Skip to main content

Advertisement

Log in

Blockade of IL-1α and IL-1β signaling by the anti-IL1RAP antibody nadunolimab (CAN04) mediates synergistic anti-tumor efficacy with chemotherapy

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

IL-1α and IL-1β are both involved in several aspects of tumor biology, including tumor initiation, progression, metastasis, and not least in resistance to various therapies. IL-1α can function as an alarmin to signal cellular stress, and acts to induce downstream events, including production of IL-1β, to amplify the signal. Both IL-1α and IL-1β act through the same receptor complex, IL-1R1-IL1RAP, to mediate signal transduction. IL1RAP is expressed on tumor cells and in the tumor microenvironment by for example CAF, macrophages and endothelial cells. The anti-IL1RAP antibody nadunolimab (CAN04) inhibits both IL-1α and IL-1β signaling and induces ADCC of IL1RAP-expressing tumor cells. As both IL-1α and IL-1β mediate chemoresistance, the aim of this study was to explore the potential synergy between nadunolimab and chemotherapy. This was performed using the NSCLC PDX model LU2503 and the syngeneic MC38 model, in addition to in vitro cell line experiments. We show that chemotherapy induces expression and release of IL-1α from tumor cells and production of IL-1β-converting enzyme, ICE, in the tumor stroma. IL-1α is also demonstrated to act on stromal cells to further induce the secretion of IL-1β, an effect disrupted by nadunolimab. Nadunolimab, and its surrogate antibody, synergize with platinum-based as well as non-platinum-based chemotherapy to induce potent anti-tumor effects, while blockade of only IL-1β signaling by anti-IL-1β antibody does not achieve this effect. In conclusion, blockade of IL1RAP with nadunolimab reduces IL-1-induced chemoresistance of tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Dinarello CA (2009) Immunological and inflammatory functions of the interleukin-1 family. Annu Rev Immunol 27:519–550. https://doi.org/10.1146/annurev.immunol.021908.132612

    Article  CAS  PubMed  Google Scholar 

  2. Korherr C, Hofmeister R, Wesche H, Falk W (1997) A critical role for interleukin-1 receptor accessory protein in interleukin-1 signaling. Eur J Immunol 27:262–267. https://doi.org/10.1002/eji.1830270139

    Article  CAS  PubMed  Google Scholar 

  3. Wesche H, Korherr C, Kracht M, Falk W, Resch K, Martin MU (1997) The interleukin-1 receptor accessory protein (IL-1RAcP) is essential for IL-1-induced activation of interleukin-1 receptor-associated kinase (IRAK) and stress-activated protein kinases (SAP kinases). J Biol Chem 272:7727–7731. https://doi.org/10.1074/jbc.272.12.7727

    Article  CAS  PubMed  Google Scholar 

  4. Kim B, Lee Y, Kim E, Kwak A, Ryoo S, Bae SH, Azam T, Kim S, Dinarello CA (2013) The interleukin-1alpha precursor is biologically active and is likely a key alarmin in the IL-1 family of cytokines. Front Immunol 4:391. https://doi.org/10.3389/fimmu.2013.00391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Howard AD, Kostura MJ, Thornberry N et al (1991) IL-1-converting enzyme requires aspartic acid residues for processing of the IL-1 beta precursor at two distinct sites and does not cleave 31-kDa IL-1 alpha. J Immunol 147:2964–2969

    Article  CAS  PubMed  Google Scholar 

  6. Baker KJ, Houston A, Brint E (2019) IL-1 family members in cancer; two sides to every story. Front Immunol 10:1197. https://doi.org/10.3389/fimmu.2019.01197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gelfo V, Romaniello D, Mazzeschi M, Sgarzi M, Grilli G, Morselli A, Manzan B, Rihawi K, Lauriola M (2020) Roles of IL-1 in Cancer: From Tumor Progression to Resistance to Targeted Therapies. Int J Mol Sci. https://doi.org/10.3390/ijms21176009

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ridker PM, MacFadyen JG, Thuren T, Everett BM, Libby P, Glynn RJ, Group CT (2017) Effect of interleukin-1beta inhibition with canakinumab on incident lung cancer in patients with atherosclerosis: exploratory results from a randomised, double-blind, placebo-controlled trial. Lancet 390:1833–1842. https://doi.org/10.1016/S0140-6736(17)32247-X

    Article  CAS  PubMed  Google Scholar 

  9. Paz-Ares L, Goto Y, Lim WDT et al (2021) 1194MO Canakinumab (CAN) + docetaxel (DTX) for the second- or third-line (2/3L) treatment of advanced non-small cell lung cancer (NSCLC): CANOPY-2 phase III results. Ann Oncol 32:S953–S954. https://doi.org/10.1016/j.annonc.2021.08.1799

    Article  Google Scholar 

  10. Di Paolo NC, Shayakhmetov DM (2016) Interleukin 1alpha and the inflammatory process. Nat Immunol 17:906–913. https://doi.org/10.1038/ni.3503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chiu JW, Binte Hanafi Z, Chew LCY, Mei Y, Liu H (2021) IL-1alpha processing, signaling and its role in cancer progression. Cells. https://doi.org/10.3390/cells10010092

    Article  PubMed  PubMed Central  Google Scholar 

  12. Jung DW, Che ZM, Kim J, Kim K, Kim KY, Williams D, Kim J (2010) Tumor-stromal crosstalk in invasion of oral squamous cell carcinoma: a pivotal role of CCL7. Int J Cancer 127:332–344. https://doi.org/10.1002/ijc.25060

    Article  CAS  PubMed  Google Scholar 

  13. Tjomsland V, Spangeus A, Valila J et al (2011) Interleukin 1alpha sustains the expression of inflammatory factors in human pancreatic cancer microenvironment by targeting cancer-associated fibroblasts. Neoplasia 13:664–675. https://doi.org/10.1593/neo.11332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bae JY, Kim EK, Yang DH, Zhang X, Park YJ, Lee DY, Che CM, Kim J (2014) Reciprocal interaction between carcinoma-associated fibroblasts and squamous carcinoma cells through interleukin-1alpha induces cancer progression. Neoplasia 16:928–938. https://doi.org/10.1016/j.neo.2014.09.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sass SN, Ramsey KD, Egan SM, Wang J, Cortes Gomez E, Gollnick SO (2018) Tumor-associated myeloid cells promote tumorigenesis of non-tumorigenic human and murine prostatic epithelial cell lines. Cancer Immunol Immunother 67:873–883. https://doi.org/10.1007/s00262-018-2143-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Xu D, Matsuo Y, Ma J, Koide S, Ochi N, Yasuda A, Funahashi H, Okada Y, Takeyama H (2010) Cancer cell-derived IL-1alpha promotes HGF secretion by stromal cells and enhances metastatic potential in pancreatic cancer cells. J Surg Oncol 102:469–477. https://doi.org/10.1002/jso.21530

    Article  CAS  PubMed  Google Scholar 

  17. Zhuang Z, Ju HQ, Aguilar M et al (2016) IL1 receptor antagonist inhibits pancreatic cancer growth by abrogating NF-kappaB activation. Clin Cancer Res 22:1432–1444. https://doi.org/10.1158/1078-0432.CCR-14-3382

    Article  CAS  PubMed  Google Scholar 

  18. Liu S, Lee JS, Jie C, Park MH, Iwakura Y, Patel Y, Soni M, Reisman D, Chen H (2018) HER2 overexpression triggers an IL1alpha proinflammatory circuit to drive tumorigenesis and promote chemotherapy resistance. Cancer Res 78:2040–2051. https://doi.org/10.1158/0008-5472.CAN-17-2761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chung AW, Kozielski AJ, Qian W, Zhou J, Anselme AC, Chan AA, Pan PY, Lee DJ, Chang JC (2022) Tocilizumab overcomes chemotherapy resistance in mesenchymal stem-like breast cancer by negating autocrine IL-1A induction of IL-6. NPJ Breast Cancer 8:30. https://doi.org/10.1038/s41523-021-00371-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bruchard M, Mignot G, Derangere V et al (2013) Chemotherapy-triggered cathepsin B release in myeloid-derived suppressor cells activates the Nlrp3 inflammasome and promotes tumor growth. Nat Med 19:57–64. https://doi.org/10.1038/nm.2999

    Article  CAS  PubMed  Google Scholar 

  21. Zhang D, Li L, Jiang H et al (2018) Tumor-stroma IL1beta-IRAK4 feedforward circuitry drives tumor fibrosis, chemoresistance, and poor prognosis in pancreatic cancer. Cancer Res 78:1700–1712. https://doi.org/10.1158/0008-5472.CAN-17-1366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mendoza-Rodriguez MG, Ayala-Sumuano JT, Garcia-Morales L, Zamudio-Meza H, Perez-Yepez EA, Meza I (2019) IL-1beta inflammatory cytokine-induced TP63 isoform NP63alpha signaling cascade contributes to cisplatin resistance in human breast cancer cells. Int J Mol Sci. https://doi.org/10.3390/ijms20020270

    Article  PubMed  PubMed Central  Google Scholar 

  23. Diaz-Maroto NG, Garcia-Vicien G, Polcaro G, Banuls M, Albert N, Villanueva A, Mollevi DG (2021) The blockade of tumoral il1beta-mediated signaling in normal colonic fibroblasts sensitizes tumor cells to chemotherapy and prevents inflammatory CAF activation. Int J Mol Sci. https://doi.org/10.3390/ijms22094960

    Article  PubMed  PubMed Central  Google Scholar 

  24. Mitsunaga S, Ikeda M, Shimizu S et al (2013) Serum levels of IL-6 and IL-1beta can predict the efficacy of gemcitabine in patients with advanced pancreatic cancer. Br J Cancer 108:2063–2069. https://doi.org/10.1038/bjc.2013.174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jaras M, Johnels P, Hansen N et al (2010) Isolation and killing of candidate chronic myeloid leukemia stem cells by antibody targeting of IL-1 receptor accessory protein. Proc Natl Acad Sci U S A 107:16280–16285. https://doi.org/10.1073/pnas.1004408107

    Article  PubMed  PubMed Central  Google Scholar 

  26. Askmyr M, Agerstam H, Hansen N et al (2013) Selective killing of candidate AML stem cells by antibody targeting of IL1RAP. Blood 121:3709–3713. https://doi.org/10.1182/blood-2012-09-458935

    Article  CAS  PubMed  Google Scholar 

  27. Shastri A, Will B, Steidl U, Verma A (2017) Stem and progenitor cell alterations in myelodysplastic syndromes. Blood 129:1586–1594. https://doi.org/10.1182/blood-2016-10-696062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fioretos T, Jaras M (2012) Method of treating a solid tumor with IL1RAP antibodies. US Patent No. 10,005,841

  29. Robbrecht D, Jungels C, Sorensen MM et al (2021) First-in-human phase 1 dose-escalation study of CAN04, a first-in-class interleukin-1 receptor accessory protein (IL1RAP) antibody in patients with solid tumours. Br J Cancer. https://doi.org/10.1038/s41416-021-01657-7

    Article  PubMed  PubMed Central  Google Scholar 

  30. Fields JK, Kihn K, Birkedal GS et al (2021) Molecular basis of selective cytokine signaling inhibition by antibodies targeting a shared receptor. Front Immunol 12:779100. https://doi.org/10.3389/fimmu.2021.779100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gottschlich A, Endres S, Kobold S (2021) Therapeutic strategies for targeting IL-1 in cancer. Cancers (Basel). https://doi.org/10.3390/cancers13030477

    Article  PubMed  PubMed Central  Google Scholar 

  32. Paulus A, Cicenas S, Zvirbule Z, Paz-Ares L, Awada A, Garcia-Ribas I, Losic N, Zemaitis M (2022) Phase 1/2a trial of nadunolimab, a first-in-class fully humanized monoclonal antibody against IL1RAP, in combination with cisplatin and gemcitabine (CG) in patients with non-small cell lung cancer (NSCLC). J Clin Oncol. 40: 9020. doi: https://doi.org/10.1200/JCO.2022.40.16_suppl.9020

  33. Van Cutsem E, Løvendahl Eefsen R, Ochsenreither S et al. (2022) Phase 1/2a trial of nadunolimab, a first-in-class fully humanized monoclonal antibody against IL1RAP, in combination with gemcitabine and nab-paclitaxel (GN) in patients with pancreatic adenocarcinoma (PDAC). J Clin Oncol. 40: 4141. doi: https://doi.org/10.1200/JCO.2022.40.16_suppl.4141

  34. Yang M, Shan B, Li Q et al (2013) Overcoming erlotinib resistance with tailored treatment regimen in patient-derived xenografts from naive Asian NSCLC patients. Int J Cancer 132:E74-84. https://doi.org/10.1002/ijc.27813

    Article  CAS  PubMed  Google Scholar 

  35. Porter AG, Janicke RU (1999) Emerging roles of caspase-3 in apoptosis. Cell Death Differ 6:99–104. https://doi.org/10.1038/sj.cdd.4400476

    Article  CAS  PubMed  Google Scholar 

  36. Huo KG, D’Arcangelo E, Tsao MS (2020) Patient-derived cell line, xenograft and organoid models in lung cancer therapy. Transl Lung Cancer Res 9:2214–2232. https://doi.org/10.21037/tlcr-20-154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lieberthal W, Triaca V, Levine J (1996) Mechanisms of death induced by cisplatin in proximal tubular epithelial cells: apoptosis vs. necrosis. Am J Physiol 270:F700–F708. https://doi.org/10.1152/ajprenal.1996.270.4.F700

    Article  CAS  PubMed  Google Scholar 

  38. Cohen I, Rider P, Carmi Y et al (2010) Differential release of chromatin-bound IL-1alpha discriminates between necrotic and apoptotic cell death by the ability to induce sterile inflammation. Proc Natl Acad Sci U S A 107:2574–2579. https://doi.org/10.1073/pnas.0915018107

    Article  PubMed  PubMed Central  Google Scholar 

  39. Kudo-Saito C, Miyamoto T, Imazeki H, Shoji H, Aoki K, Boku N (2020) IL33 is a key driver of treatment resistance of cancer. Cancer Res 80:1981–1990. https://doi.org/10.1158/0008-5472.CAN-19-2235

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was funded in whole by Cantargia AB.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: CRM, KVW, GF, DL. Methodology: CRM, CG, EJG, KVW, DL. Formal analysis and investigation: CRM, CG. Writing—original draft preparation: AD, CRM. Writing—review and editing: AD, CRM, DL, GF. Supervision: GF, DL.

Corresponding author

Correspondence to David Liberg.

Ethics declarations

Conflict of interest

All authors are current employees of, and/or hold stocks or stock options in, Cantargia AB.

Ethical approval

All animal studies were conducted according to the countries’ legislation following an approved Institutional Animal Care and Use Committee protocol or ethical permit. The care and use of animals was conducted in accordance with the regulations of the Association for Assessment and Accreditation of Laboratory Animal Care.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rydberg Millrud, C., Deronic, A., Grönberg, C. et al. Blockade of IL-1α and IL-1β signaling by the anti-IL1RAP antibody nadunolimab (CAN04) mediates synergistic anti-tumor efficacy with chemotherapy. Cancer Immunol Immunother 72, 667–678 (2023). https://doi.org/10.1007/s00262-022-03277-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-022-03277-3

Keywords

Navigation