Skip to main content

Advertisement

Log in

Targeting CD73 increases therapeutic response to immunogenic chemotherapy by promoting dendritic cell maturation

  • Research
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

The CD39-CD73–adenosinergic pathway converts adenosine triphosphate (ATP) to adenosine for inhibiting anti-tumor immune responses. Therefore, targeting CD73 to reinvigorate anti-tumor immunity is considered the novel cancer immunotherapy to eradicate tumor cells. To fully understand the critical role of CD39/CD73 in colon adenocarcinoma (COAD), this study aims to comprehensive investigate the prognostic significance of CD39 and CD73 in stage I–IV COAD. Our data demonstrated that CD73 staining strongly marked malignant epithelial cells and CD39 was highly expressed in stromal cells. Attractively, tumor CD73 expression was significantly associated with tumor stage and the risk of distant metastasis, which suggested CD73 was as an independent factor for colon adenocarcinoma patients in univariate COX analysis [HR = 1.465, 95%CI = 1.084–1.978, p = 0.013]; however, high stromal CD39 in COAD patients was more likely to have favorable survival outcome [HR = 1.458, p = 1.103–1.927, p = 0.008]. Notably, high CD73 expression in COAD patients showed poor response to adjuvant chemotherapy and high risk of distant metastasis. High CD73 expression was inversely associated with less infiltration of CD45+ and CD8+ immune cells. However, administration with anti-CD73 antibodies significantly increased the response to oxaliplatin (OXP). Blockade of CD73 signaling synergistically enhanced OXP-induced ATP release, which is a marker of immunogenic cell death (ICD), promotes dendritic cell maturation and immune cell infiltration. Moreover, the risk of colorectal cancer lung metastasis was also decreased. Taken together, the present study revealed tumor CD73 expression inhibited the recruitment of immune cells and correlated with a poor prognosis in COAD patients, especially patients received adjuvant chemotherapy. Targeting CD73 to markedly increased the therapeutic response to chemotherapy and inhibited lung metastasis. Therefore, tumor CD73 may be an independent prognostic factor as well as the potential of therapeutic target for immunotherapy to benefit colon adenocarcinoma patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Huang CY, Chiang SF, Ke TW, Chen TW, You YS, Chen WT et al (2018) Clinical significance of programmed death 1 ligand-1 (CD274/PD-L1) and intra-tumoral CD8+ T-cell infiltration in stage II-III colorectal cancer. Sci Rep 8(1):15658. https://doi.org/10.1038/s41598-018-33927-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Siegel RL, Miller KD, Fuchs HE, Jemal A (2022) Cancer statistics, 2022. CA Cancer J Clin 72(1):7–33. https://doi.org/10.3322/caac.21708

    Article  PubMed  Google Scholar 

  3. Adlard JW, Richman SD, Seymour MT, Quirke P (2002) Prediction of the response of colorectal cancer to systemic therapy. Lancet Oncol 3(2):75–82. https://doi.org/10.1016/s1470-2045(02)00648-4

    Article  CAS  PubMed  Google Scholar 

  4. McCleary NJ, Meyerhardt JA, Green E, Yothers G, de Gramont A, Van Cutsem E et al (2013) Impact of age on the efficacy of newer adjuvant therapies in patients with stage II/III colon cancer: findings from the ACCENT database. J Clin Oncol 31(20):2600–2606. https://doi.org/10.1200/JCO.2013.49.6638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Huang CY, Chiang SF, Ke TW, Chen TW, Lan YC, You YS et al (2018) Cytosolic high-mobility group box protein 1 (HMGB1) and/or PD-1+ TILs in the tumor microenvironment may be contributing prognostic biomarkers for patients with locally advanced rectal cancer who have undergone neoadjuvant chemoradiotherapy. Cancer Immunol Immunother 67(4):551–562. https://doi.org/10.1007/s00262-017-2109-5

    Article  CAS  PubMed  Google Scholar 

  6. Chen TW, Huang KC, Chiang SF, Chen WT, Ke TW, Chao KSC (2019) Prognostic relevance of programmed cell death-ligand 1 expression and CD8+ TILs in rectal cancer patients before and after neoadjuvant chemoradiotherapy. J Cancer Res Clin Oncol 145(4):1043–1053. https://doi.org/10.1007/s00432-019-02874-7

    Article  CAS  PubMed  Google Scholar 

  7. Wang J, Yuan R, Song W, Sun J, Liu D, Li Z (2017) PD-1, PD-L1 (B7–H1) and Tumor-site immune modulation therapy: the historical perspective. J Hematol Oncol 10(1):34. https://doi.org/10.1186/s13045-017-0403-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Xu-Monette ZY, Zhang M, Li J, Young KH (2017) PD-1/PD-L1 blockade: have we found the key to unleash the antitumor immune response? Front Immunol 8:1597. https://doi.org/10.3389/fimmu.2017.01597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Beavis PA, Divisekera U, Paget C, Chow MT, John LB, Devaud C et al (2013) Blockade of A2A receptors potently suppresses the metastasis of CD73+ tumors. Proc Natl Acad Sci U S A 110(36):14711–14716. https://doi.org/10.1073/pnas.1308209110

    Article  PubMed  PubMed Central  Google Scholar 

  10. Leclerc BG, Charlebois R, Chouinard G, Allard B, Pommey S, Saad F et al (2016) CD73 expression is an independent prognostic factor in prostate cancer. Clin Cancer Res 22(1):158–166. https://doi.org/10.1158/1078-0432.CCR-15-1181

    Article  CAS  PubMed  Google Scholar 

  11. Hatfield SM, Kjaergaard J, Lukashev D, Schreiber TH, Belikoff B, Abbott R et al (2015) Immunological mechanisms of the antitumor effects of supplemental oxygenation. Sci Transl Med. https://doi.org/10.1126/scitranslmed.aaa1260

    Article  PubMed  PubMed Central  Google Scholar 

  12. Antonioli L, Pacher P, Vizi ES, Hasko G (2013) CD39 and CD73 in immunity and inflammation. Trends Mol Med 19(6):355–367. https://doi.org/10.1016/j.molmed.2013.03.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Synnestvedt K, Furuta GT, Comerford KM, Louis N, Karhausen J, Eltzschig HK et al (2002) Ecto-5’-nucleotidase (CD73) regulation by hypoxia-inducible factor-1 mediates permeability changes in intestinal epithelia. J Clin Invest 110(7):993–1002. https://doi.org/10.1172/JCI15337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Niemela J, Henttinen T, Yegutkin GG, Airas L, Kujari AM, Rajala P et al (2004) IFN-alpha induced adenosine production on the endothelium: a mechanism mediated by CD73 (ecto-5’-nucleotidase) up-regulation. J Immunol 172(3):1646–1653. https://doi.org/10.4049/jimmunol.172.3.1646

    Article  PubMed  Google Scholar 

  15. Burnstock G, Di Virgilio F (2013) Purinergic signalling and cancer. Purinergic Signal 9(4):491–540. https://doi.org/10.1007/s11302-013-9372-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Loi S, Pommey S, Haibe-Kains B, Beavis PA, Darcy PK, Smyth MJ et al (2013) CD73 promotes anthracycline resistance and poor prognosis in triple negative breast cancer. Proc Natl Acad Sci U S A 110(27):11091–11096. https://doi.org/10.1073/pnas.1222251110

    Article  PubMed  PubMed Central  Google Scholar 

  17. Zhang B, Song B, Wang X, Chang XS, Pang T, Zhang X et al (2015) The expression and clinical significance of CD73 molecule in human rectal adenocarcinoma. Tumour Biol 36(7):5459–5466. https://doi.org/10.1007/s13277-015-3212-x

    Article  CAS  PubMed  Google Scholar 

  18. Yegutkin GG, Marttila-Ichihara F, Karikoski M, Niemela J, Laurila JP, Elima K et al (2011) Altered purinergic signaling in CD73-deficient mice inhibits tumor progression. Eur J Immunol 41(5):1231–1241. https://doi.org/10.1002/eji.201041292

    Article  CAS  PubMed  Google Scholar 

  19. Perrot I, Michaud HA, Giraudon-Paoli M, Augier S, Docquier A, Gros L et al (2019) Blocking antibodies targeting the CD39/CD73 immunosuppressive pathway unleash immune responses in combination cancer therapies. Cell Rep 27(8):2411–2425. https://doi.org/10.1016/j.celrep.2019.04.091

    Article  CAS  PubMed  Google Scholar 

  20. Huang KC, Chiang SF, Chen TW, Chen WT, Yang PC, Ke TW et al (2020) Prognostic relevance of programmed cell death 1 ligand 2 (PDCD1LG2/PD-L2) in patients with advanced stage colon carcinoma treated with chemotherapy. Sci Rep 10(1):22330. https://doi.org/10.1038/s41598-020-79419-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lin TY, Fan CW, Maa MC, Leu TH (2015) Lipopolysaccharide-promoted proliferation of Caco-2 cells is mediated by c-Src induction and ERK activation. Biomedicine (Taipei) 5(1):5. https://doi.org/10.7603/s40681-015-0005-x

    Article  PubMed  Google Scholar 

  22. Wang X, Sheu JJ, Lai MT, Yin-Yi Chang C, Sheng X, Wei L et al (2018) RSF-1 overexpression determines cancer progression and drug resistance in cervical cancer. Biomedicine (Taipei) 8(1):4. https://doi.org/10.1051/bmdcn/2018080104

    Article  PubMed  Google Scholar 

  23. Uhlen M, Fagerberg L, Hallstrom BM, Lindskog C, Oksvold P, Mardinoglu A et al (2015) Proteomics tissue-based map of the human proteome. Science 347(6220):1260419. https://doi.org/10.1126/science.1260419

    Article  CAS  PubMed  Google Scholar 

  24. Uhlen M, Zhang C, Lee S, Sjostedt E, Fagerberg L, Bidkhori G et al (2017) A pathology atlas of the human cancer transcriptome. Science. https://doi.org/10.1126/science.aan2507

    Article  PubMed  Google Scholar 

  25. Hoadley KA, Yau C, Hinoue T, Wolf DM, Lazar AJ, Drill E et al (2018) Cell-of-origin patterns dominate the molecular classification of 10,000 tumors from 33 types of cancer. Cell 173(2):291–304. https://doi.org/10.1016/j.cell.2018.03.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Huang KC, Lai CY, Hong WZ, Chang HY, Lin PC, Chiang SF et al (2022) A novel engineered AAV-based neoantigen vaccine in combination with radiotherapy eradicates tumors. Cancer Immunol Res. https://doi.org/10.1158/2326-6066.CIR-22-0318

    Article  PubMed  PubMed Central  Google Scholar 

  27. Huang KC, Chiang SF, Chang HY, Chen WT, Yang PC, Chen TW et al (2022) Engineered sTRAIL-armed MSCs overcome STING deficiency to enhance the therapeutic efficacy of radiotherapy for immune checkpoint blockade. Cell Death Dis 13(7):610. https://doi.org/10.1038/s41419-022-05069-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chen TW, Hung WZ, Chiang SF, Chen WT, Ke TW, Liang JA et al (2022) Dual inhibition of TGFbeta signaling and CSF1/CSF1R reprograms tumor-infiltrating macrophages and improves response to chemotherapy via suppressing PD-L1. Cancer Lett. https://doi.org/10.1016/j.canlet.2022.215795

    Article  PubMed  PubMed Central  Google Scholar 

  29. Huang KC, Chiang SF, Yang PC, Ke TW, Chen TW, Hu CH et al (2021) Immunogenic cell death by the novel topoisomerase i inhibitor tlc388 enhances the therapeutic efficacy of radiotherapy. Cancers (Basel). https://doi.org/10.3390/cancers13061218

    Article  PubMed  PubMed Central  Google Scholar 

  30. Huang KC, Chiang SF, Chen WT, Chen TW, Hu CH, Yang PC et al (2020) Decitabine augments chemotherapy-induced PD-L1 upregulation for PD-L1 blockade in colorectal cancer. Cancers (Basel). https://doi.org/10.3390/cancers12020462

    Article  PubMed  PubMed Central  Google Scholar 

  31. Wennerberg E, Spada S, Rudqvist NP, Lhuillier C, Gruber S, Chen Q et al (2020) CD73 blockade promotes dendritic cell infiltration of irradiated tumors and tumor rejection. Cancer Immunol Res 8(4):465–478. https://doi.org/10.1158/2326-6066.CIR-19-0449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Stagg J, Smyth MJ (2010) Extracellular adenosine triphosphate and adenosine in cancer. Oncogene 29(39):5346–5358. https://doi.org/10.1038/onc.2010.292

    Article  CAS  PubMed  Google Scholar 

  33. Messaoudi N, Cousineau I, Arslanian E, Henault D, Stephen D, Vandenbroucke-Menu F et al (2020) Prognostic value of CD73 expression in resected colorectal cancer liver metastasis. Oncoimmunology 9(1):1746138. https://doi.org/10.1080/2162402X.2020.1746138

    Article  PubMed  PubMed Central  Google Scholar 

  34. Wu XR, He XS, Chen YF, Yuan RX, Zeng Y, Lian L et al (2012) High expression of CD73 as a poor prognostic biomarker in human colorectal cancer. J Surg Oncol 106(2):130–137. https://doi.org/10.1002/jso.23056

    Article  CAS  PubMed  Google Scholar 

  35. Ren ZH, Lin CZ, Cao W, Yang R, Lu W, Liu ZQ et al (2016) CD73 is associated with poor prognosis in HNSCC. Oncotarget 7(38):61690–61702. https://doi.org/10.18632/oncotarget.11435

    Article  PubMed  PubMed Central  Google Scholar 

  36. Samanta D, Park Y, Ni X, Li H, Zahnow CA, Gabrielson E et al (2018) Chemotherapy induces enrichment of CD47(+)/CD73(+)/PDL1(+) immune evasive triple-negative breast cancer cells. Proc Natl Acad Sci U S A 115(6):E1239–E1248. https://doi.org/10.1073/pnas.1718197115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kroemer G, Galluzzi L, Kepp O, Zitvogel L (2013) Immunogenic cell death in cancer therapy. Annu Rev Immunol 31:51–72. https://doi.org/10.1146/annurev-immunol-032712-100008

    Article  CAS  PubMed  Google Scholar 

  38. Beavis PA, Milenkovski N, Henderson MA, John LB, Allard B, Loi S et al (2015) Adenosine receptor 2A blockade increases the efficacy of anti-PD-1 through enhanced antitumor t-cell responses. Cancer Immunol Res 3(5):506–517. https://doi.org/10.1158/2326-6066.CIR-14-0211

    Article  CAS  PubMed  Google Scholar 

  39. Bhattarai S, Freundlieb M, Pippel J, Meyer A, Abdelrahman A, Fiene A et al (2015) alpha, beta-methylene-ADP (AOPCP) derivatives and analogues: development of potent and selective ecto-5’-nucleotidase (CD73) inhibitors. J Med Chem 58(15):6248–6263. https://doi.org/10.1021/acs.jmedchem.5b00802

    Article  CAS  PubMed  Google Scholar 

  40. Stagg J, Divisekera U, McLaughlin N, Sharkey J, Pommey S, Denoyer D et al (2010) Anti-CD73 antibody therapy inhibits breast tumor growth and metastasis. Proc Natl Acad Sci U S A 107(4):1547–1552. https://doi.org/10.1073/pnas.0908801107

    Article  PubMed  PubMed Central  Google Scholar 

  41. Allard B, Pommey S, Smyth MJ, Stagg J (2013) Targeting CD73 enhances the antitumor activity of anti-PD-1 and anti-CTLA-4 mAbs. Clin Cancer Res 19(20):5626–5635. https://doi.org/10.1158/1078-0432.CCR-13-0545

    Article  CAS  PubMed  Google Scholar 

  42. Hay CM, Sult E, Huang Q, Mulgrew K, Fuhrmann SR, McGlinchey KA et al (2016) Targeting CD73 in the tumor microenvironment with MEDI9447. Oncoimmunology 5(8):e1208875. https://doi.org/10.1080/2162402X.2016.1208875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Vogt TJ, Gevensleben H, Dietrich J, Kristiansen G, Bootz F, Landsberg J et al (2018) Detailed analysis of adenosine A2a receptor (ADORA2A) and CD73 (5’-nucleotidase, ecto, NT5E) methylation and gene expression in head and neck squamous cell carcinoma patients. Oncoimmunology 7(8):e1452579. https://doi.org/10.1080/2162402X.2018.1452579

    Article  PubMed  PubMed Central  Google Scholar 

  44. Chen Q, Pu N, Yin H, Zhang J, Zhao G, Lou W et al (2020) CD73 acts as a prognostic biomarker and promotes progression and immune escape in pancreatic cancer. J Cell Mol Med 24(15):8674–8686. https://doi.org/10.1111/jcmm.15500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Huang KC, Chiang SC, Ke TW, Chen TW, Hu CH, Yang PC et al (2021) DNMT1 constrains IFNβ-mediated anti-tumor immunity and PD-L1 expression to reduce the efficacy of radiotherapy and immunotherapy. OncoImmunology 10(1):1989790. https://doi.org/10.1080/2162402X.2021.1989790

    Article  Google Scholar 

  46. Wang YJ, Fletcher R, Yu J, Zhang L (2018) Immunogenic effects of chemotherapy-induced tumor cell death. Genes Dis 5(3):194–203. https://doi.org/10.1016/j.gendis.2018.05.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Young CNJ, Gorecki DC (2018) P2RX7 purinoceptor as a therapeutic target-the second coming? Front Chem 6:248. https://doi.org/10.3389/fchem.2018.00248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tsukui H, Horie H, Koinuma K, Ohzawa H, Sakuma Y, Hosoya Y et al (2020) CD73 blockade enhances the local and abscopal effects of radiotherapy in a murine rectal cancer model. BMC Cancer 20(1):411. https://doi.org/10.1186/s12885-020-06893-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhang B, Cheng B, Li FS, Ding JH, Feng YY, Zhuo GZ et al (2015) High expression of CD39/ENTPD1 in malignant epithelial cells of human rectal adenocarcinoma. Tumour Biol 36(12):9411–9419. https://doi.org/10.1007/s13277-015-3683-9

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful for the tissue microarray support from the Translation Research Core, China Medical University Hospital. This study was supported in part by China Medical University Hospital (DMR-CELL-2103, DMR-CELL-2102 and DMR-110-045, Taiwan), the Ministry of Science and Technology (MOST110-2628-B-039-005 and MOST110-2314-B-039-032, Taiwan), and the Health and welfare surcharge on tobacco products, China Medical University Hospital Cancer Research Center of Excellence (MOHW110-TDU-B-212-144024, Taiwan). This study was partially based on clinical information from the China Medical University Hospital Cancer Registry. Experiments and data analysis were performed in part through the use of the Medical Research Core Facilities Center, Office of Research & Development at China medical University, Taichung, Taiwan, R.O.C.

Author information

Authors and Affiliations

Authors

Contributions

Data curation, YL and TC; Formal analysis, SC, WTC, KCH, JL and AS; Funding acquisition, KSCC and KCH; Investigation, WTC, TK and PY; Animal experiments and flow cytometry analysis, KCH, CC and WH; Project administration, KCH; Resources, WTC, TK and KSCC; Supervision, KSCC; Writing—original draft, KCH; Writing—review & editing, KSCC.

Corresponding authors

Correspondence to K. S. Clifford Chao or Kevin Chih-Yang Huang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study was reviewed and approved by the Internal Review Board (IRB) of China Medical University Hospital [Protocol number: CMUH105-REC2-073]. The method was carried out in accordance with the committee’s approved guidelines.

Informed consent

Informed consents were obtained from all participants in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4403 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, YS., Chiang, SF., Chen, CY. et al. Targeting CD73 increases therapeutic response to immunogenic chemotherapy by promoting dendritic cell maturation. Cancer Immunol Immunother 72, 2283–2297 (2023). https://doi.org/10.1007/s00262-023-03416-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-023-03416-4

Keywords

Navigation