Skip to main content

Advertisement

Log in

Preventive effect of tertiary lymphoid structures on lymph node metastasis of lung adenocarcinoma

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Background

Ectopic lymphoid formations are called tertiary lymphoid structures (TLSs). TLSs in cancer have been reported to be associated with good prognosis and immunotherapy response. However, the relationship between TLSs and lymph node (LN) metastasis is unclear.

Methods

We analyzed 218 patients with radically resected lung adenocarcinoma. TLSs were defined as the overlap of T cell zone and B cell zone. Granzyme B + cells were defined as cytotoxic lymphocytes. We evaluated phenotypes of lymphocytes in TLSs, tumor-infiltrating lymphocytes (TILs) and LNs by immunohistochemistry. We divided the patients into mature TLS (DC-Lamp high) and immature TLS (DC-Lamp low) groups. The relationship between TLS maturation and clinicopathological factors was analyzed.

Results

The mature TLS group was associated with significantly lower frequency of LN metastasis (P < 0.0001) and early cancer stage (P = 0.0049). The mature TLS group had significantly more CD8 + (P = 0.0203) and Foxp3 + (P = 0.0141) cells in TILs than the immature TLS group had. Mature TLSs were independently associated with a favorable overall survival (hazard ratio [HR] = 0.17, P = 0.0220) and disease-free survival (HR = 0.54, P = 0.0436). Multivariate analysis showed that mature TLS was an independent low-risk factor for LN metastasis (odds ratio = 0.06, P = 0.0003). The number of cytotoxic lymphocytes in LNs was higher in the mature TLS group than in the immature group (20.0 vs. 15.1, P = 0.017).

Conclusion

Mature TLSs were associated with an increased number of cytotoxic lymphocytes in draining LNs, a lower frequency of LN metastasis, and favorable outcomes. Mature TLSs may support antitumor immunity by lymphocyte activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

DC:

Dendritic cell

DFS:

Disease-free survival

HEV:

High endothelial venule

HR:

Hazard ratio

LN:

Lymph node

LT:

Lymphotoxin.

OR:

Odds ratio

OS:

Overall survival

PD-L1:

Programmed cell death-ligand 1

pN:

Pathological N status

pT:

Pathological T status

TIL:

Tumor-infiltrating lymphocyte

TLS:

Tertiary lymphoid structure

TNF:

Tumor necrosis factor

References

  1. Reck M, Rodriguez-Abreu D, Robinson AG, Hui R, Csoszi T, Fulop A, Gottfried M, Peled N, Tafreshi A, Cuffe S, O’Brien M, Rao S, Hotta K, Leiby MA, Lubiniecki GM, Shentu Y, Rangwala R, Brahmer JR, Investigators K (2016) Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med 375(19):1823–1833. https://doi.org/10.1056/NEJMoa1606774

    Article  CAS  PubMed  Google Scholar 

  2. Gandhi L, Rodriguez-Abreu D, Gadgeel S, Esteban E, Felip E, De Angelis F, Domine M, Clingan P, Hochmair MJ, Powell SF, Cheng SY, Bischoff HG, Peled N, Grossi F, Jennens RR, Reck M, Hui R, Garon EB, Boyer M, Rubio-Viqueira B, Novello S, Kurata T, Gray JE, Vida J, Wei Z, Yang J, Raftopoulos H, Pietanza MC, Garassino MC, Investigators K (2018) Pembrolizumab plus chemotherapy in metastatic non-small-cell lung cancer. N Engl J Med 378(22):2078–2092. https://doi.org/10.1056/NEJMoa1801005

    Article  CAS  PubMed  Google Scholar 

  3. Bruno TC (2020) New predictors for immunotherapy responses sharpen our view of the tumour microenvironment. Nature 577(7791):474–476. https://doi.org/10.1038/d41586-019-03943-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dieu-Nosjean MC, Goc J, Giraldo NA, Sautes-Fridman C, Fridman WH (2014) Tertiary lymphoid structures in cancer and beyond. Trends Immunol 35(11):571–580. https://doi.org/10.1016/j.it.2014.09.006

    Article  CAS  PubMed  Google Scholar 

  5. Dieu-Nosjean MC, Antoine M, Danel C, Heudes D, Wislez M, Poulot V, Rabbe N, Laurans L, Tartour E, de Chaisemartin L, Lebecque S, Fridman WH, Cadranel J (2008) Long-term survival for patients with non-small-cell lung cancer with intratumoral lymphoid structures. J Clin Oncol 26(27):4410–4417. https://doi.org/10.1200/JCO.2007.15.0284

    Article  CAS  PubMed  Google Scholar 

  6. Colbeck EJ, Ager A, Gallimore A, Jones GW (2017) Tertiary lymphoid structures in cancer: drivers of antitumor immunity, immunosuppression, or bystander sentinels in Disease? Front Immunol 8:1830. https://doi.org/10.3389/fimmu.2017.01830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gu-Trantien C, Migliori E, Buisseret L, de Wind A, Brohee S, Garaud S, Noel G, Dang Chi VL, Lodewyckx JN, Naveaux C, Duvillier H, Goriely S, Larsimont D, Willard-Gallo K (2017) CXCL13-producing TFH cells link immune suppression and adaptive memory in human breast cancer. JCI Insight. https://doi.org/10.1172/jci.insight.91487

    Article  PubMed  PubMed Central  Google Scholar 

  8. Nayar S, Campos J, Smith CG, Iannizzotto V, Gardner DH, Mourcin F, Roulois D, Turner J, Sylvestre M, Asam S, Glaysher B, Bowman SJ, Fearon DT, Filer A, Tarte K, Luther SA, Fisher BA, Buckley CD, Coles MC, Barone F (2019) Immunofibroblasts are pivotal drivers of tertiary lymphoid structure formation and local pathology. Proc Natl Acad Sci U S A 116(27):13490–13497. https://doi.org/10.1073/pnas.1905301116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lin L, Hu X, Zhang H, Hu H (2019) Tertiary lymphoid organs in cancer immunology: mechanisms and the new strategy for immunotherapy. Front Immunol 10:1398. https://doi.org/10.3389/fimmu.2019.01398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nerviani A, Pitzalis C (2018) Role of chemokines in ectopic lymphoid structures formation in autoimmunity and cancer. J Leukoc Biol 104(2):333–341. https://doi.org/10.1002/JLB.3MR0218-062R

    Article  CAS  PubMed  Google Scholar 

  11. Germain C, Gnjatic S, Tamzalit F, Knockaert S, Remark R, Goc J, Lepelley A, Becht E, Katsahian S, Bizouard G, Validire P, Damotte D, Alifano M, Magdeleinat P, Cremer I, Teillaud JL, Fridman WH, Sautes-Fridman C, Dieu-Nosjean MC (2014) Presence of B cells in tertiary lymphoid structures is associated with a protective immunity in patients with lung cancer. Am J Respir Crit Care Med 189(7):832–844. https://doi.org/10.1164/rccm.201309-1611OC

    Article  CAS  PubMed  Google Scholar 

  12. Hiraoka N, Ino Y, Yamazaki-Itoh R, Kanai Y, Kosuge T, Shimada K (2015) Intratumoral tertiary lymphoid organ is a favourable prognosticator in patients with pancreatic cancer. Br J Cancer 112(11):1782–1790. https://doi.org/10.1038/bjc.2015.145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Koti M, Xu AS, Ren KYM, Visram K, Ren R, Berman DM, Siemens DR (2017) Tertiary lymphoid structures associate with tumour stage in urothelial bladder cancer. Bladder Cancer 3(4):259–267. https://doi.org/10.3233/BLC-170120

    Article  PubMed  PubMed Central  Google Scholar 

  14. Posch F, Silina K, Leibl S, Mundlein A, Moch H, Siebenhuner A, Samaras P, Riedl J, Stotz M, Szkandera J, Stoger H, Pichler M, Stupp R, van den Broek M, Schraml P, Gerger A, Petrausch U, Winder T (2018) Maturation of tertiary lymphoid structures and recurrence of stage II and III colorectal cancer. Oncoimmunology 7(2):e1378844. https://doi.org/10.1080/2162402X.2017.1378844

    Article  PubMed  Google Scholar 

  15. Helmink BA, Reddy SM, Gao J, Zhang S, Basar R, Thakur R, Yizhak K, Sade-Feldman M, Blando J, Han G, Gopalakrishnan V, Xi Y, Zhao H, Amaria RN, Tawbi HA, Cogdill AP, Liu W, LeBleu VS, Kugeratski FG, Patel S, Davies MA, Hwu P, Lee JE, Gershenwald JE, Lucci A, Arora R, Woodman S, Keung EZ, Gaudreau PO, Reuben A, Spencer CN, Burton EM, Haydu LE, Lazar AJ, Zapassodi R, Hudgens CW, Ledesma DA, Ong S, Bailey M, Warren S, Rao D, Krijgsman O, Rozeman EA, Peeper D, Blank CU, Schumacher TN, Butterfield LH, Zelazowska MA, McBride KM, Kalluri R, Allison J, Petitprez F, Fridman WH, Sautes-Fridman C, Hacohen N, Rezvani K, Sharma P, Tetzlaff MT, Wang L, Wargo JA (2020) B cells and tertiary lymphoid structures promote immunotherapy response. Nature 577(7791):549–555. https://doi.org/10.1038/s41586-019-1922-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cabrita R, Lauss M, Sanna A, Donia M, Skaarup Larsen M, Mitra S, Johansson I, Phung B, Harbst K, Vallon-Christersson J, van Schoiack A, Lovgren K, Warren S, Jirstrom K, Olsson H, Pietras K, Ingvar C, Isaksson K, Schadendorf D, Schmidt H, Bastholt L, Carneiro A, Wargo JA, Svane IM, Jonsson G (2020) Tertiary lymphoid structures improve immunotherapy and survival in melanoma. Nature 577(7791):561–565. https://doi.org/10.1038/s41586-019-1914-8

    Article  CAS  PubMed  Google Scholar 

  17. Petitprez F, de Reynies A, Keung EZ, Chen TW, Sun CM, Calderaro J, Jeng YM, Hsiao LP, Lacroix L, Bougouin A, Moreira M, Lacroix G, Natario I, Adam J, Lucchesi C, Laizet YH, Toulmonde M, Burgess MA, Bolejack V, Reinke D, Wani KM, Wang WL, Lazar AJ, Roland CL, Wargo JA, Italiano A, Sautes-Fridman C, Tawbi HA, Fridman WH (2020) B cells are associated with survival and immunotherapy response in sarcoma. Nature 577(7791):556–560. https://doi.org/10.1038/s41586-019-1906-8

    Article  CAS  PubMed  Google Scholar 

  18. Cottrell TR, Thompson ED, Forde PM, Stein JE, Duffield AS, Anagnostou V, Rekhtman N, Anders RA, Cuda JD, Illei PB, Gabrielson E, Askin FB, Niknafs N, Smith KN, Velez MJ, Sauter JL, Isbell JM, Jones DR, Battafarano RJ, Yang SC, Danilova L, Wolchok JD, Topalian SL, Velculescu VE, Pardoll DM, Brahmer JR, Hellmann MD, Chaft JE, Cimino-Mathews A, Taube JM (2018) Pathologic features of response to neoadjuvant anti-PD-1 in resected non-small-cell lung carcinoma: a proposal for quantitative immune-related pathologic response criteria (irPRC). Ann Oncol 29(8):1853–1860. https://doi.org/10.1093/annonc/mdy218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sautes-Fridman C, Petitprez F, Calderaro J, Fridman WH (2019) Tertiary lymphoid structures in the era of cancer immunotherapy. Nat Rev Cancer 19(6):307–325. https://doi.org/10.1038/s41568-019-0144-6

    Article  CAS  PubMed  Google Scholar 

  20. Chamoto K, Chowdhury PS, Kumar A, Sonomura K, Matsuda F, Fagarasan S, Honjo T (2017) Mitochondrial activation chemicals synergize with surface receptor PD-1 blockade for T cell-dependent antitumor activity. Proc Natl Acad Sci U S A 114(5):E761–E770. https://doi.org/10.1073/pnas.1620433114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Takada K, Okamoto T, Shoji F, Shimokawa M, Akamine T, Takamori S, Katsura M, Suzuki Y, Fujishita T, Toyokawa G, Morodomi Y, Okano S, Oda Y, Maehara Y (2016) Clinical significance of PD-L1 protein expression in surgically resected primary lung adenocarcinoma. J Thorac Oncol 11(11):1879–1890. https://doi.org/10.1016/j.jtho.2016.06.006

    Article  PubMed  Google Scholar 

  22. Figenschau SL, Fismen S, Fenton KA, Fenton C, Mortensen ES (2015) Tertiary lymphoid structures are associated with higher tumor grade in primary operable breast cancer patients. BMC Cancer 15:101. https://doi.org/10.1186/s12885-015-1116-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Trajkovski G, Ognjenovic L, Karadzov Z, Jota G, Hadzi-Manchev D, Kostovski O, Volcevski G, Trajkovska V, Nikolova D, Spasevska L, Janevska V, Janevski V (2018) Tertiary lymphoid structures in colorectal cancers and their prognostic value. Open Access Maced J Med Sci 6(10):1824–1828. https://doi.org/10.3889/oamjms.2018.341

    Article  PubMed  PubMed Central  Google Scholar 

  24. Dammeijer F, van Gulijk M, Mulder EE, Lukkes M, Klaase L, van den Bosch T, van Nimwegen M, Lau SP, Latupeirissa K, Schetters S, van Kooyk Y, Boon L, Moyaart A, Mueller YM, Katsikis PD, Eggermont AM, Vroman H, Stadhouders R, Hendriks RW, Thusen JV, Grunhagen DJ, Verhoef C, van Hall T, Aerts JG (2020) The PD-1/PD-L1-checkpoint restrains T cell Immunity in tumor-draining lymph nodes. Cancer Cell. https://doi.org/10.1016/j.ccell.2020.09.001

    Article  PubMed  Google Scholar 

  25. Engelhard VH, Rodriguez AB, Mauldin IS, Woods AN, Peske JD, Slingluff CL Jr (2018) Immune cell infiltration and Tertiary lymphoid structures as determinants of antitumor immunity. J Immunol 200(2):432–442. https://doi.org/10.4049/jimmunol.1701269

    Article  CAS  PubMed  Google Scholar 

  26. Pesce S, Moretta L, Moretta A, Marcenaro E (2016) Human NK cell subsets redistribution in pathological conditions: a role for CCR7 receptor. Front Immunol 7:414. https://doi.org/10.3389/fimmu.2016.00414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. de Chaisemartin L, Goc J, Damotte D, Validire P, Magdeleinat P, Alifano M, Cremer I, Fridman WH, Sautes-Fridman C, Dieu-Nosjean MC (2011) Characterization of chemokines and adhesion molecules associated with T cell presence in tertiary lymphoid structures in human lung cancer. Cancer Res 71(20):6391–6399. https://doi.org/10.1158/0008-5472.CAN-11-0952

    Article  CAS  PubMed  Google Scholar 

  28. Guedj K, Khallou-Laschet J, Clement M, Morvan M, Gaston AT, Fornasa G, Dai J, Gervais-Taurel M, Eberl G, Michel JB, Caligiuri G, Nicoletti A (2014) M1 macrophages act as LTbetaR-independent lymphoid tissue inducer cells during atherosclerosis-related lymphoid neogenesis. Cardiovasc Res 101(3):434–443. https://doi.org/10.1093/cvr/cvt263

    Article  CAS  PubMed  Google Scholar 

  29. Germain C, Gnjatic S, Dieu-Nosjean MC (2015) Tertiary lymphoid structure-associated B cells are key players in anti-tumor immunity. Front Immunol 6:67. https://doi.org/10.3389/fimmu.2015.00067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Goc J, Germain C, Vo-Bourgais TK, Lupo A, Klein C, Knockaert S, de Chaisemartin L, Ouakrim H, Becht E, Alifano M, Validire P, Remark R, Hammond SA, Cremer I, Damotte D, Fridman WH, Sautes-Fridman C, Dieu-Nosjean MC (2014) Dendritic cells in tumor-associated tertiary lymphoid structures signal a Th1 cytotoxic immune contexture and license the positive prognostic value of infiltrating CD8+ T cells. Cancer Res 74(3):705–715. https://doi.org/10.1158/0008-5472.CAN-13-1342

    Article  CAS  PubMed  Google Scholar 

  31. Zeng DQ, Yu YF, Ou QY, Li XY, Zhong RZ, Xie CM, Hu QG (2016) Prognostic and predictive value of tumor-infiltrating lymphocytes for clinical therapeutic research in patients with non-small cell lung cancer. Oncotarget 7(12):13765–13781. https://doi.org/10.18632/oncotarget.7282

    Article  PubMed  PubMed Central  Google Scholar 

  32. Silina K, Soltermann A, Attar FM, Casanova R, Uckeley ZM, Thut H, Wandres M, Isajevs S, Cheng P, Curioni-Fontecedro A, Foukas P, Levesque MP, Moch H, Line A, van den Broek M (2018) Germinal centers determine the prognostic relevance of tertiary lymphoid structures and are impaired by corticosteroids in lung squamous cell carcinoma. Cancer Res 78(5):1308–1320. https://doi.org/10.1158/0008-5472.CAN-17-1987

    Article  CAS  PubMed  Google Scholar 

  33. Solinas C, Garaud S, De Silva P, Boisson A, Van den Eynden G, de Wind A, Risso P, Rodrigues Vitoria J, Richard F, Migliori E, Noel G, Duvillier H, Craciun L, Veys I, Awada A, Detours V, Larsimont D, Piccart-Gebhart M, Willard-Gallo K (2017) Immune checkpoint molecules on tumor-infiltrating lymphocytes and their association with tertiary lymphoid structures in human breast cancer. Front Immunol 8:1412. https://doi.org/10.3389/fimmu.2017.01412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Collins M, Ling V, Carreno BM (2005) The B7 family of immune-regulatory ligands. Genome Biol 6(6):223. https://doi.org/10.1186/gb-2005-6-6-223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hodge G, Barnawi J, Jurisevic C, Moffat D, Holmes M, Reynolds PN, Jersmann H, Hodge S (2014) Lung cancer is associated with decreased expression of perforin, granzyme B and interferon (IFN)-gamma by infiltrating lung tissue T cells, natural killer (NK) T-like and NK cells. Clin Exp Immunol 178(1):79–85. https://doi.org/10.1111/cei.12392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Johansson-Percival A, He B, Li ZJ, Kjellen A, Russell K, Li J, Larma I, Ganss R (2017) De novo induction of intratumoral lymphoid structures and vessel normalization enhances immunotherapy in resistant tumors. Nat Immunol 18(11):1207–1217. https://doi.org/10.1038/ni.3836

    Article  CAS  PubMed  Google Scholar 

  37. Martin C, Thevenot G, Danel S, Chapron J, Tazi A, Macey J, Dusser DJ, Fajac I, Burgel PR (2011) Pseudomonas aeruginosa induces vascular endothelial growth factor synthesis in airway epithelium in vitro and in vivo. Eur Respir J 38(4):939–946. https://doi.org/10.1183/09031936.00134910

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank MN and YK for her invaluable help with tissue processing. We also thank CK, BSc, PhD, from Edanz Group (https://en-author-services.edanzgroup.com/ac) for editing a draft of this manuscript.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

Conception and design: SW, TT, MM. Development of methodology: SW, FK, TT, YO. Acquisition of data: SW, YO, YO, FK. Analysis and interpretation of data: SW, FK, NH, TT, TT, YO, MS, MM. Writing, review, and/or revision of manuscript: SW, FK, NH, TT, YO, MM. Study supervision: TT, MS, YO, MM.

Corresponding author

Correspondence to Tetsuzo Tagawa.

Ethics declarations

Conflicts of interest

None.

Ethics approval

This study was approved by our Institutional Review Board (Kyushu University, IRB No. 2019–232).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 201 KB)

Supplementary file2 (PDF 293 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wakasu, S., Tagawa, T., Haratake, N. et al. Preventive effect of tertiary lymphoid structures on lymph node metastasis of lung adenocarcinoma. Cancer Immunol Immunother 72, 1823–1834 (2023). https://doi.org/10.1007/s00262-022-03353-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-022-03353-8

Keywords

Navigation