ 5) could suggest treatment-
related effects.

The high proportion of expanded or new TCR clonotypes 
in blood, both two and six weeks after CryoIT, and the mini-
mal intrapatient clonotype overlap could imply an treatment-
related expansion or generation of TCR clonotypes with a 
time-dependent broadening of the peripheral clonotype rep-
ertoire. Several recent publications have found that expanded 
clonotypes in peripheral blood following immune check-
point inhibition were different from pre-treatment tumor-
infiltrating T-cell clonotypes and seemed to be replenished 
from outside of the tumor [41, 42].

Patients reported consistently high values in the func-
tional and Global Health Status/HR-QoL domains and low 
values in symptom domains, but those with pre-treatment 
CTC reported a worse HRQoL over time. In contrast to 
other trials [11, 43, 44], we found no differences in HR-
QoL at baseline between patients with clinical benefit and 
non-responders.

All the patients had MSS tumors with low TMB. This 
finding is in accord with previous studies identifying 1–2% 

Fig. 5  Results of the genetic and protein expression analyses of the 
tumor tissues. A The mutational landscape of 18 mCRPC tumor 
samples. Mutation distribution as detected by targeted sequenc-
ing of 360 cancer related genes, plotted as mutation per gene (rows) 
among the 18 patients (columns). Green, orange, and blue illustrate 
nonsense mutations, frameshift mutations, and missense mutations, 
respectively. Numbers listed above the gray area are estimates of 
tumor mutational burden (TMB) per sample, where black numbers 
indicate TMB based on results from the 360-gene custom panel and 
red numbers indicate TMB estimated form a similar analysis based 
on Illumina TSO500. Bars and percentages to the right of the gray 
panel represent mutation frequency per gene. The bar under the 
gray plot area indicates the tumor cell fraction (TCF) as above 20% 
(blue) or below 20% (red) as estimated by the FACETS algorithm. 
B-C Microscopy images of the immunohistochemical protein expres-
sion in a formalin-fixed paraffin-embedded sample of the four MMR 
proteins examined for estimation of cancer cell microsatellite instabil-
ity: MLH1, PMS2, MSH2, and MSH6. For tissue orientation, hema-
toxylin–eosin (HE) staining was performed on the first representative 
slides from each patient biopsy sample. B Sample staining pattern 
with > 10% positive expression of MMR proteins, representative for 
17/18 participants. C Staining pattern for the one sample with equivo-
cal results demonstrating < 10% positivity of protein expression of 
MSH6 and MSH2 in the tumor cell nuclei. NA; missing

◂
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of prostate cancers as MSI and/or TMB high [45, 46]. 
Still, there seem to be a prognostic and predictive role for 
TMB in the therapy with immune checkpoint inhibitor in 
mCRPC if the TMB ≥ 10 mut/Mb, as demonstrated in a 
comparative study between taxanes and immune check-
point inhibitors for this patient group [47].

This work may be limited by a small sample size, and 
lack of sequential tumor biopsies and comparator groups. 
While utilization of low doses of cyclophosphamide could 
impact the CTC numbers, the doses applied are consid-
erably lower than those required for a general cytotoxic 
effect. We applied imaging guidelines published prior to 
trial commencement in 2015. As guidelines were updated 
as new treatment and technologies developed during the 
trial period, the application of older versions could limit 
interpretation of radiologically based outcomes. Second 
line hormonal treatment and early chemotherapy was 
fully introduced in Norway during the enrolment period 
and time-to-event comparisons with historical controls 
will therefore be imprecise. Despite these limitations, the 
findings encourage a next phase CryoIT trial, powered to 
estimate potential treatment efficacy.

In conclusion, this first-in-class trial of CryoIT is safe 
and well tolerated for all iDC doses, also when combined 
with either a CTLA4 inhibitor or a PD-1 inhibitor. A third 
of the participants demonstrates durable clinical responses. 
Results indicate possible treatment-associated changes in the 
CTC levels and TCR repertoires. The combination of safety 
and evidence of biologic responses and immune activation 
encourage a CryoIT phase II trial.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00262- 023- 03421-7.
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