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Abstract
Natural killer (NK) cells mediate potent anti-tumor responses, which makes them attractive targets for immunotherapy. The 
anti-tumor response of endogenous- or allogeneic NK cells can be enhanced through clinically available monoclonal antibod-
ies that mediate antibody-dependent cellular cytotoxicity (ADCC). NK cell activation is regulated by interaction of inhibitory 
receptors with classical- and non-classical human leukocyte antigens (HLA) class I molecules. Inhibitory receptors of the 
killer immunoglobulin-like receptor (KIR) family interact with HLA-A, -B or –C epitopes, while NKG2A interacts with 
the non-classical HLA-E molecule. Both types of inhibitory interactions may influence the strength of the ADCC response. 
In the present review, we provide an overview of the effect of inhibitory KIRs and NKG2A on NK cell-mediated ADCC, 
which highlights the rationale for combination strategies with ADCC triggering antibodies and interference with the NK 
cell relevant inhibitory immune checkpoints, such as KIR and NKG2A.
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Natural killer cells are potent mediators 
of antibody‑dependent cellular cytotoxicity

Natural killer (NK) cells are innate immune cells that can 
mediate potent cytotoxic responses against cancer cells with-
out the need for prior exposure to tumor-associated antigens. 
NK cells recognize a potential target cell by a broad array of 

membrane-associated receptors that interact with activating- 
or inhibitory ligands expressed by the target cell [1]. NK cell 
effector function is triggered when the net result of engage-
ment via activating NK cell receptors is stronger than the 
inhibitory signals provided by the target cell [2]. NK cells 
can distinguish diseased cells from healthy cells through 
enhanced levels of activating ligands on virally infected or 
malignantly transformed cells. Healthy cells normally do 
not express high levels of these molecules as most activat-
ing NK cell ligands are molecules associated with cellular 
stress, malignant transformation or viral infection [1, 2]. The 
inhibitory receptors, on the other hand, set the threshold 
for NK cell activation. The most important group of inhibi-
tory ligands are the Human Leukocyte Antigen (HLA) class 
I molecules expressed on virtually every healthy cell and 
which protect them from killing by NK cells [1, 2].

NK cells can mediate several effector functions and the 
most well-known is the killing of diseased cells through the 
release of granules containing perforin and granzymes or in 
a death receptor-dependent manner. In addition, they mediate 
helper functions through the release of cytokines like IFNγ 
that promote type 1 anti-tumor immunity [2]. NK cells are 
also potent mediators of antibody-dependent cellular cyto-
toxicity (ADCC). NK cell ADCC is mediated by the binding 
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of the low affinity Fc-receptor, FcɣRIIIa or CD16, with anti-
bodies bound to target cells [1]. FcɣRIIIa preferably interacts 
with antibodies of the IgG1 or IgG3 isotype in humans and 
the glycosylation- and fucosylation status of the antibody 
have been shown to impact the strength of the response [3]. 
Genetic variation of the FcɣRIIIa receptor can further influ-
ence the response and 234 single nucleotide polymorphisms 
(SNP) have been described in the FCGR3A gene, in coding 
and in non-coding regions [4]. The FcɣRIIIA-F158V poly-
morphism (rs396991) is the best characterized SNP in the 
FCGR3A gene with a functional effect. It is the result of a 
single nucleotide substitution from T to G at cDNA nucleo-
tide position 559 leading to two different FcɣRIIIa allotypes: 
the high affinity variant with a valine (V) on amino acid posi-
tion 158 and a lower affinity variant with a phenylalanine (F) 
at amino acid position 158 [5]. FcɣRIIIa signals via an intra-
cellular CD3Ϛ domain and interaction with the Fc part of an 
antibody, bound to its target, provides a very strong activating 
signal to the NK cell. Engagement of only the FcɣRIIIa with 
an ADCC-inducing antibody is sufficient to trigger NK cell 
activation, which is in contrast to most other activating NK 
cell receptors for which signaling via at least two activating 
receptors is needed [6]. In a clinical trial with the ADCC-
inducing antibody isatuximab, FcɣRIIIa 158 V correlated 
with a prolonged progression-free survival in relapsed or 
refractory multiple myeloma, which was mechanistically sup-
ported in in vitro assays showing enhanced NK cell-mediated 
ADCC [7]. This property and the option to enhance the NK 
cell response in a tumor-specific- or tumor-associated man-
ner makes the use of ADCC-inducing antibodies a popular 
way to therapeutically boost the NK cell anti-tumor response.

Regulation of NK cell function by interaction 
of inhibitory NK cell receptors and HLA class 
I ligands

NK cells express a variety of receptors interacting with HLA 
class I ligands, among them activating- and inhibitory members 
of the family of killer immunoglobulin like receptors (KIRs) 
and NKG2A. Like their HLA ligands, the KIR genes are highly 
polymorphic. Therefore, many different protein variants and 
haplotypes exist, and KIR repertoires are further shaped by 
copynumber variation. Activating family members are named 
KIRxDSx as they possess a short (S) intracellular ITAM 
domain providing activating intracellular signaling. Depend-
ing on the presence of 2 or 3 extracellular immunoglobulin 
domains (D) they are named KIR2DSx or KIR3DSx [8]. Acti-
vating KIRs can interact with HLA class I, e.g., KIR2DS1 and 
KIR2DS2 with HLA-C and KIR2DS4 with HLA-C*05:01 [9], 
but the ligands for several of the other activating KIRs remain 
elusive. Inhibitory KIR (iKIR) family members express a long 
(L) intracellular domain leading to an inhibitory signaling 

cascade upon ligand interaction, which names them KIRxDLx 
and iKIRs typically recognize HLA class I molecules. The 
most frequently studied are KIR2DL1 interacting with HLA-C 
alleles possessing the C2 epitope characterized by a Lysine at 
aa position 80; KIR2DL2 or KIR2DL3 interacting with HLA-C 
alleles having the C1 epitope with a Asparagine at aa position 
80 [10] and KIR3DL1 binding to HLA-B alleles with a Bw4 
epitope or to HLA-A23, -A24 or –A32 [11].

iKIRs have a dual role regulating NK cell activation. The 
interaction between iKIRs and their HLA class I ligands 
results in an enhanced potential of the NK cell to respond to 
diseased cells upon engagement with an activating ligand, a 
process called “NK cell licensing” [12]. As a result, NK cells 
that do not express any inhibitory receptor for HLA class I 
are considered to be hyporesponsive unless they receive a 
very strong activating signal. Licensed NK cells more vigor-
ously respond to a potential target cell [12, 13]. While iKIRs 
promote NK cell function through licensing, they also act as 
strong inhibitory immune checkpoints to control effector func-
tion of licensed NK cells. By doing so, iKIRs protect healthy 
cells from being killed by NK cells through the binding to 
their respective HLA class I ligands abundantly present on a 
healthy cell. In contrast to T cells, NK cells recognize HLA 
epitopes rather than individual HLA alleles, though they can 
sense to some extend alterations in the HLA peptidome [9]. 
This is also the reason why NK cells do not cause graft versus 
host pathology in an allogenic setting with HLA discrepancy 
which is in sharp contrast to T cells and a great benefit when 
exploiting NK cells for immunotherapy purposes [14].

The heterodimer CD94:NKG2A interacts with the non-clas-
sical HLA class I molecule, HLA-E. With only two frequently 
occurring protein variants, HLA-E is much less polymorphic 
than the classical class I molecules HLA-A, -B and –C [15]. 
While iKIRs are typically expressed on the highly mature NK 
cell subsets and exclusively on the cytotoxic  CD56dim subset, 
NKG2A can also be found on less mature NK cells as well as 
on the cytokine producing  CD56bright subset. NK cells can (co-)
express one or a combination of inhibitory receptors, but, the 
percentage of NKG2A expressing NK cells in peripheral blood 
is usually much higher than the percentage of KIR express-
ing NK cells (20–80% for NKG2A vs. 0–15% for iKIRs) [16]. 
Like the iKIRs, NKG2A is involved in NK cell licensing and it 
sets the activation threshold for licensed NK cells and protects 
HLA-E expressing cells from killing by NK cells [15].

NKG2A and iKIRs as inhibitory immune 
checkpoint controllers for NK cell anti‑tumor 
reactivity

In the quest to cure cancer, there is a booming interest 
in targeting inhibitory immune checkpoint molecules like 
PD1 and CTLA-4, which even resulted in the awarding of 
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the Nobel Prize for medicine in 2018 to Allison and Honjo. 
In the past years, many other inhibitory immune check-
point receptors have been identified, among them TIM-3, 
LAG-3, TIGIT and CD96. Under homeostatic conditions, 
these molecules mediate immune tolerance by providing 
negative feedback loops and controlling excessive immune 
cell activation. The downside of these receptors is that 
they also negatively impact anti-tumor immunity as their 
inhibitory ligands are frequently expressed on tumor cells 
or tumor-accessory cells, and the receptors themselves are 
often expressed on tumor infiltrating T cells (TILs), or on 
T cells in tumor draining lymph nodes and this expression 
has been associated with an exhausted functional T cell 
profile [17]. Immunotherapy with monoclonal antibodies 
blocking the interaction between the receptors and their 
ligands in the tumor itself or in the draining lymph node 
has been shown to enhance priming of anti-tumor CD4 and 
CD8 T cells and to release TILs from inhibition in animal 
models as well as in human [17]. The enormous potential 
of targeting these inhibitory receptors has been clearly 
exemplified in several of the clinical studies performed in 
humans with for example nivolumab, ipilimumab or pem-
brolizumab, that may provide clinical responses in some 
patients [18].

In contrast to the effect on T cells, the role of those pro-
totypic immune checkpoint molecules in NK cells is much 
less clear and there is a lot of debate on, for example, the 
functional relevance of PD1 for NK cells [19]. Regarding 
its ligand PD-L1, one study indicates that PD-L1 target-
ing may be beneficial in PD-L1-negative tumors and that 
this is mediated through the direct binding of monoclonal 
antibodies to tumor-induced PD-L1 expression on the NK 
cells [20]. Besides PD-L1, NKG2A and the iKIRs are addi-
tional controllers of NK cell reactivity against self- and 
non-diseased cells and can therefore also be considered 
as critical inhibitory immune checkpoint receptors for NK 
cells. Hence, potentiating NK cell anti-tumor responses 
via the blockade of inhibitory interactions between KIRs 
or NKG2A and their HLA ligands is a highly interest-
ing approach to boost the curative potential of NK-based 
therapies. Antibodies like lirilumab (anti-KIR) and monal-
izumab (anti-NKG2A) have been developed and tested for 
this purpose [21, 22]. While many tumors reduce or even 
completely lose HLA class I expression to escape from 
CD8 T cells, they frequently maintain or even enhance 
expression of HLA-E, presumably to protect them from 
killing by NKG2A-positive NK cells (thus the majority of 
NK cells) [23]. This makes NKG2A an especially inter-
esting candidate to further target in clinical trials [22]. 
Currently, there are 16 trials registered at Clinicaltrials.
gov that study the potential for monalizumab in cancer. In 
addition, lirilumab is being used in 13 clinical trials. Both 
monalizumab and lirilumab are utilized in combination 

with other therapeutic agents in the majority of these stud-
ies. Although these types of combination therapies have 
been well tolerated by patients, they do not yet result in 
optimal stimulation of NK cell anti-tumor efficacy and 
the exact combination resulting in optimal NK cell anti-
tumor efficacy remains to be determined. While the stop 
of the INTERLINK-1 Phase 3 trial studying monalizumab 
with cetuximab (NCT04590963) was recently announced, 
other studies with different combination therapies, such 
as monalizumab with durvalumab, are ongoing (e.g., 
NCT05221840 and NCT02671435). It will be interesting 
to unravel the underlying reasons for the lack of improved 
survival and to understand how the treatment affected NK 
cells.

When NK cells are used in an allogeneic setting, interac-
tion between iKIR and HLA can also be reduced through 
selection of so-called KIR-ligand mismatched donors [24]. 
The beneficial effect of a KIR-ligand mismatch became 
clear from animal- and human studies showing an NK medi-
ated improved clinical outcome in leukemia patients upon 
haploidentical stem cell transplantation when KIR-ligand 
mismatched donors were selected [25]. Our group obtained 
comparable results in a mouse breast cancer model, provid-
ing evidence that the concept may also be relevant for solid 
tumors [26]. Furthermore, we and others demonstrated in 
in vitro models that KIR-ligand mismatched NK cells were 
more responsive to HLA class I expressing tumor cells, even 
in a setting where the NK cells were highly activated by 
IL-2 [27–29].

Triggering ADCC as a way to potentiate 
the NK cell anti‑tumor response

The development of the hybridoma technology as well as 
more recent approaches to produce and optimize monoclonal 
antibodies for therapeutic purposes has revolutionized the 
cancer immunotherapy field. A plethora of clinical grade 
antibodies are currently available and many of them act in 
a multimodal way; for example, via deprivation of tumor 
growth factors, by triggering complement-dependent cyto-
toxicity (CDC), by promoting opsonization and subsequent 
degradation by macrophages, by potentiating the immune 
response through blockade of inhibitory receptors, and/or by 
triggering Fc receptor mediated ADCC [30]. Since monoclo-
nal antibodies can be used in an off the shelf manner, they 
are attractive candidates to combine with other immuno-
therapeutic strategies that exploit the anti-tumor function of 
endogenous NK cells or allogeneic NK cells in a transplan-
tation or adoptive transfer setting. Several monoclonal anti-
bodies have been shown to induce ADCC mediated by NK 
cells and frequently studied examples are trastuzumab for 
Her2 expressing tumors, cetuximab (anti-EGFR), rituximab 



800 Cancer Immunology, Immunotherapy (2023) 72:797–804

1 3

Ta
bl

e 
1 

 Im
pa

ct
 o

f i
nh

ib
ito

ry
 k

ill
er

 im
m

un
og

lo
bu

lin
-li

ke
 re

ce
pt

or
s o

n 
N

K
 c

el
l-m

ed
ia

te
d 

A
D

C
C

Re
fe

re
nc

es
St

ud
y 

su
m

m
ar

y
Re

su
lts

 su
m

m
ar

y
Eff

ec
t t

hr
ou

gh

[4
2]

In
 v

itr
o 

stu
dy

 w
ith

 C
D

20
 p

os
iti

ve
 B

-ly
m

ph
ob

la
st 

ce
ll 

lin
es

 a
nd

 tr
ig

ge
rin

g 
of

 
N

K
 c

el
l A

D
C

C
 b

y 
rit

ux
im

ab
H

LA
, b

ut
 n

ot
 C

D
20

 e
xp

re
ss

io
n 

on
 th

e 
ta

rg
et

 c
el

l c
or

re
la

te
d 

w
ith

 ri
tu

xi
m

ab
-

in
du

ce
d 

A
D

C
C

. A
nt

i-K
IR

 a
nt

ib
od

ie
s e

nh
an

ce
d 

A
D

C
C

K
IR

-li
ga

nd
 in

te
ra

ct
io

n

[4
3]

In
 v

itr
o 

stu
dy

 te
sti

ng
 e

ffe
ct

 o
f N

K
 m

ed
ia

te
d 

A
D

C
C

 b
y 

an
ti-

C
D

19
 

(X
m

A
b5

57
4)

 o
r a

nt
i-C

D
33

 (l
in

tu
zu

m
ab

) a
ga

in
st 

N
K

 re
si

st
an

t l
eu

ke
m

ia
 

ce
ll 

lin
es

 o
r p

rim
ar

y 
le

uk
em

ia
 c

el
ls

A
nt

ib
od

ie
s e

nh
an

ce
d 

th
e 

ki
lli

ng
 o

f t
he

 c
el

l l
in

es
. B

lo
ck

ad
e 

of
 K

IR
-li

ga
nd

 
in

te
ra

ct
io

n 
w

ith
 a

 p
an

-H
LA

 c
la

ss
 I 

m
oA

b 
fu

rth
er

 e
nh

an
ce

d 
th

e 
re

sp
on

se
K

IR
-li

ga
nd

 in
te

ra
ct

io
n

[4
4]

40
8 

fo
lli

cu
la

r l
ym

ph
om

a 
pa

tie
nt

s r
ec

ei
vi

ng
 4

-w
ee

kl
y 

rit
ux

im
ab

 a
s i

nd
uc

-
tio

n 
th

er
ap

y.
 C

lin
ic

al
ly

 re
sp

on
di

ng
 p

at
ie

nt
s (

n =
 28

9)
 w

er
e 

ra
nd

om
iz

ed
 to

 
re

ce
iv

e 
13

-w
ee

k 
rit

ux
im

ab
 m

ai
nt

en
an

ce
 th

er
ap

y 
vs

 n
on

-m
ai

nt
en

an
ce

 u
nt

il 
pr

og
re

ss
io

n

N
o 

ov
er

al
l-b

en
efi

t f
or

 ri
tu

xi
m

ab
 m

ai
nt

en
an

ce
. G

en
ot

yp
ic

 p
re

se
nc

e 
of

 
K

IR
2D

L2
 a

nd
 C

1 
as

 w
el

l a
s K

IR
3D

L1
 a

nd
 B

w
4 

as
so

ci
at

ed
 w

ith
 im

pr
ov

ed
 

ou
tc

om
e 

an
d 

du
ra

tio
n 

of
 th

e 
re

sp
on

se
 a

fte
r m

ai
nt

en
an

ce
 th

er
ap

y 
w

ith
 

rit
ux

im
ab

K
IR

-li
ga

nd
 in

te
ra

ct
io

n

[3
6]

24
5 

ne
ur

ob
la

sto
m

a 
pa

tie
nt

s r
ec

ei
vi

ng
 3

F8
 m

oA
b 

(a
nt

i-G
D

2)
. C

om
pa

ris
on

 o
f 

pr
ed

ic
te

d 
w

ea
k 

vs
 st

ro
ng

 K
IR

3D
L1

-B
w

4 
in

te
ra

ct
io

ns
La

ck
 o

f K
IR

3D
L1

 e
xp

re
ss

io
n 

or
 a

bs
en

ce
 o

f K
IR

-B
w

4 
lig

an
ds

 im
pr

ov
ed

 
ov

er
al

l- 
an

d 
pr

og
re

ss
io

n-
fr

ee
 su

rv
iv

al
. P

at
ie

nt
s w

ith
 p

re
di

ct
ed

 w
ea

k 
K

IR
3D

L1
-B

w
4 

in
te

ra
ct

io
ns

 h
ad

 su
pe

rio
r o

ut
co

m
es

 th
an

 p
at

ie
nt

s w
ith

 
str

on
g 

in
te

ra
ct

io
ns

K
IR

-li
ga

nd
 in

te
ra

ct
io

n

[3
7]

In
 v

itr
o 

stu
dy

 e
xp

lo
rin

g 
th

e 
eff

ec
t o

f K
IR

 o
n 

A
D

C
C

 in
du

ce
d 

by
 ri

tu
xi

m
ab

 o
r 

ob
in

ut
uz

um
ab

 (a
nt

i-C
D

20
, g

ly
co

en
gi

ne
er

ed
 fo

r h
ig

he
r a

ffi
ni

ty
 b

in
di

ng
 to

 
Fc
ɣR

II
Ia

N
K

 c
el

ls
 fr

om
 in

di
vi

du
al

s h
av

in
g 

al
l t

hr
ee

 iK
IR

s p
oo

rly
 k

ill
ed

 ri
tu

xi
m

ab
 

bo
un

d 
K

IR
-li

ga
nd

 m
at

ch
ed

 B
 c

el
ls

. N
K

 c
el

ls
 fr

om
 in

di
vi

du
al

s l
ac

ki
ng

 
on

e 
or

 m
or

e 
iK

IR
s m

or
e 

po
te

nt
ly

 k
ill

ed
 K

IR
-li

ga
nd

 in
co

m
pa

tib
le

 B
 c

el
ls

 
in

 p
re

se
nc

e 
of

 ri
tu

xi
m

ab
. N

K
 c

el
ls

 w
ith

 K
IR

s l
ac

ki
ng

 th
e 

lig
an

d 
on

 th
e 

ta
rg

et
 c

el
l w

er
e 

m
os

t p
ot

en
t. 

A
D

C
C

 b
y 

ob
in

ut
uz

um
ab

 w
as

 n
ot

 n
eg

at
iv

el
y 

in
flu

en
ce

d 
by

 K
IR

-li
ga

nd
 in

te
ra

ct
io

n

K
IR

-li
ga

nd
 in

te
ra

ct
io

n

[3
5]

In
 v

itr
o 

an
al

ys
is

 o
f r

itu
xi

m
ab

-in
du

ce
d 

A
D

C
C

 o
f h

ea
lth

y 
do

no
r N

K
 c

el
ls

 
w

ith
 k

no
w

n 
K

IR
 g

en
ot

yp
in

g 
ag

ai
ns

t a
 p

an
el

 o
f E

BV
 B

 c
el

l l
ym

ph
ob

la
sto

id
 

ta
rg

et
 c

el
ls

 w
ith

 v
ar

io
us

 H
LA

 c
la

ss
 I 

al
le

le
s

St
ro

ng
er

 in
hi

bi
to

ry
 m

od
ul

at
or

 e
ffe

ct
s o

n 
rit

ux
im

ab
-d

ep
en

de
nt

 N
K

 c
el

l 
de

gr
an

ul
at

io
n 

th
ro

ug
h 

K
IR

2D
L1

/H
LA

-C
 C

2 +
 an

d 
K

IR
3D

L1
/H

LA
-B

 
B

w
4 +

 si
gn

al
in

g,
 c

om
pa

re
d 

to
 K

IR
2D

L2
/3

 w
ith

 H
LA

-C
 C

1 +
 . I

nh
ib

ito
ry

 
si

gn
al

in
g 

th
ro

ug
h 

K
IR

2D
L1

 a
nd

 K
IR

3D
L1

 b
ro

ug
ht

 d
eg

ra
nu

la
tio

n 
le

ve
ls

 
do

w
n 

to
 th

e 
ba

se
lin

e 
of

 u
ne

du
ca

te
d 

co
un

te
rp

ar
t

K
IR

-li
ga

nd
 in

te
ra

ct
io

n

[4
1]

In
 v

itr
o 

an
al

ys
is

 o
f d

ar
at

um
um

ab
-in

du
ce

d 
A

D
C

C
 a

ga
in

st 
m

ye
lo

m
a 

ce
ll 

lin
es

 
an

d 
pr

im
ar

y 
ce

lls
 in

 c
om

bi
na

tio
n 

w
ith

 b
lo

ck
ad

e 
of

 K
IR

-li
ga

nd
 in

te
ra

ct
io

n 
w

ith
 a

nt
i-K

IR
 IP

H
21

02
 (l

iri
lu

m
ab

)

K
IR

 b
lo

ck
ad

e 
by

 IP
H

21
02

 e
nh

an
ce

d 
da

ra
tu

m
um

ab
-in

du
ce

d 
A

D
C

C
. 

Th
is

 w
as

 e
sp

ec
ia

lly
 e

vi
de

nt
 in

 p
at

ie
nt

s c
ar

ry
in

g 
th

e 
lo

w
 a

ffi
ni

ty
 (1

58
F)

 
Fc
ɣR

II
Ia

 re
ce

pt
or

 v
ar

ia
nt

K
IR

-li
ga

nd
 in

te
ra

ct
io

n

[4
5]

In
 v

itr
o 

stu
dy

 w
ith

 b
re

as
t c

an
ce

r c
el

l l
in

es
 (S

K
B

R
3,

 T
47

D
, M

C
F-

7)
 a

nd
 

tra
stu

zu
m

ab
Tr

as
tu

zu
m

ab
 m

ed
ia

te
s A

D
C

C
 a

ga
in

st 
H

ER
2 

ov
er

ex
pr

es
si

ng
 c

el
l l

in
es

 w
hi

ch
 

is
 ir

re
sp

ec
tiv

e 
of

 th
e 

N
K

 c
el

l d
on

or
 g

en
ot

yp
e

K
IR

-li
ga

nd
 in

te
ra

ct
io

n

[7
]

Ph
as

e 
II

b 
cl

in
ic

al
 tr

ia
l i

nc
lu

di
ng

 5
7 

pa
tie

nt
s w

ith
 (R

R
)M

M
 re

ce
iv

in
g 

Is
at

ux
i-

m
ab

-L
en

al
id

om
id

e-
D

ex
am

et
ha

so
ne

 c
om

bi
na

tio
n,

 su
pp

or
te

d 
by

 in
 v

itr
o 

cy
to

to
xi

ci
ty

 a
ss

ay
s

M
os

t p
ro

lo
ng

ed
 P

FS
 w

ith
 p

at
ie

nt
s c

ar
ry

in
g 

K
IR

3D
L2

 +
 H

LA
-A

3/
11

 +
 an

d 
FC

G
R

3A
 1

58
 V

 p
ol

ym
or

ph
is

m
 c

om
bi

na
tio

n 
(N

ot
 d

ue
 to

 e
du

ca
tio

n)
, 

w
hi

ch
 w

as
 re

ca
pi

tu
la

te
d 

in
 in

 v
itr

o 
A

D
C

C
 a

ss
ay

s. 
Su

pp
re

ss
ed

 N
K

 c
el

l 
A

D
C

C
 w

ith
 K

IR
2D

L1
 +

 H
LA

-C
2 +

 in
te

ra
ct

io
n

K
IR

-li
ga

nd
 in

te
ra

ct
io

n

[4
6]

In
 v

itr
o 

stu
dy

 u
si

ng
 N

K
 c

el
ls

 e
xp

an
de

d 
on

 K
56

2-
m

bI
L1

5-
41

B
B

L 
ce

lls
. 

A
D

C
C

 in
du

ct
io

n 
vi

a 
rit

ux
im

ab
 a

ga
in

st 
72

1.
22

1 
ta

rg
et

 c
el

ls
R

itu
xi

m
ab

-in
du

ce
d 

A
D

C
C

 a
nd

 e
nh

an
ce

d 
ki

lli
ng

 o
f t

ar
ge

t c
el

ls
. K

IR
-li

ga
nd

 
m

ed
ia

te
d 

in
hi

bi
tio

n 
pa

rti
al

ly
 p

er
si

ste
d

K
IR

-li
ga

nd
 in

te
ra

ct
io

n

[3
8]

In
 v

itr
o 

an
d 

xe
no

gr
af

t i
n 

vi
vo

 m
od

el
s w

ith
 b

re
as

t c
an

ce
r c

el
l l

in
e 

SK
B

R
3 

an
d 

tra
stu

zu
m

ab
K

IR
2D

L4
 sy

ne
rg

iz
es

 w
ith

 F
cɣ

R
II

Ia
 to

 e
nh

an
ce

 N
K

 c
el

l d
eg

ra
nu

la
tio

n.
 

H
LA

-G
/K

IR
2D

L4
 in

te
ra

ct
io

n 
im

pa
irs

 tr
as

tu
zu

m
ab

 in
du

ce
d 

A
D

C
C

 in
 

H
ER

2 
po

si
tiv

e 
br

ea
st 

ca
nc

er

K
IR

-li
ga

nd
 in

te
ra

ct
io

n

[3
3]

In
 v

itr
o 

an
al

ys
is

 o
f A

D
C

C
 tr

ig
ge

re
d 

by
 a

nt
i-G

D
2 

of
 IL

-2
 a

ct
iv

at
ed

 N
K

 c
el

ls
 

ag
ai

ns
t n

eu
ro

bl
as

to
m

a 
ce

lls
D

eg
ra

nu
la

tio
n 

of
 li

ce
ns

ed
 N

K
 c

el
ls

 a
nd

 K
IR

-li
ga

nd
 m

is
m

at
ch

ed
 N

K
 c

el
ls

 
w

as
 h

ig
he

r t
ha

n 
of

 n
on

-li
ce

ns
ed

 o
r m

at
ch

ed
 c

ou
nt

er
pa

rts
K

IR
-li

ga
nd

 in
te

ra
ct

io
n

Ed
uc

at
io

na
l s

ta
tu

s
[3

4]
In

 v
itr

o 
stu

dy
 te

sti
ng

 th
e 

eff
ec

t o
f a

nt
i-G

D
2 

an
d 

K
IR

-li
ga

nd
 m

is
m

at
ch

in
g 

on
 

A
D

C
C

 a
ga

in
st 

ne
ur

ob
la

sto
m

a 
ce

lls
B

ot
h 

lic
en

se
d 

an
d 

un
lic

en
se

d 
N

K
 c

el
ls

 c
an

 m
ed

ia
te

 A
D

C
C

. K
IR

 li
ga

nd
 

in
te

ra
ct

io
n 

in
hi

bi
te

d 
A

D
C

C
 o

f l
ic

en
se

d 
N

K
 c

el
ls

K
IR

-li
ga

nd
 in

te
ra

ct
io

n
Ed

uc
at

io
na

l s
ta

tu
s



801Cancer Immunology, Immunotherapy (2023) 72:797–804 

1 3

or obinutuzumab (anti-CD20) for B cell malignancies, dara-
tumumab (anti-CD38) or elotuzumab (anti-CS1) in multiple 
myeloma (reviewed in [31]).

Influence of KIR and NKG2A on NK 
cell‑mediated antibody‑dependent cellular 
cytotoxicity

In the setting where tumor-specific ADCC triggering anti-
bodies are used to promote NK cell activation, NK cells will 
receive a very strong activating signal which may override 
the inhibitory effects of KIR/NKG2A interaction with HLA 
class I. Several in vitro studies have explored the influence 
of KIR-ligand interaction and licensing status of the NK 
cell on the outcome of ADCC (Table 1 and Fig. 1). Most 
studies used rituximab (anti-CD20) to potentiate the NK 
cell response against B cell leukemias, in neuroblastoma 
ADCC can be triggered with anti-GD2, while in multiple 
myeloma daratumumab (anti-CD38) was used. All studies 
that addressed the role of licensing status of the NK cell 
demonstrated that both licensed- and non-licensed NK cells 
could mediate ADCC upon engagement of an antibody 
coated target cell [32–34]. Importantly, this showed that  
the hyporesponsive NK cell subsets, lacking expression of 
iKIRs, are also effective effector cells and can contribute 
to the overall anti-tumor response of bulk NK cells when 
an ADCC triggering antibody is present. Lisovsky et al.
[32] separately examined the contribution of education to 
antibody-dependent NK cell activation and found that edu-
cation through KIR3DL1 and KIR2DL1, but not KIR2DL3, 
increased antibody-mediated secretion of IFN-γ and CCL4, 
compared to uneducated counterparts.

All studies that addressed the potential inhibitory effect 
of KIR-ligand interaction on ADCC concluded that NK 
cells with KIRs that do not encounter their HLA ligands 
on the target cell mediate more potent responses than their 
matched counterparts [7, 28, 33, 35–37]. Kohrt et al. [37] 
observed that inhibition via KIR-ligand interaction was rel-
evant when rituximab was used to trigger ADCC against 
CD20 expressing B cells but not when the Fc optimized 
variant obinutuzumab was used to trigger ADCC, illustrat-
ing that the exact nature of the antibody is important as well 
[37]. Of relevance, there are indications that not all KIR-
ligand interactions mediate similar levels of ADCC inhibi-
tion. Makanga et al. [35] described that KIR2DL1/HLA-C 
C2 + and KIR3DL1/HLA-B Bw4 + signaling strongly medi-
ated NK cell hypo-responsiveness to rituximab, whereas 
the effects through KIR2DL2/3 with HLA-C C1 + were less 
pronounced. This is consistent with findings by Sun et al. 
[7], where isatuximab-mediated ADCC was suppressed by 
KIR2DL1/HLA-C2 + interaction.
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Non-classical HLA class I may also affect efficacy of 
ADCC. HLA-G interaction with KIR2DL4, which is present 
in all KIR haplotypes, inactivates NK cells and desensitizes 
breast cancer cells to trastuzumab treatment. In HLA-G-
negative tumors, KIR2DL4 promotes ADCC through an 
IFN-γ-mediated feedback circuit until IFN-γ eventually 
upregulates PD-L1 on cancer cells [38]. Therefore, inter-
fering with HLA-G/KIR2DL4 signaling combined with 
PD-L1/PD-1 targeting may potentiate trastuzumab treatment 
in those resistant cancers.

Albeit its frequent expression on NK cells, the role of 
NKG2A is relatively unexplored. Our group demonstrated 
that NK cells licensed via NKG2A mediated more potent 
anti-myeloma responses than unlicensed NK cells [28]. Fur-
thermore, co-expression of NKG2A did not reduce the mag-
nitude of the response against target cells expressing low- 
or intermediate levels of HLA-E when the NK cells were 
highly activated by IL-2 and in the presence of an ADCC 
triggering monoclonal antibody (moAb). High levels of 
HLA-E expression on target cells did however significantly 

reduce the NK cell response, indicating that the density of 
the inhibitory ligands is important as well [28].

NK cells, like many other immune effector cells, can 
be severely hampered in mediating their anti-tumor 
effects by an immunosuppressive tumor microenviron-
ment (TME) including factors like hypoxia, prostaglan-
din E2, lactate and suppressive tumor-accessory cells 
[39, 40]. This emphasizes the need to develop combina-
tion strategies to facilitate anti-tumor immune effector 
functions. In vitro data, as well as several clinical stud-
ies encouragingly show that ADCC mediating moAb can 
promote NK function even under suppressive conditions 
(reviewed in [29]). Given the strong inhibitory effects of 
especially KIR-ligand interaction, interfering with these 
immune checkpoint molecules may be a way to further 
enhance the response. In a setting where endogenous NK 
cells are targeted, this can be done by using moAb with 
specificity for KIRs (e.g., lirilumab), as has been done in 
for example myeloma [41] or in tumors with high levels 
of HLA-E by using monalizumab [22]. In an allogeneic 

Fig. 1  The effect of NK cell 
education status, KIR/HLA 
interaction, NKG2A/HLA-E 
interaction, and FCGR3A-p.158 
genotypes on the efficacy of 
ADCC. Level of NK cell-
mediated anti-tumor cytotoxic-
ity increases from left to right. 
A Uneducated NK cells require 
stimulation by ADCC-inducing 
antibodies in order to target 
tumor cells. Moreover, maximal 
ADCC responses require NK 
cell education. B–C In educated 
NK cells, KIR-ligand match-
ing provides a strong inhibitory 
signal, which can be overcome 
by adding ADCC-inducing 
antibodies. However, different 
levels of inhibition have been 
described for different KIR/
HLA interactions. D Mis-
matched educated NK cells 
combined with ADCC-inducing 
antibodies have the highest level 
of cytotoxicity. E High levels 
of HLA-E can lower cytotoxic 
potential even though ADCC-
inducing antibodies are present. 
Anti-NKG2A antibodies, such 
as monalizumab, could effec-
tively block this interaction. F 
Additionally, the high affinity 
variant FCGR3A-p.158Val 
induces stronger ADCC, inde-
pendent of educational status. 
Created with BioRender.com
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setting, selection of KIR-ligand mismatched donors may 
be an alternative strategy. Though, the additive effect of 
KIR-ligand mismatching in a transplant setting is still con-
troversial and seems to be highly dependent on the exact 
transplantation setting. Furthermore, it may be interesting 
to further explore the synergistic effect of targeting KIR/
NKG2A when chimeric antigen receptors (CARs) are used 
to redirect and enhance the NK cell anti-tumor response an 
alternative for ADCC triggering antibodies.

In either case, minimizing NK cell inhibition by inter-
fering with KIR/NKG2A or any other relevant inhibitory 
immune checkpoint receptors, in combination with an 
approach to maximize NK cell activation via engagement 
of CD16 or a CAR may help to potentiate the NK cell anti-
tumor effects which will be especially relevant for tumors 
with a highly suppressive TME.
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